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Preface

These proceedings contain the papers presented at the 2016 International SpaceWire
Conference, held in Yokohama, Japan between 24" and 27" October, 2016. The International
SpaceWire Conference brings together international spacecraft engineers and academics who are
working on spacecraft on-board data-handling technology. It is of benefit to product designers,
hardware engineers, software engineers, system developers and mission specialists interested in and
working with SpaceWire, enabling them to share the latest ideas and developments related to SpaceWire
and SpaceFibre technologies.

SpaceWire is now being used or designed into well over one hundred spacecraft, covering
science, exploration, Earth observation and commercial applications. High profile missions like James
Webb Space Telescope, GAIA, ASTRO-H, ExoMars, Bepicolombo, Sentinels 1, 2, 3 and 5 precursor,
and GOES-R are using SpaceWire extensively. SpaceWire is being used in Europe, Japan, USA, Russia,
China, India, and other countries of the World.

SpaceFibre is the next generation of SpaceWire technology, offering higher data-rates and
substantially enhancing the capabilities of SpaceWire. It runs over electrical or fibre optic cable
covering distances of 5m and 100 m respectively while running at data rates of up to 3.125 Gbits/s with
6.25 Ghits/s currently under development. SpaceFibre incorporates quality of service, providing
multiple independent virtual networks for transferring information over the physical network, each
virtual network having its own priority, bandwidth allocation and schedule. These capabilities enable
SpaceFibre to provide deterministic data delivery without loss of network bandwidth for combined
control and payload data-handling networks. It also provides integrated, rapid fault detection, isolation
and recovery technology, which makes SpaceFibre a highly robust network for use in applications
where reliability and availability are critical. SpaceFibre multi-laning technology extends the bandwidth
of a link using multiple lanes and provides hot and cold redundancy and graceful degradation.
Asymmetric links are also possible, using uni-directional lanes provided at least one lane is bi-
directional. SpaceFibre uses the same packet format and addressing concepts as SpaceWire making it
trivial to connect existing SpaceWire equipment into a SpaceFibre network. IP cores for radiation
tolerant FPGAs and ASICs with SpaceFibre interfaces are available and under development. A wide
range of test and development equipment is now available.

The conference covers many different aspects of SpaceWire and SpaceFibre technology and
includes both academic and industrial presentations. Sessions address recent developments of the
SpaceWire set of standards, space missions and other applications using SpaceWire, new components,
sensors and cables which support the SpaceWire standard; products supporting SpaceWire including
onboard equipment, instruments and related onboard software; methods and equipment to aid the test
and verification of SpaceWire components, units and systems; and SpaceWire networks, their
architecture, configuration, and discovery, as well as higher level protocols and related hardware and
software design issues. The new sessions on SpaceFibre illustrate how this next generation of
SpaceWire technology is gaining momentum, already being designed into spaceflight systems. It is an
exciting time in the SpaceWire community as this latest technology literally begins to take off.

Technical seminars at the conference cover SpaceWire-D which provides deterministic data
deliver using existing SpaceWire devices and SpaceFibre.

The community of engineers working on SpaceWire meet regularly at the SpaceWire Working
Group meetings to help with the further development of SpaceWire, SpaceFibre and related standards
and technologies. This group includes engineers from many parts of the World with substantial
contributions from Europe, USA, Japan, and Russia. The SpaceWire Conference complements these
Working Group meetings with more formal presentations from a wider range of contributors.
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Programme Overview

Monday 24 October
14:00 — 17:30 Registration
14:00 — 17:30 Tutorials of SpaceFibre and SpaceWire-D

Tuesday 25 October

09:15-17:00 Registration

09:30 — 10:35 Conference Opening / Keynote Presentations (65 min)
10:35 — 11:05 Missions & Applications Short (30 min)
11:35-12:50 SpaceFibre 1 Long (75 min)

14:05 — 15:20 Networks & Protocols Short (75 min)

15:45 — 17:30 Components Short (105 min)

Wednesday 26 October

09:15 - 11:30 Registration

09:15 — 10:55 Missions & Applications Long (100 min)
11:30 — 11:45 Test & Verification Short (15 min)

11:45 - 12:30 SpaceFibre Short (45 min)

13:45 — 15:50 Networks & Protocols 1 Long (125 min)
15:50 — 17:00 Poster Session (70 min)

Thursday 27 October

09.15-11:00 Registration

09:15-10:30 Components Long (75 min)

11:00 — 12:40 Networks & Protocols 2 Long (100 min)
13:55-15:10 SpaceFibre 2 Long (75 min)
15:40-16:55 Test & Verification Long (75 min)

Programme is subject to change
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Using SpaceWire Time Codes for Spacecraft Time
Synchronization

SpaceWire Missions and Applications, Short Paper

Susan C. Clancy, Mazen M. Shihabi, Krisjani S. Angkasa

Flight Communications Systems Section
Jet Propulsion Laboratory
Pasadena, California 91109 USA
Susan.Clancy@jpl.nasa.gov, Mazen.M.Shihabi@jpl.nasa.gov, Krisjani.S.Angkasa@ jpl.nasa.gov

Abstract— This paper describes how SpaceWire Time
Codes can be used for synchronizing time within various
subsystems of a spacecraft as well as, maintaining a common
time reference needed for coordinating operations within a
spacecraft. The algorithms to account for inaccuracies in the
time distribution method were based on the NASA-4009
Space Telecommunication Radio System (STRS) standard
[1], which defined an interface for synchronizing clocks
running at different tick rates and tick resolutions.

Index Terms— Relevant indexing terms: SpaceWire,
SpaceWire Time Codes, SpaceWire Time Distribution
Protocol, CCSDS Unsegmented Time (CUC), Space
Telecommunications Radio System (STRS).

1. INTRODUCTION

Spacecraft systems are typically comprised of many
subsystems, each with their own clock running at different
tick rates and with varying performance, which can degrade
over time. Clock synchronization becomes very important in
cases where commands and activities need to be correlated
with a common time reference and for attitude determination
based on current time or predicted position propagated over a
period of time.

Subsystems needs to know what time it is in order to
perform synchronized activities, or to time-tag telemetry that
can be correlated with operations in other subsystems. One
subsystem equipped with a Ground Navigation Satellite
System (GNSS) receiver can maintain an accurate reference
of time and can act as the time “master” to distribute the time
to other nodes connected via SpaceWire.

II. SPACECRAFT TIME SYNCHRONIZATION METHODS

There are two common methods used for synchronizing
time on a spacecraft: (1) a periodic “message” based method
performed in software and (2) a periodic “hardware tick”
based method performed in hardware or firmware.

The “message” based method uses a “master” to generate
a “tick” message at specific intervals and sends a time
message to the “slaves” at a specific “tick”. The “slaves”
update their time at a time boundary after the time message

is received. In the example below, the “tick” message is sent
100 times per second, and the time message is sent once per
second prior to the one second time boundary.

SpaceWire SpaceWire
Time Slave SpaceWire @100Mbps Time Master
Host Host
[ cock |
f oW T Y Y%
T|me Code 100/sec m

ESC JFlags § Counter ,‘_.--"‘Tifﬁ’e Announce Message‘-l‘/s‘ec}

{ Addr ff PID # CUCFormattedTime §

Fig. 1. Time Synchronization “Message” Based Method

The “hardware tick” method uses a “master” to send a
“tick” signal to all the “slaves”, who will then increment
their own slave clock. The hardware clock oscillator used to
generate the clock tick signal is usually a Temperature
Compensated Crystal Oscillator (TCXO) or Ovenized
Crystal Oscillator (OCXO) with accuracy better than 1 part
per million.

Hardware
Clock
Tick

subsystem1 ” subsystem2 ” subsystem3 |...

Fig. 2. Time Synchronization “Hardware Tick” Method
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III. SPACECRAFT TIME SYNCHRONIZATION CHALLENGES

The challenges in synchronizing spacecraft time are
similar to those in ground-based systems:

A. Latency — the time it takes to transfer and respond to
a time update. Each spacecraft subsystem must
account for latency and be tolerant within a measured
minimum and maximum range. A technique for
measuring latency is described in the SpaceWire
Time Distribution Protocol [2].

B. Jitter — the intermittent delay in the path between the
master sending the time and the slave receiving and
updating their time. Each spacecraft subsystem must
tolerate a measured maximum jitter.

C. Dirift — the variation in the clock tick rate due to
oscillator performance, which typically degrades over
time and varies with temperature. The time “master”
clock must be calibrated periodically to account for
the drift in the time conversion. The drift can be
accounted for as a clock rate correction [2] to mimic
the actual clock rate changes.

D. Time conversion — the different clocks may tick at
different rates and a conversion from the hardware
clock value to the time representation unit (usually in
seconds) is applied using the clock tick rate, clock
hardware value, and an offset, which typically
includes drift. The conversion algorithm needs to
account for latency, varying jitter, and clock
degradation.

A further complication is that the performance of the
clock oscillators in various parts of the system may be
orders of magnitude different: a spacecraft computer may
have a clock with 10 ppm performance, while spacecraft
radios and GNSS receivers may be accurate to parts per
billion (ppb). The system design, however, may be that all
systems need to follow the time kept by the spacecraft
computer, so the time distribution method must allow a
better clock to follow a poorer clock, which is different
than the typical Network Time Protocol (NTP)
architecture, where clocks at a lower stratum follow more
accurate clocks at a higher stratum.

IV. STRS TIME SYNCHRONIZATION METHOD

The NASA-STD-4009 Space Telecommunications
Radio System (STRS) architecture standard [1] defines some
time related functions and corresponding Application
Programming Interfaces (APIs) for getting, setting, and
synchronizing time. These functions are used by
applications to maintain and coordinate time derived from
different clocks that may have different tick rates and
resolutions.

Note that the reference clock may or may not have a
higher performance and stability than the monitored clock.
The purpose is to synchronize the clocks and not to maintain
the correct time. The reference clock and managed clock can
exist on the same local host or on different hosts but can be
synchronized to report the same time.

The core concept of the STRS clock model is that the
underlying clock is allowed to run unhampered, and the
relationship between the raw clock and “time” is
encapsulated in the API which provides a standardized way
of getting and setting time based on calling API functions
that can account for latency, jitter, and drift using conversion
data. This conversion data is set to values that initially
synchronize the reference clock with the managed clock.
The conversion data can be updated periodically to
continuously account for drift.

The linear conversion algorithm commonly used to
compute time, converts hardware clock ticks to time in
seconds using the oscillator clock rate and hardware clock
ticks as follows:

time = (clock_rate X clock_ticks) + offset
The STRS time conversion algorithms include additional
adjustments to the rate and offset to account for the
difference between two clocks plus the latency, drift, and
even jitter as follows:
STRS time = ((clock_rate + adjust_rate) X clock_ticks) +
(offset + adjust_offset)

Figure 3 below shows an implementation of an STRS
time interface that synchronizes a local reference clock and a
local managed clock. The conversion data is applied when
getting the time via the STRS_GetTime API function which
converts the clock value to a time in seconds and sub
seconds.

Y - - N

STRS_GetTime STRS_SetTime
[ APP_GetTime ]ﬁ f[ APP_SetTime J

STRS_GetTime

APP_GetTime ](—-‘

’ Clock Conversion Data ‘

|

Clock1

STRS_Synch

‘ Clock Conversion Data ‘

[

Clock2

Fig. 3. STRS Time Synchronization Method
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V. SPACEWIRE SPECIFICATION FOR TIME CODES

The SpaceWire Protocol Standard [3] includes the
definition of the time interface with Time Codes and the
TickIn and TickOut signals. The key features in any
implementation are:

A. Time Code generation or receipt can be enabled or

disabled.

B. The Time Code rate is generated by a “master” and
can be configured to send Time Codes at a specific
rate

C. The Time Code is a specific type of SpaceWire
message containing a Time Code identifier and Time
Code counter. The Time Code counter is an
incrementing 0 to 63 integer value and any missing
Time Code can be detected and reported by firmware
using this counter.

The Time Code TickIn / TickOut signals can support an
interface to a software interrupt line and/or hardware signal
going to a hardware clock. The time “master” (aka initiator)
can generate a software interrupt for each tick using the
TicklIn signal. Using this Tickln interrupt, a “slave” (aka
target) can implement a SpaceWire “derived clock” to align
the tick generation with the time message.

VI. CCSDS TIME MESSAGE FORMAT

The CCSDS Unsegmented Code (CUC) Time
Specification [4] is a proposed standard for specifying time
as a number of seconds and sub-seconds.

CCSDS Unsegmented Code

P-Field T-Field
1st |2nd CoarseTime | FineTime

Fig. 4. CCSDS Unsegmented Code (CUC) Format

The fields in the time announced message are as follows:

Unsegmented Code
P-Field T-Field
Addr | OxF1 | 32-bit time (sec) | 16-bit (notused)

Fig. 5. Time Announced Message Format

VII. TIME SYNCHRONIZATION DEMO

The first goal was to demonstrate the ability to
compensate for time distribution inaccuracies due to latency,
jitter, and drift using the STRS time API. The second goal
was to demonstrate time distribution using SpaceWire Time
Codes and the CCSDS CUC formatted time message.

In the first test, the time synchronization was performed
on the SDR using the Clock Calibration waveform
component (CLKCAL) to synchronize two different clock
“kinds” on the SDR. The CLKCAL waveform (1) computes
the delta between the reference clock time and managed
clock time, (2) computes the drift detection value for each
clock, (3) reports any time delta or drift detection, and (4)
synchronizes the managed clock to report the same time as
the reference clock. The STRS time API is used by
CLKCAL for getting, setting, and synchronizing the time.

Reported
Lowest | Highest rft d Lowest | Highest
Clock1 || Clock1 Monitored Delt Clock2 | Clock2
Drift>0 Drift Delta Data - 7 |Drift>0| Drift

T T

CLKCAL Waveform

I

Unck’FlaIue (‘JockTValue

Threshold Minimum
Clockl Threshold Maximum Clock2

Incremental Adj. Maximum

Fig. 6. Clock Synchronization Test

In the second test configuration, the CLKCAL waveform
was integrated with the SpaceWire Time interface. The
SpaceWire time interface on the SDR “slave” was
implemented as a “waveform” component with counterparts
running in both firmware on a Field Programmable Gate
Array (FPGA) and software running on the SDR Sparc
computer.

The SPW waveform continuously (1) receives the time
codes, (2) maintains a Time Code tick counter, (3) captures
the time sent in the SpaceWire time messages, (4) sends
periodic notifications at synchronization intervals and (5)
makes the time available to other waveforms.

Time “Slave” Host
CLKCAL Waveform

Time Code

Notification

|
|
Current Time Code l . «“ ”
SpaceWire Time Tick Counter Time Codes : Time “Master” Host
W Wavefc [

— —— — e

c SPW Waveform D -
"i“—r - _—— Time Announce Message
Configuration: |
Mode (Master or Slave) |
Time Code Receive Interval (in microseconds)
Time Announce Rate (per second) :
|

Notification Rate (per second)

Fig. 7. Clock Synchronization with SpaceWire Test

The time delta is computed by CLKCAL and is expected
to be constant unless inaccuracies are introduced by jitter or
drift.

A set of “threshold” values (minimum, maximum, and
rate adjustment maximum) is used to determine when to
synchronize the clocks and which method to use (time jump,,
incremental update, or a rate adjustment).

The threshold minimum accounts for expected jitter
introduced by the time distribution interface itself. The



minimum should not be 0 since there will always be some
amount of jitter. The threshold minimum value can be
determined by analyzing the delta values over a period of
time.

Any delta above the threshold minimum but below the

rate adjustment maximum will cause a rate adjustment
update to synchronize the clocks. The rate adjustment is
included in the conversion data used in the time conversion
algorithm. This is the smoothest update method. Any delta
between the minimum and the incremental adjustment
maximum will use an incremental adjustment over a period
of time. Incremental updates will be made until they add up
to the desired delta. This adjustment period can be longer to
make smaller incremental updates or shorter to make bigger
incremental updates. Any delta above the incremental
adjustment maximum will cause a time “jump”. A “jump” is
not desired when the managed clock is used for time based
computations or activities but is a common method used for
updating or synchronizing time during initialization.
The clock drift is obtained by capturing a counter for each
clock at specific intervals. This counter should remain
constant unless the clock is drifting. Watermarks are used to
track the range of drift for each of the clocks. A drift
watermark reporting threshold maximum value is used to
determine when to report drift. This reporting threshold can
be 0 to always report any detected drift or a value that must
be exceeded before the drift is reported.

VIII. TEST RESULTS

The initial tests run on the SDR show the STRS time
interface successfully synchronizing two different clock
“kinds” that exist on the same SDR. The data below (in red)
shows the software detecting the delta above the threshold,
and performing the synchronization.

o

shell[18]> start clkeal

shell[19]> 567993743: 984050000 /STRS_telemetry_q: clkcal: Checking clkcal RTC Clock against clkcal CPU RefClock

567993743: 986014000 /STRS_telemetry_q: clkcal: Start checking Clocks every 1 Seconds Until Stopped

567993743: 986563000 /STRS_telemetry_g: clkcal: Will Stop reporting after 200 Deltas above threshold reported

567993743: 987036000 /STRS _telemetry_q: clkcal: Auto Sync when Delta above Sync Threshold: 0 Seconds

567993743: 987531000 /STRS_telemetry_q: clkcal: Starting Delta 0.400531, Will Report above Threshold Delta: 0.001

567993743: 988045000 /STRS_telemetry_g: clkcal: Format: ReportCount CheckCount RefTime ClockTime DeltaSec

567993743: 988554000 /STRS _telemetry_g: clkcal: 11 567993743:985100000 567993743:584568916 0.400531

567993745: 982594000 /STRS telemetry g: clkcal: DBG: SetTime() RTC Clock Adjusment Delta: 0:-603988078

567993745: 983232000 /STRS_telemetry_g: clkcal: DBG: SetTime() RTC Clock Total Desired Delta 567993582:-43641312
63 T —telemetry_q: clkcal: DBG: (dL_nsec Ta

-584693184.000000) - coeffs(2) 1.033000 = delta_x 0.9583603

567993745: 984295000 /STRS _telemetry_g: clkcal: SetTime{) RTC (Kind 2) Adjusting Conv Factors 1.000000:1.033000 by

0:0.95836

567993745: 984822000 /STRS _telemetry_g: clkcal: DBG: SetTime() RTC Clock Adjust Delta 0:-603988078 Desired Delta 0:0

Factors 00.95836

567993745: 985338000 /STRS_telemetry_g: clkeal: DBG: GetTime() RTC Clock Factor Adjusted 1:1.9913603 by

0:0.95836032

567993745: 985845000 /STRS_telemetry_g: clkcal: Sync clkeal CPU Ref Base 567993745:981745000 Time =

567993745:981745000

567993745: 987280000 /STRS_telemetry_q: clkcal: Sync clkeal RTC Clk Base 000000163:023340092 Time =

567993745:606825299

567993745 987822000 /STRS telemetry g: clkcal: Auto Synced RTC to Reference CPU
[[567993745- 988318000 /STRS_telemetry_a: clkcal: RTC Linear Adjustment End Delta 567993582.-43641312 Reached 1

Fig. 8. Clock Synchronization

The clock delta and drift reported by the CLKCAL
waveform used inputs distorted by the jitter introduced by
the software itself due to running in a multitasking
environment on both the “master” and “slave”.  This
artificial input data was useful in developing and testing the
clock synchronization thresholds and synchronization
response. The use of an independently generated counter
latched at fixed intervals as described in earlier work in [2]
and a “distributed” interrupt generated via the TickOut signal

as described in [6] are needed to account for the real
inaccuracies introduced by latency, jitter, and drift.

The synchronization parameters that were tested included
thresholds to control whether time was updated gradually or
immediately in one-time jump.

The following test result shows the “threshold min.”
should be set to 6 usec to avoid synchronization for changes
smaller than the expected. 1 to 5 usec range. Based on this
example, the changes above 5 usec would result in a clock
synchronization.

Clock Delta

15
.
'|I-.| - I -

2 13 14 15 16 1

delta (usec)

Fig. 9. Synchronization Delta Values

In earlier tests on the SDR, the CLKCAL waveform
attempted to poll the received Time Code counter value to
increment the Time Code virtual clock ticks. These tests
intermittently failed when generating Time Codes at 100 per
second. The “slave” reported a missed tick error when the
Time Code value did not increment as expected, although
this issue was not encountered when Time Codes were
generated at once per second.

The TickOut interrupt interface and a latched counter
interface have since been implemented in the SDR FPGA
firmware to mitigate these issues. The TickOut interrupt unit
tests showed that software increments the SpaceWire DCLK
virtual ticks properly. However, tests using these
mechanisms integrated with CLKCAL are planned for the
future.

IX. CONCLUSIONS AND FUTURE WORK

The STRS time API does accommodate synchronizing
various clock "kinds" using clock compensation data to
mitigate inaccuracies (latency, jitter, drift) in a time
distribution system.

Synchronization tolerance ranges (i.e. thresholds) can be
used to determine which method to use for synchronizing
clocks and when to correct for drift. Future work is needed
to establish the tolerance ranges for synchronizing clocks
using the SpaceWire Time Distribution Protocol such as
those described in [2] and [6].

The SpaceWire Time Codes are useful for creating a
virtual clock on hosts connected via SpaceWire. This
SpaceWire virtual clock can be implemented on a "slave"
host that may not have a clock.
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Maturation of a Scalable Form Factor System
Standard for Interoperable Spaceborne Processing
and Interconnect Needs

Missions and Applications, Short Paper

Joseph R. Marshall, Richard W. Berger

BAE Systems
Manassas, VA 20112
joe.marshall@baesystems.com

Abstract— This paper will briefly review the SpaceVPX
standard with special emphasis on the interconnect planes
between the modules. Comparisons to other form factor
standards will be included. SpaceWire and its usage as the
control plane in a SpaceVPX system or as a medium speed data
plane will be discussed. A summary and status of any updates or
future efforts involving the SpaceVPX standard will be included.!

Index Terms—Standards, SpaceWire, networking, spacecraft
electronics, SpaceVPX, MicroTCA, CompactPCl, PC/104,
RapidlO, form factor, fault tolerance, redundancy

I. INTRODUCTION

Future spaceborne systems will require additional onboard
processing and much greater interface connectivity. Many
efforts worldwide are starting to address these needs.
SpaceVPX, a recently released ANSI/VITA standard, was
created to provide the structure and definition for interoperable
modules that will be created to meet these needs. It provides a
multi-layer set of fabrics using serializer/deserializer
(SERDES), LVDS and LVCMOS devices to provide
interconnections in a scalable and fault tolerant way. Initial
fabrics used by SpaceVPX are RapidlO, SpaceWire and 12C.
Provisions are provided for heritage or user defined interfaces
to interact with these within the structure. SpaceWire is setup
as both a control plane for command and data handling
throughout the box as well as a medium speed data plane.
SpaceVPX was approved and released by ANSI and VITA in
April 2015 as VITA 78. Since then, multiple organizations are
utilizing it to create interoperable modules.

Building on previous SpaceWire network elements, BAE
Systems is creating a set of silicon application specific standard
products (ASSP) [1] [2] [3] to provide power efficient general
purpose building blocks for the creation of scalable SpaceVPX
modules across these three fabrics. These building blocks are
key to a new family of SpaceVPX processing and network
modules [4] being developed for a wide variety of space
applications. One of the advantages of using SpaceVVPX is the
significant industry heritage of OpenVPX modules,
backplanes, chassis, power supplies and test equipment.

! Approved for Public Release — ES-ISR-082316-0109

Exploring optimal methods for leveraging these elements is an
important part of the development of the BAE Systems
SpaceVPX modules.

The SpaceVVPX working group is monitoring the usage of
the standard identifying potential upgrades and enhancements.
For instance, SpaceVPXLite (VITA 78.1) will focus on
building more limited and smaller 3U sized systems of smaller
number of slots yet maintaining the full fault tolerance of the
parent standard.

Il. FORM FACTOR STANDARDS

In the non-space world there are several form factor
standards that are being used for high performance
heterogeneous systems. A summary of a cross section of these
is captured in Table I. Of these CompactPClI [5], SpaceVPX
[6], MicroTCA [7] and PC/104 [8] have been applied to
spaceborne applications. One of the key challenges of larger
systems is their fault tolerance. Some of these standards were
fully designed to provide a basis for a single point fault tolerant
system. Other standards contain redundancy provisions that
may provide some fault tolerance (e.g. multiple fabrics that
may be used between modules) yet also included features (e.g.
common power feeds or busses) that formed single points of
failure for the system. The last class, usually representing
standards for small numbers of modules, have little or no
redundancy and make the assumption that redundancy will be
provided at the box level, switching out an entire box if the
primary fails to provide the services required of it. SpaceVPX
built on the other existing standards at the time and made
adjustments and changes so that it could fully support robust
single point fault tolerance or more across its system
implementations. This is done mostly through radial or star
distribution of most interfaces and resources within the box.

As Table | shows, there are different amounts and types of
profiles across form factor standards. Some, like CompactPCI
provided minimum flexibility just defining a handful of slot
profiles, while others, such as OpenVPX and by extension,
SpaceVPX provided users with many profiles in slots,
modules, backplanes and chassis.

SpaceVPX is the only current standard in the table that
supports the usage of SpaceWire. Some OpenVPX slots
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contain control plane wiring for PCI

Express that are

TABLE |. FOrM FACTOR STANDARDS

compatible with SpaceWire routings.

Backplane

Standard # Pins Interfaces Fault Tolerance Physical Voltages Profiles
CompactPCl . 3Ur 132/ PCI, 12C, JTAG, user Single bus 3U-1600r 1-160 by 33Vand 5V, Bus Clock,
[9] 6U: 264 defined Air / Conduction Cooled 12v, -12v Width, Slots
CompactPCl 3U: 538 PCI, PCle, SATAISAS, Single Bus, multiple 3U-160 or 6U-160 by 3.3Vand 5V,

Serial [10]  6U: 600 USB 2.0/3.0, Ethernet, fabrics 08 12V, -12V, 48V Slots
) 12C, JTAG, user defined Air / Conduction Cooled ' '
OpenVPX RapidlO, PCle, ) )
VITA 65 [11], 3U: 320 /  Ethemet, I2C, JTAG, | SuPportslof2toMof ' 3U-160 or 6U-160 by 12V, 5V and Slot, Module,
: - N common power and 0.8”7,0.85” and 1.0 Backplane,
46 [12], 48.2 | 6U: 832 RF, Optical, user . : 3.3V, -12v -
" clocks Air / Conduction Cooled Chassis
[13] defined
. Supports 1 of 2to M of | 3U/6U -160/220/280/340
SpaceVPX | 3U: 320 / sR:feIS\I/i?é Engel”:;tC N by 0.8”, 1.0” or 1.2” 12V, 5V and Sg’;'d':/"l’;’#;e'
VITA78[14] | 6U: 832 P ! . ' No single point of Air / Conduction 3.3V, -12v piane,
JTAG, user defined - Chassis
failure Cooled
MicroTCA B: 85 | RapidlO, Ethernet, PCI Supports 1 of 2 to M of 74/149 x 180mm x 3 size / protocol
[15] B+/AB: 170 Express, Fibre Channel, N No single point of heights +12 and 3.3V MCIF-)H es '
A+B: 340 12C, JTAG, user defined failure Air / Conduction Cooling P
RapidlO, Ethernet,
VITA 781 (i | 4, 400 SpaceWire, 12C, JTAG, SKIP&%“SS"} ‘I’; 2 ;&M}f"f 3U-160/220/280/340 12V, 5V and S'E?;:L\"‘I’:n“e'e'
development) ' RF, Optical, user glep By 0.87,1.0” or 1.2” 3.3V, -12v plane,
defined failure Chassis
. PCI, PCI Express, USB . . . 3.55” by 3.775” stacked )
Eacn/1 1i?4[16] g(c);?{olniowe 2.0/, SM Bus, SATA, | Sindle S]E;g‘r?ésm“'“p'e EPIC 4.528"x6.496” 3.3V, i\zl\'/lzv' Module Types
Y ' LPC EBX5.75" x 8”
across the space industry, VITA 78.00 was ratified by VITA
I1l. HISTORY

In 2011, a group of industry experts and government
officials met as part of the GOMACTech conference. They
discussed how the space industry would soon require more
processing and data bandwidth onboard than the typical
spaceborne CompactPCl box could provide. SpaceWire was
already a popular fabric with the capability of exceeding the 1
or 2 Gbps bandwidth that a CompactPCI box could provide to
share between the modules within.  This success with
SpaceWire, low speed 1 Gbps SERDES links and the growing
differences between COTS systems which now used SERDES-
based fabrics and space systems pointed toward SERDES
based fabrics for space. Radiation hardened or tolerant
technology was emerging that could support higher
performance SERDES and thus higher internal bandwidths.
Due to the high cost of development, there was general feeling
that these new high speed interfaces be standardized across the
space community. The Next Generation Space Interconnect
Standards group was formed at that meeting and has since
focused on its selected high performance interface, RapidlO.
Within a year of its formation and following a successful set of
trade studies and use case analysis that arrived at a consensus
to focus on RapidlO, SpaceWire and 12C as a three tiered set of
interconnect fabrics, the NGSIS group realized it also needed a
form factor standard for physical implementations of the
interfaces that could produce interoperable modules. Once
again, the consensus of the group settled on the OpenVPX
standard as the best base to build upon. [17] [18] [19]

Three years later, after over 50 drafts, hundreds of telecons
and face to face meetings with contributions and reviews from

and ANSI in April 2015. This 400+ page standard was built
strongly on OpenVPX so that it would be possible to use the
less expensive OpenVVPX modules and chassis for prototyping
SpaceVPX systems, for driving SpaceVPX modules with the
various fabrics and for testing SpaceVPX modules in an
existing infrastructure adapted for SpaceVVPX modules.

IV. SPACEVPX STANDARDIZATION

SpaceVPX provides multiple levels of standardization for
space electronics modules.  First, it defines a common
connector and backplane structure that has been tested for use
in many high vibration (e.g. ships and aircraft) environments
with much longer durations then typical spacecraft needs.
Three variations of the connector are available from three
different manufacturers so the best one may be picked for a
specific box. Although the connectors are not intermate-able,
their footprint is such that modules may be changed from one
to the other without a printed wiring board update.

The connector is divided into segments and multiple
profiles are defined that map the many pins to interface planes
in identical locations. Profiles are defined to provide basic
functions such as switches, controllers, payloads or peripherals.
These planes are then mapped at the module level to hold
specific protocols and speed selections that are compatible with
those pin layouts. This mapping is further described in the next
section. Any user defined pins in a profile may be used for any
usage. However, it is strongly recommended that the usage is
not interfering or can be disabled or not populated if the
module is targeted for reuse in other systems not requiring the
user defined purposes.
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The next level of standardization is provided to handle fault
tolerant switching of the utility plane. The utility plane is used
for handling the basic operation of a SpaceVPX box. One of at
least two controllers direct this operation and are the first logic
modules to receive power. The master controller then decides
which modules it needs powered to complete a mission. The
Utility plane provides power, resets, common low skew clocks
and a system management (SM) interface for the controller to
interact with utility plane switches and the controlled logic
modules. 12C, enhanced with a reset and error status signal,
forms the SM interface. In OpenVPX this is bussed between
modules in most implementations. In SpaceVPX, it was
decided that a star or radial distribution provided much more
fault tolerance and potential error containment. The switching
of the utility signals and the power to the logic modules is
implemented in a Space Utility Management (SpaceUM)
module. From a reliability point of view, it is a separate
physical module that is actually an extension of the controller
for redriving the control signals, an extension of the power
supply for redriving the power busses and an extension of each
module containing a power switch for each supplied voltage
and a control signal switch or selection for providing a single
set of control signals to each module. Through the use of fault
containment regions in the SpaceUM module, there are no
common points of failure that cannot be allocated and
controlled back to a power supply, controller or logic module.
Thus no module level redundancy is required for a SpaceUM
module. SpaceVPX fully defines the SpaceUM operation,
signals, and connector with profiles provided for various
combinations of voltages that may be supplied to each module.
These may also be applied to power supply modules. Unlike
OpenVPX with its maximum 560W module specification,
SpaceVPX limits modules to no more than 100W.

SpaceVPX also defined the protocols for controlling the
SM interface (SMI). It allows two options. One uses a subset
of the VITA 46.11 IPMB protocol. This requires an
intelligence to respond to each inquiry in under 3.3W which
may be an issue for many simpler modules or for modules with
large integrated processors. Thus SpaceVPX also defined a
direct access protocol which uses direct access over the SMI to
registers contained at each target. These registers provide basic
information about the module and basic health readings like
operational, temperature, voltage and built in test results. It is
expandable so it has the hooks necessary to access other parts
of a module that are so connected.

At the next level, SpaceVPX also defines the connections
between slots in its backplane profiles. These are created to
handle the maximum size for the given topology (such as data
plane mesh or data plane star) and show how slots should be
wired to one another. As before, these draw heavily from the
OpenVPX heritage but are personalized to span the set of slots
defined in SpaceVVPX. If a user needs less slots (e.g. only has 6
payloads with an 8 slot switch), slots may be eliminated.
Peripheral slots may be added to any part of a backplane since
they do not contain any data plane connections. However, if
they use control or utility plane signals, they must follow the

rules for other slots in that profile and make sure the controller
provides sufficient drops to service their needs.

The top level of standardization is at the chassis level. In
OpenVPX, all chasses are defined for development usage. In
SpaceVPX, chasses are also defined for flight usage. Primary
voltages and the size of the slots are defined at this level. All
profiles (slot, module, backplane and chassis) receive a label
that accurately describes its makeup in a single label.

V. INTERFACE MAPPINGS

Figure 1 shows a full slot profile for a SpaceVVPX controller
slot. Other slot profiles in the Payload family of slot profiles
are subsets of this. RapidlO (connector segment P1) is
currently the only data plane and SpaceWire (connector
segments P3 and P4) is the only control plane defined in
SpaceVPX. The expansion plane may be used for either
additional RapidlO lanes or any number of user defined 1/0.
Many backplane profiles define a slot to slot daisy chain using
the P2 interface. Special capability is defined in P5 to provide
a CompactPCI bus that may be daisy-chained to peripheral
modules built of either SpaceVPX or CompactPCI form factor.
P6 is used by the controller to route the SM interface, resets
and common clocks to up to four modules or to the SpaceUM
module to select between A and B controllers.

SpaceWire is fully defined as the control plane in
SpaceVPX and ports are defined on this controller slot. If less
SpaceWire ports are available, they should be depopulated
starting with the top of P3 downwards. A minimum
SpaceVPX implementation of the control plane for any logic
module requires only two SpaceWire ports, routed from each
controller in the system.

SE

Utility Plang L
(SMI, Clocks ——
Reset, Power
GA, JTAG) H__

Data Plane
(RapidlO)

Expansion Plane
(RapidlO or
User Defined)

User Deﬁnsd :
Control Plane
(SpaceWire)
System
Controller
with Data, ;
Expansion Heritage
Planes and (cPCI)
Heritage Utility Plane
Interfaces H e (SMI, Clocks)
To SpaceUM

Figure 1: Interface Planes Mapped to Slot Profiles



SpaceWire as a control plane can be used for moving
around configuration data and code, handling updates of
module memory, collecting telemetry and status from modules
beyond the 400 Kbps of the SMI in the utility plane.
SpaceWire may also be used for medium speed data transfer.
Since SpaceWire ports are capable of up to 400 MHz
operation, this could be used for many data handling operations
that don’t need the full performance of SERDES circuitry and
RapidlO ports.  All defined backplane profiles show
SpaceWire topologies as stars or radially-driven from each
controller. However, with the minimum two ports on each
module, a daisy chain architecture is possible. For fault
tolerance, four ports would be an optimal minimum so that two
separate daisy chains could be maintained in a system to allow
working around errors.

The 2008 version of SpaceWire [20] is currently specified
to run in SpaceVVPX modules up to the data link layer using the
SpaceVPX backplane and connector as the physical layer.
Once the updated SpaceWire standard is released, analysis is
needed to make sure this meets the Type B requirements.
Higher level layers are currently left up to the user.

For many systems, SpaceWire will not provide enough
bandwidth. RapidlO version 2.1 has been defined as the data
plane with both switched and mesh topologies included to
provide sufficient and scalable data moving bandwidth.

The RapidlO protocol is an international standard that is
regularly updated by the RapidlO Trade Association. The
protocol is designed as peer-to-peer, with a central controller
used to configure and enumerate the network at the time of
start-up. The RapidlO physical layer (PHY) is based on
SERDES circuitry with encoding of data into characters to
achieve balance over the long term. With revision 3.0 of the
specification, the baud rate per lane was extended to 10.3125
Gbaud and for this baud rate and those above it the encoding
mechanism was updated from the standard 8b/10b to 64b/67b,
significantly decreasing the associated overhead. As of June
2016 with revision 4.0, the top baud rate has been extended to
25 Gbaud/lane. Valid port widths are 1, 2, 4, 8, and 16 lanes,
although all commercial products to date support port width
only up to 4 lanes. The protocol includes basic read, write, and
maintenance functions, but also supports a number of optional
features that address the needs of specific markets and users.

Updates to the specification are developed by task groups
under the RapidlO Trade Association. In 2012, a new task
group was created specifically to address unique requirements
of spaceborne applications. Comprised of both corporate and
government representatives, the group defined a series of
enhancements that were published in revision 3.1 in 2014 [21].

The group defined “space device profiles” that included
some of the optional features as required for use in space,
including the error management extensions and multicasting.
The new space features include the following:

e  Structurally asymmetric links simplify the previously
added dynamic asymmetric link capability, based on
the assumption that sources such as sensors will
always transmit far more data than it is necessary for

them to receive. Return information will primarily
consist of commands, responses, and error messages.

e Fault tolerant enhancements for port width degradation
vs. the previous capability that limited which lanes
could be used when a port degraded. The enhanced
capability allowed for a 4-lane to 2-lane transition
using either lanes 0 and 1 or lanes 2 and 3, and also
allowed for any of the 4 lanes to be used as a single
lane.

e  Multicast event control symbol (MECS) based time
synchronization and distribution again simplified an
existing time distribution mechanism to provide
accuracy almost as high with far less added hardware.

o A multiple entry error log was also defined that would
allow for the capture of the exact sequence of errors as
they occurred. This allows for significantly greater
diagnostic capability than the single entry baseline
error log register.

e Pseudo-random binary sequence (PRBS) circuitry
supports in-flight testing of links to determine issues
with a port and allow determination which lane of a
port is the source of difficulty. During this testing the
port is not active. Once testing has been completed,
the port can be restarted configured as required.

All of these enhancements are capable of being used
outside of the space market. For that reason, they were
embedded directly into the specification as opposed to being
identified uniquely for use only in space.

Hybrid systems with data movement using RapidlO and
SpaceWire are easily constructed using SpaceVVPX profiles.

VI. SPACEVPX MODULES

Figure 2 shows a SpaceVPX system with several
representative module types focused on using SpaceWire for
Control and Data. This system controls 6 instruments attached
to the SpaceVVPX chassis. The controller uses its 16 port router
to control and move data between all other logic modules.
Shown in green are BAE Systems ASSPs that could provide
the SpaceWire interface functions. A single string solution
could be created using all the solid modules. Redundant
modules are shown and dashed lines connect these to the other
modules. Utility plane distribution and cross-strapping is also
shown out of the bottom of each module routed through the
SpaceUM module(s). If a single string is used, only one
SpaceUM is needed. In a redundant configuration, two
SpaceUM modules are required. Note twice as many
SpaceWire links are provided to the Mass Memory since that
often requires more bandwidth to store and retrieve data from
all the potential data sources.

Figure 3 shows an upgraded system where RapidlO is used
for the data plane and SpaceWire continues to function as the
control plane. Here many of the SpaceWire components have
migrated to RapidlO components that also support SpaceWire
interconnects. The Mass Memory now relies on RapidlO and
the data plane for its data stream inputs and outputs. Note the
data plane switch is implemented in a seventh logic module.
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Also, more instruments may be supported by the higher speed external 1/0.
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VIIl. CURRENT STANDARDS EFFORTS

A second standard effort, SpaceVPXlite, was started in
2015 and will become VITA 78.1 when approved. Its purpose
is to focus on the 3U design space of SpaceVPX. 3U
SpaceUM maodules as defined in SpaceVVPX can only control 2
logic modules versus the 8 logic modules controlled in a 6U
system. A major emphasis of SpaceVPXlite has been to
improve this overhead penalty and has led to the separation of
the Utility plane signal switching from the Utility plane power
switching functions by replacing SpaceUM modules with
Power Switches and redefining the utility plane inputs to each
logic module. Additional profiles are being added to match
recent OpenVPX additions including optical and RF backplane
connector options. The standard has mostly been written and is
now in the working group review stages.

SpaceVPX is seeing widespread usage among spacecraft
module developers. The NGSIS VITA working group
continues to hold telecons on a weekly basis and discuss any
shortcomings or corrections. As a result, a set of errata was
published in May 2016 pointing out obvious errors. The group
is preparing to start a minor revision to VITA 78 which will
correct identified errors and omissions, pick-up some missing
3U content from 78.1 and add a few new elements to round out
the standard. Also included will be an expanded user guide
section to help first time users better navigate and use the
standard.

VIIl. SUMMARY

SpaceVPX was developed to provide a standardized form
factor for the next generation of high performance modules
using interoperable SERDES-based fabrics with a focus on
fault tolerance and scalability. It focuses on the use of RapidlO
for high speed data movement and SpaceWire for command
and data handling as well as medium speed data transfer.
SpaceVPX doesn’t forget its heritage and has elements that
may interface to heritage system elements. Ratified in 2015, it
is beginning to see widespread adoption that should lead to
multiple interoperable modules that may be assembled into
scalable high performance payloads and other spacecraft
electronics modules.
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Abstract — Commercial-off-the-shelf photonic components
designed for datacenter or industrial applications do not typically
satisfy the environmental ruggedness requirements of aerospace
applications. In order to reduce costs and schedule risk for
insertion of photonic components into these harsh-environment
applications, we developed ruggedized photonic transceiver
modules for aerospace fiber-optic datalink applications up to 5
Gbps. We then performed reliability and environmental testing
to demonstrate that these modules meet or exceed many of the
requirements of these applications. In this paper we present
performance characteristics and results of reliability and
environmental tests for these transceiver components.

Index Terms — Relevant indexing terms: SpaceWire,
SpaceFibre, Spacecraft Networking, Spacecraft Electronics,
Spacecraft Photonics.

I. INTRODUCTION

Data transmission requirements between avionics modules
onboard spacecraft continue to increase, driven by the use of
processors with high-speed serial data 1/0O to support the
growing data requirements of advanced sensor systems and
increased bandwidth of communications switches and satellite
communications terminals. Optical fiber is an ideal medium
for high-speed signal transmission on space platforms, since
optical fiber cables support data rates up to many tens of
gigabits per second (Gbps), are much lighter and smaller than
copper wiring of equivalent bandwidth, are immune to radio-
frequency (RF) interference from adjacent cables, and therefore
require no RF shielding. The emerging SpaceFibre standard
for spacecraft networking anticipates the use of high-speed
fiber optic transmission between avionics modules and
subsystems on spacecraft.

However, the availability of suitable photonic transceiver
components for space applications is not widespread. The
major manufacturers in the photonics industry are typically not
able or willing to address the highly-specialized requirements,
long design cycles, extreme environmental robustness, ultra-

high reliability, traceability, radiation tolerance and small,
inconsistent production volumes encountered with space
applications.  Conversely, the development of suitable
transceiver hardware is typically beyond the engineering or
budget capacity of most spacecraft programs. We believe this
combination of factors has limited the adoption of photonic
links on spacecraft, while multi-gigabit links have proliferated
in non-space aerospace applications. We therefore undertook
development of photonic transceivers designed to address the
emerging aerospace requirements.

In this paper we will briefly review the components of photonic
transmitters, receivers and transceivers, and highlight the
challenges with spacecraft transceiver design. We then
describe the approach to design of rugged photonic transceiver
developments and the results of performance and
environmental tests appropriate for space avionics applications.

Il. BACKGROUND AND CHALLENGES WITH SPACECRAFT
PHOTONIC TRANSCEIVER DESIGN

We first briefly review the design of photonic transceivers,
which have two main sub-components: laser transmitter and
photodiode receiver.  The function of the transmitter is to
convert electrical serial data bits to optical pulses, and the
photodiode receiver converts optical pulses to electrical serial
data bits. These functions are realized in multi-gigabit systems
using opto-electronic semiconductor devices (laser diodes and
photodiodes) and electronic integrated circuit (IC) amplifier
and control-loop devices.

The transmitter employs a laser diode which is current-
modulated to impress the electrical serial data onto an optical
signal as a series of on and off states. Laser diode threshold
current and modulation efficiency are strong functions of
temperature. Many transmitters incorporate a power monitor
photodiode to sample and measure the laser output power and
maintain the average output power at a constant level using a
feedback loop with the average laser current as a control point.
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The electronic driver IC amplifies the electrical bit stream from
standard logic-levels such as Common-Mode Logic (CML)
typically used as I/0O to and from microprocessors, field-
programmable gate-arrays (FPGAS), etc., to the level required
to modulate the laser current to achieve optical modulation at
the optimum level. Since the optical modulation vs bias-
current slope efficiency is also a function of temperature, a
second control system is used to maintain proper optical
modulation over the operating temperature range. Careful
matching, calibration and tuning of the bias control and
modulation control circuits are required to insure that high-
speed transmitters at multi-gigabit rates operate within
industry-standard specifications over temperature. There are
variations on these approaches, but what is always true is that
some form of control of the laser current and modulation depth
is required if the laser temperature will vary in operation.

The receiver contains a PIN photodiode, transimpedance
amplifier IC, and limiting amplifier IC. The transimpedance
amplifier often contains an AGC circuit to maintain the output
level in an acceptable range when higher-level optical input
signals are present. The limiting amplifier may also contain a
bandwidth-limiting element to improve noise performance at
lower bit rates.

For bit rates up to 5 Gbps, the above laser diode, photodiode
and IC components are available that operate from -40C to
+85C without external thermal controls. Manufacturers of
commercially-available l