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Preface 
 

These proceedings contain the papers presented at the 2016 International SpaceWire 

Conference, held in Yokohama, Japan between 24th and 27th October, 2016.  The International 

SpaceWire Conference brings together international spacecraft engineers and academics who are 

working on spacecraft on-board data-handling technology. It is of benefit to product designers, 

hardware engineers, software engineers, system developers and mission specialists interested in and 

working with SpaceWire, enabling them to share the latest ideas and developments related to SpaceWire 

and SpaceFibre technologies. 

SpaceWire is now being used or designed into well over one hundred spacecraft, covering 

science, exploration, Earth observation and commercial applications. High profile missions like James 

Webb Space Telescope, GAIA, ASTRO-H, ExoMars, Bepicolombo, Sentinels 1, 2, 3 and 5 precursor, 

and GOES-R are using SpaceWire extensively. SpaceWire is being used in Europe, Japan, USA, Russia, 

China, India, and other countries of the World. 

SpaceFibre is the next generation of SpaceWire technology, offering higher data-rates and 

substantially enhancing the capabilities of SpaceWire. It runs over electrical or fibre optic cable 

covering distances of 5m and 100 m respectively while running at data rates of up to 3.125 Gbits/s with 

6.25 Gbits/s currently under development. SpaceFibre incorporates quality of service, providing 

multiple independent virtual networks for transferring information over the physical network, each 

virtual network having its own priority, bandwidth allocation and schedule. These capabilities enable 

SpaceFibre to provide deterministic data delivery without loss of network bandwidth for combined 

control and payload data-handling networks. It also provides integrated, rapid fault detection, isolation 

and recovery technology, which makes SpaceFibre a highly robust network for use in applications 

where reliability and availability are critical. SpaceFibre multi-laning technology extends the bandwidth 

of a link using multiple lanes and provides hot and cold redundancy and graceful degradation. 

Asymmetric links are also possible, using uni-directional lanes provided at least one lane is bi-

directional. SpaceFibre uses the same packet format and addressing concepts as SpaceWire making it 

trivial to connect existing SpaceWire equipment into a SpaceFibre network. IP cores for radiation 

tolerant FPGAs and ASICs with SpaceFibre interfaces are available and under development. A wide 

range of test and development equipment is now available.  

The conference covers many different aspects of SpaceWire and SpaceFibre technology and 

includes both academic and industrial presentations. Sessions address recent developments of the 

SpaceWire set of standards, space missions and other applications using SpaceWire, new components, 

sensors and cables which support the SpaceWire standard; products supporting SpaceWire including 

onboard equipment, instruments and related onboard software; methods and equipment to aid the test 

and verification of SpaceWire components, units and systems; and SpaceWire networks, their 

architecture, configuration, and discovery, as well as higher level protocols and related hardware and 

software design issues. The new sessions on SpaceFibre illustrate how this next generation of 

SpaceWire technology is gaining momentum, already being designed into spaceflight systems. It is an 

exciting time in the SpaceWire community as this latest technology literally begins to take off. 

Technical seminars at the conference cover SpaceWire-D which provides deterministic data 

deliver using existing SpaceWire devices and SpaceFibre.  

The community of engineers working on SpaceWire meet regularly at the SpaceWire Working 

Group meetings to help with the further development of SpaceWire, SpaceFibre and related standards 

and technologies. This group includes engineers from many parts of the World with substantial 

contributions from Europe, USA, Japan, and Russia. The SpaceWire Conference complements these 

Working Group meetings with more formal presentations from a wider range of contributors.   
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Programme Overview 

Monday 24 October 

14:00 – 17:30 Registration 

14:00 – 17:30 Tutorials of SpaceFibre and SpaceWire-D 

Tuesday 25 October 

09:15 – 17:00  Registration 

09:30 – 10:35 Conference Opening / Keynote Presentations (65 min) 

10:35 – 11:05 Missions & Applications Short (30 min) 

11:35 – 12:50 SpaceFibre 1 Long (75 min) 

14:05 – 15:20 Networks & Protocols Short (75 min) 

15:45 – 17:30 Components Short (105 min)  

Wednesday 26 October 

09:15 – 11:30 Registration 

09:15 – 10:55 Missions & Applications Long (100 min) 

11:30 – 11:45 Test & Verification Short (15 min) 

11:45 – 12:30 SpaceFibre Short (45 min) 

13:45 – 15:50 Networks & Protocols 1 Long (125 min) 

15:50 – 17:00 Poster Session (70 min) 

Thursday 27 October 

09.15 – 11:00  Registration 

09:15 – 10:30  Components Long (75 min)   

11:00 – 12:40 Networks & Protocols 2 Long (100 min)   

13:55– 15:10 SpaceFibre 2 Long (75 min) 

15:40– 16:55 Test & Verification Long (75 min) 

Programme is subject to change 

8



Tuesday 25 October 
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Using SpaceWire Time Codes for Spacecraft Time 
Synchronization 

SpaceWire Missions and Applications, Short Paper 

Susan C. Clancy, Mazen M. Shihabi, Krisjani S. Angkasa 
Flight Communications Systems Section 

Jet Propulsion Laboratory 
Pasadena, California 91109 USA 

Susan.Clancy@jpl.nasa.gov, Mazen.M.Shihabi@jpl.nasa.gov, Krisjani.S.Angkasa@jpl.nasa.gov 
 
 

Abstract— This paper describes how SpaceWire Time 
Codes can be used for synchronizing time within various 
subsystems of a spacecraft as well as, maintaining a common 
time reference needed for coordinating operations within a 
spacecraft.  The algorithms to account for inaccuracies in the 
time distribution method were based on the NASA-4009 
Space Telecommunication Radio System (STRS) standard 
[1], which defined an interface for synchronizing clocks 
running at different tick rates and tick resolutions. 

 

Index Terms— Relevant indexing terms: SpaceWire, 
SpaceWire Time Codes, SpaceWire Time Distribution 
Protocol, CCSDS Unsegmented Time (CUC), Space 
Telecommunications Radio System (STRS). 

I. INTRODUCTION 
Spacecraft systems are typically comprised of many 

subsystems, each with their own clock running at different 
tick rates and with varying performance, which can degrade 
over time.  Clock synchronization becomes very important in 
cases where commands and activities need to be correlated 
with a common time reference and for attitude determination 
based on current time or predicted position propagated over a 
period of time. 

Subsystems needs to know what time it is in order to 
perform synchronized activities, or to time-tag telemetry that 
can be correlated with operations in other subsystems.  One 
subsystem equipped with a Ground Navigation Satellite 
System (GNSS) receiver can maintain an accurate reference 
of time and can act as the time “master” to distribute the time 
to other nodes connected via SpaceWire. 

II. SPACECRAFT TIME SYNCHRONIZATION METHODS 
There are two common methods used for synchronizing 

time on a spacecraft: (1) a periodic “message” based method 
performed in software and (2) a periodic “hardware tick” 
based method performed in hardware or firmware. 

The “message” based method uses a “master” to generate 
a “tick” message at specific intervals and sends a time 
message to the “slaves” at a specific “tick”.  The “slaves” 
update their time at a time boundary after the time message 

is received.  In the example below, the “tick” message is sent 
100 times per second, and the time message is sent once per 
second prior to the one second time boundary. 

Fig. 1.  Time Synchronization “Message” Based Method 

    The “hardware tick” method uses a “master” to send a 
“tick” signal to all the “slaves”, who will then increment 
their own slave clock.  The hardware clock oscillator used to 
generate the clock tick signal is usually a Temperature 
Compensated Crystal Oscillator (TCXO) or Ovenized 
Crystal Oscillator (OCXO) with accuracy better than 1 part 
per million. 

Fig. 2.  Time Synchronization “Hardware Tick” Method 
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III. SPACECRAFT TIME SYNCHRONIZATION CHALLENGES 
The challenges in synchronizing spacecraft time are 

similar to those in ground-based systems: 
A. Latency – the time it takes to transfer and respond to 

a time update.  Each spacecraft subsystem must 
account for latency and be tolerant within a measured 
minimum and maximum range.  A technique for 
measuring latency is described in the SpaceWire 
Time Distribution Protocol [2].   

B. Jitter – the intermittent delay in the path between the 
master sending the time and the slave receiving and 
updating their time.  Each spacecraft subsystem must 
tolerate a measured maximum jitter. 

C. Drift – the variation in the clock tick rate due to 
oscillator performance, which typically degrades over 
time and varies with temperature.  The time “master” 
clock must be calibrated periodically to account for 
the drift in the time conversion.  The drift can be 
accounted for as a clock rate correction [2] to mimic 
the actual clock rate changes. 

D. Time conversion – the different clocks may tick at 
different rates and a conversion from the hardware 
clock value to the time representation unit (usually in 
seconds) is applied using the clock tick rate, clock 
hardware value, and an offset, which typically 
includes drift.  The conversion algorithm needs to 
account for latency, varying jitter, and clock 
degradation. 
 

A further complication is that the performance of the 
clock oscillators in various parts of the system may be 
orders of magnitude different: a spacecraft computer may 
have a clock with 10 ppm performance, while spacecraft 
radios and GNSS receivers may be accurate to parts per 
billion (ppb). The system design, however, may be that all 
systems need to follow the time kept by the spacecraft 
computer, so the time distribution method must allow a 
better clock to follow a poorer clock, which is different 
than the typical Network Time Protocol (NTP) 
architecture, where clocks at a lower stratum follow more 
accurate clocks at a higher stratum. 

IV. STRS TIME SYNCHRONIZATION METHOD 
The NASA-STD-4009 Space Telecommunications 

Radio System (STRS) architecture standard [1] defines some 
time related functions and corresponding Application 
Programming Interfaces (APIs) for getting, setting, and 
synchronizing time.  These functions are used by 
applications to maintain and coordinate time derived from 
different clocks that may have different tick rates and 
resolutions. 

Note that the reference clock may or may not have a 
higher performance and stability than the monitored clock. 
The purpose is to synchronize the clocks and not to maintain 
the correct time.  The reference clock and managed clock can 
exist on the same local host or on different hosts but can be 
synchronized to report the same time. 

The core concept of the STRS clock model is that the 
underlying clock is allowed to run unhampered, and the 
relationship between the raw clock and “time” is 
encapsulated in the API which provides  a standardized way 
of getting and setting time based on calling API functions 
that can account for latency, jitter, and drift using conversion 
data.  This conversion data is set to values that initially 
synchronize the reference clock with the managed clock.  
The conversion data can be updated periodically to 
continuously account for drift. 

The linear conversion algorithm commonly used to 
compute time, converts hardware clock ticks to time in 
seconds using the oscillator clock rate and hardware clock 
ticks as follows: 

time = (clock_rate × clock_ticks) + offset 
The STRS time conversion algorithms include additional 
adjustments to the rate and offset to account for the 
difference between two clocks plus the latency, drift, and 
even jitter as follows: 

STRS time = ((clock_rate + adjust_rate) × clock_ticks) + 
(offset + adjust_offset) 

Figure 3 below shows an implementation of an STRS 
time interface that synchronizes a local reference clock and a 
local managed clock.  The conversion data is applied when 
getting the time via the STRS_GetTime API function which 
converts the clock value to a time in seconds and sub 
seconds. 

Fig. 3.  STRS Time Synchronization Method 
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V. SPACEWIRE SPECIFICATION FOR TIME CODES 

The SpaceWire Protocol Standard [3] includes the 
definition of the time interface with Time Codes and the 
TickIn and TickOut signals.  The key features in any 
implementation are: 

A. Time Code generation or receipt can be enabled or 
disabled. 

B. The Time Code rate is generated by a “master” and 
can be configured to send Time Codes at a specific 
rate 

C. The Time Code is a specific type of SpaceWire 
message containing a Time Code identifier and Time 
Code counter.  The Time Code counter is an 
incrementing 0 to 63 integer value and any missing 
Time Code can be detected and reported by firmware 
using this counter. 

The Time Code TickIn / TickOut signals can support an 
interface to a software interrupt line and/or hardware signal 
going to a hardware clock.  The time “master” (aka initiator) 
can generate a software interrupt for each tick using the 
TickIn signal.  Using this TickIn interrupt, a “slave” (aka 
target) can implement a SpaceWire “derived clock” to align 
the tick generation with the time message. 

VI. CCSDS TIME MESSAGE FORMAT 
The CCSDS Unsegmented Code (CUC) Time 

Specification [4] is a proposed standard for specifying time 
as a number of seconds and sub-seconds. 

Fig. 4.  CCSDS Unsegmented Code (CUC) Format 

The fields in the time announced message are as follows: 
 

Fig. 5.  Time Announced Message Format 

VII. TIME SYNCHRONIZATION DEMO 
The first goal was to demonstrate the ability to 

compensate for time distribution inaccuracies due to latency, 
jitter, and drift using the STRS time API.  The second goal 
was to demonstrate time distribution using SpaceWire Time 
Codes and the CCSDS CUC formatted time message. 

In the first test, the time synchronization was performed 
on the SDR using the Clock Calibration waveform 
component (CLKCAL) to synchronize two different clock 
“kinds” on the SDR.  The CLKCAL waveform (1) computes 
the delta between the reference clock time and managed 
clock time, (2) computes the drift detection value for each 
clock, (3) reports any time delta or drift detection, and (4) 
synchronizes the managed clock to report the same time as 
the reference clock.  The STRS time API is used by 
CLKCAL for getting, setting, and synchronizing the time. 

 

Fig. 6.  Clock Synchronization Test 

In the second test configuration, the CLKCAL waveform 
was integrated with the SpaceWire Time interface.  The 
SpaceWire time interface on the SDR “slave” was 
implemented as a “waveform” component with counterparts 
running in both firmware on a Field Programmable Gate 
Array (FPGA) and software running on the SDR Sparc 
computer. 

The SPW waveform continuously (1) receives the time 
codes, (2) maintains a Time Code tick counter, (3) captures 
the time sent in the SpaceWire time messages, (4) sends 
periodic notifications at synchronization intervals and (5) 
makes the time available to other waveforms. 
 

Fig. 7.  Clock Synchronization with SpaceWire Test 

The time delta is computed by CLKCAL and is expected 
to be constant unless inaccuracies are introduced by jitter or 
drift. 

A set of “threshold” values (minimum, maximum, and 
rate adjustment maximum) is used to determine when to 
synchronize the clocks and which method to use (time jump,, 
incremental update, or a rate adjustment). 
The threshold minimum accounts for expected jitter 
introduced by the time distribution interface itself.  The 
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minimum should not be 0 since there will always be some 
amount of jitter. The threshold minimum value can be 
determined by analyzing the delta values over a period of 
time. 

Any delta above the threshold minimum but below the 
rate adjustment maximum will cause a rate adjustment 
update to synchronize the clocks.  The rate adjustment is 
included in the conversion data used in the time conversion 
algorithm.  This is the smoothest update method.  Any delta 
between the minimum and the incremental adjustment 
maximum will use an incremental adjustment over a period 
of time.  Incremental updates will be made until they add up 
to the desired delta.  This adjustment period can be longer to 
make  smaller incremental updates or shorter to make bigger 
incremental updates.  Any delta above the incremental 
adjustment maximum will cause a time “jump”.  A “jump” is 
not desired when the managed clock is used for time based 
computations or activities but is a common method used for 
updating or synchronizing time during initialization. 
The clock drift is obtained by capturing a counter for each 
clock at specific intervals.  This counter should remain 
constant unless the clock is drifting.  Watermarks are used to 
track the range of drift for each of the clocks.  A drift 
watermark reporting threshold maximum value is used to 
determine when to report drift.  This reporting threshold can 
be 0 to always report any detected drift or a value that must 
be exceeded before the drift is reported. 

 

VIII. TEST RESULTS 
The initial tests run on the SDR show the STRS time 

interface successfully synchronizing two different clock 
“kinds” that exist on the same SDR.  The data below (in red) 
shows the software detecting the delta above the threshold, 
and performing the synchronization.  

Fig. 8.  Clock Synchronization 

The clock delta and drift reported by the CLKCAL 
waveform used inputs distorted by the jitter introduced by 
the software itself due to running in a multitasking 
environment on both the “master” and “slave”.  This 
artificial input data was useful in developing and testing the 
clock synchronization thresholds and synchronization 
response.  The use of an independently generated counter 
latched at fixed intervals as described in earlier work in [2] 
and a “distributed” interrupt generated via the TickOut signal 

as described in [6] are needed to account for the real 
inaccuracies introduced by latency, jitter, and drift. 

The synchronization parameters that were tested included 
thresholds to  control whether time was updated gradually or 
immediately in one-time jump. 

The following test result shows the “threshold min.” 
should be set to 6 usec to avoid synchronization for changes 
smaller than the expected. 1 to 5 usec range.  Based on this 
example, the changes above 5 usec would result in a clock 
synchronization. 

Fig. 9.  Synchronization Delta Values 

In earlier tests on the SDR, the CLKCAL waveform 
attempted to poll the received Time Code counter value to 
increment the Time Code virtual clock ticks.  These tests 
intermittently failed when generating Time Codes at 100 per 
second.  The “slave” reported a missed tick error when the 
Time Code value did not increment as expected, although 
this issue was not encountered when Time Codes were 
generated at once per second. 

The TickOut interrupt interface and a latched counter 
interface have since been implemented in the SDR FPGA 
firmware to mitigate these issues.  The TickOut interrupt unit 
tests showed that software increments the SpaceWire DCLK 
virtual ticks properly.  However, tests using these 
mechanisms integrated with CLKCAL are planned for the 
future. 

IX. CONCLUSIONS AND FUTURE WORK 
The STRS time API does accommodate synchronizing 

various clock "kinds" using clock compensation data to 
mitigate inaccuracies (latency, jitter, drift) in a time 
distribution system. 

Synchronization tolerance ranges (i.e. thresholds) can be 
used to determine which method to use for synchronizing 
clocks and when to correct for drift.  Future work is needed 
to establish the tolerance ranges for synchronizing clocks 
using the SpaceWire Time Distribution Protocol such as 
those described in [2] and [6]. 

The SpaceWire Time Codes are useful for creating a 
virtual clock on hosts connected via SpaceWire.  This 
SpaceWire virtual clock can be implemented on a "slave" 
host that may not have a clock. 
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Abstract— This paper will briefly review the SpaceVPX 

standard with special emphasis on the interconnect planes 
between the modules. Comparisons to other form factor 
standards will be included. SpaceWire and its usage as the 
control plane in a SpaceVPX system or as a medium speed data 
plane will be discussed. A summary and status of any updates or 
future efforts involving the SpaceVPX standard will be included.1 

Index Terms—Standards, SpaceWire, networking, spacecraft 
electronics, SpaceVPX, MicroTCA, CompactPCI, PC/104, 
RapidIO, form factor, fault tolerance, redundancy 

I. INTRODUCTION 
Future spaceborne systems will require additional onboard 

processing and much greater interface connectivity. Many 
efforts worldwide are starting to address these needs. 
SpaceVPX, a recently released ANSI/VITA standard, was 
created to provide the structure and definition for interoperable 
modules that will be created to meet these needs. It provides a 
multi-layer set of fabrics using serializer/deserializer 
(SERDES), LVDS and LVCMOS devices to provide 
interconnections in a scalable and fault tolerant way. Initial 
fabrics used by SpaceVPX are RapidIO, SpaceWire and I2C. 
Provisions are provided for heritage or user defined interfaces 
to interact with these within the structure. SpaceWire is setup 
as both a control plane for command and data handling 
throughout the box as well as a medium speed data plane. 
SpaceVPX was approved and released by ANSI and VITA in 
April 2015 as VITA 78. Since then, multiple organizations are 
utilizing it to create interoperable modules.  

Building on previous SpaceWire network elements, BAE 
Systems is creating a set of silicon application specific standard 
products (ASSP) [1] [2] [3] to provide power efficient general 
purpose building blocks for the creation of scalable SpaceVPX 
modules across these three fabrics. These building blocks are 
key to a new family of SpaceVPX processing and network 
modules [4] being developed for a wide variety of space 
applications. One of the advantages of using SpaceVPX is the 
significant industry heritage of OpenVPX modules, 
backplanes, chassis, power supplies and test equipment. 

1 Approved for Public Release – ES-ISR-082316-0109 

Exploring optimal methods for leveraging these elements is an 
important part of the development of the BAE Systems 
SpaceVPX modules.  

The SpaceVPX working group is monitoring the usage of 
the standard identifying potential upgrades and enhancements. 
For instance, SpaceVPXLite (VITA 78.1) will focus on 
building more limited and smaller 3U sized systems of smaller 
number of slots yet maintaining the full fault tolerance of the 
parent standard. 

II. FORM FACTOR STANDARDS 
In the non-space world there are several form factor 

standards that are being used for high performance 
heterogeneous systems.  A summary of a cross section of these 
is captured in Table I.  Of these CompactPCI [5], SpaceVPX 
[6], MicroTCA [7] and PC/104 [8] have been applied to 
spaceborne applications.  One of the key challenges of larger 
systems is their fault tolerance.  Some of these standards were 
fully designed to provide a basis for a single point fault tolerant 
system.  Other standards contain redundancy provisions that 
may provide some fault tolerance (e.g. multiple fabrics that 
may be used between modules) yet also included features (e.g. 
common power feeds or busses) that formed single points of 
failure for the system.  The last class, usually representing 
standards for small numbers of modules, have little or no 
redundancy and make the assumption that redundancy will be 
provided at the box level, switching out an entire box if the 
primary fails to provide the services required of it.  SpaceVPX 
built on the other existing standards at the time and made 
adjustments and changes so that it could fully support robust 
single point fault tolerance or more across its system 
implementations.  This is done mostly through radial or star 
distribution of most interfaces and resources within the box. 

As Table I shows, there are different amounts and types of 
profiles across form factor standards.  Some, like CompactPCI 
provided minimum flexibility just defining a handful of slot 
profiles, while others, such as OpenVPX and by extension, 
SpaceVPX provided users with many profiles in slots, 
modules, backplanes and chassis. 

SpaceVPX is the only current standard in the table that 
supports the usage of SpaceWire.  Some OpenVPX slots 
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contain control plane wiring for PCI Express that are compatible with SpaceWire routings. 
 

TABLE I.  FORM FACTOR STANDARDS 

Standard # Pins Interfaces Fault Tolerance Physical Backplane 
Voltages Profiles 

CompactPCI 
PICMG 2.3 
[9] 

3U: 132 / 
6U:   264 

PCI, I2C, JTAG, user 
defined Single bus 

3U-160 or 6U-160 by 
0.8” 

Air / Conduction Cooled 

3.3V and 5V, 
12V, -12V 

Bus Clock, 
Width, Slots 

CompactPCI 
Serial [10] 

3U:   538 
6U:   600 

PCI, PCIe, SATA/SAS, 
USB 2.0/3.0, Ethernet, 

I2C, JTAG, user defined 

Single Bus, multiple 
fabrics 

3U-160 or 6U-160 by 
0.8” 

Air / Conduction Cooled 

3.3V and 5V, 
12V, -12V, 48V Slots 

OpenVPX 
VITA 65 [11], 
46 [12], 48.2 
[13] 

3U: 320 / 
6U:    832 

RapidIO, PCIe, 
Ethernet, I2C, JTAG, 

RF, Optical, user 
defined 

Supports 1 of 2 to M of 
N common power and 

clocks 

3U-160 or 6U-160 by 
0.8”, 0.85” and 1.0” 

Air / Conduction Cooled 

12V, 5V and 
3.3V, -12V 

Slot, Module, 
Backplane, 

Chassis 

SpaceVPX 
VITA 78 [14] 

3U: 320 / 
6U:   832 

RapidIO, Ethernet, 
SpaceWire, PCI, I2C, 
JTAG, user defined 

Supports 1 of 2 to M of 
N 

No single point of 
failure 

3U/6U -160/220/280/340 
by 0.8”, 1.0” or 1.2” 

Air / Conduction 
Cooled 

12V, 5V and 
3.3V, -12V 

Slot, Module, 
Backplane, 

Chassis 

MicroTCA 
[15] 

B: 85 
B+/AB: 170 
A+B: 340 

RapidIO, Ethernet, PCI 
Express, Fibre Channel, 
I2C, JTAG, user defined 

Supports 1 of 2 to M of 
N No single point of 

failure 

74/149 x 180mm x 3 
heights  

Air / Conduction Cooling 
+12 and 3.3V size / protocol,  

MCH types 

VITA 78.1 (in 
development) 3U:  320 

RapidIO, Ethernet, 
SpaceWire, I2C, JTAG, 

RF, Optical, user 
defined 

Supports 1 of 2 to M of 
N No single point of 

failure 

3U-160/220/280/340 
By 0.8”, 1.0” or 1.2” 

12V, 5V and 
3.3V, -12V 

Slot, Module, 
Backplane, 

Chassis 

PC/104 
Family [16] 

Top: 120 
Bottom: 156 

PCI, PCI Express, USB 
2.0/, SM Bus, SATA, 

LPC 

Single string; multiple 
fabrics 

3.55” by 3.775” stacked 
EPIC 4.528”x6.496” 

EBX 5.75” x 8” 

3.3V, 5V, 12V, -
12V Module Types 

 

III. HISTORY 
In 2011, a group of industry experts and government 

officials met as part of the GOMACTech conference.  They 
discussed how the space industry would soon require more 
processing and data bandwidth onboard than the typical 
spaceborne CompactPCI box could provide.  SpaceWire was 
already a popular fabric with the capability of exceeding the 1 
or 2 Gbps bandwidth that a CompactPCI box could provide to 
share between the modules within.  This success with 
SpaceWire, low speed 1 Gbps SERDES links and the growing 
differences between COTS systems which now used SERDES-
based fabrics and space systems pointed toward SERDES 
based fabrics for space.  Radiation hardened or tolerant 
technology was emerging that could support higher 
performance SERDES and thus higher internal bandwidths.  
Due to the high cost of development, there was general feeling 
that these new high speed interfaces be standardized across the 
space community.  The Next Generation Space Interconnect 
Standards group was formed at that meeting and has since 
focused on its selected high performance interface, RapidIO.  
Within a year of its formation and following a successful set of 
trade studies and use case analysis that arrived at a consensus 
to focus on RapidIO, SpaceWire and I2C as a three tiered set of 
interconnect fabrics, the NGSIS group realized it also needed a 
form factor standard for physical implementations of the 
interfaces that could produce interoperable modules.  Once 
again, the consensus of the group settled on the OpenVPX 
standard as the best base to build upon. [17] [18] [19] 

Three years later, after over 50 drafts, hundreds of telecons 
and face to face meetings with contributions and reviews from 

across the space industry, VITA 78.00 was ratified by VITA 
and ANSI in April 2015.  This 400+ page standard was built 
strongly on OpenVPX so that it would be possible to use the 
less expensive OpenVPX modules and chassis for prototyping 
SpaceVPX systems, for driving SpaceVPX modules with the 
various fabrics and for testing SpaceVPX modules in an 
existing infrastructure adapted for SpaceVPX modules. 

IV. SPACEVPX STANDARDIZATION 
SpaceVPX provides multiple levels of standardization for 

space electronics modules.  First, it defines a common 
connector and backplane structure that has been tested for use 
in many high vibration (e.g. ships and aircraft) environments 
with much longer durations then typical spacecraft needs.  
Three variations of the connector are available from three 
different manufacturers so the best one may be picked for a 
specific box.  Although the connectors are not intermate-able,  
their footprint is such that modules may be changed from one 
to the other without a printed wiring board update.   

The connector is divided into segments and multiple 
profiles are defined that map the many pins to interface planes 
in identical locations.  Profiles are defined to provide basic 
functions such as switches, controllers, payloads or peripherals.  
These planes are then mapped at the module level to hold 
specific protocols and speed selections that are compatible with 
those pin layouts.  This mapping is further described in the next 
section.  Any user defined pins in a profile may be used for any 
usage.  However, it is strongly recommended that the usage is 
not interfering or can be disabled or not populated if the 
module is targeted for reuse in other systems not requiring the 
user defined purposes. 
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The next level of standardization is provided to handle fault 
tolerant switching of the utility plane.  The utility plane is used 
for handling the basic operation of a SpaceVPX box.  One of at 
least two controllers direct this operation and are the first logic 
modules to receive power.  The master controller then decides 
which modules it needs powered to complete a mission.  The 
Utility plane provides power, resets, common low skew clocks 
and a system management (SM) interface for the controller to 
interact with utility plane switches and the controlled logic 
modules.  I2C, enhanced with a reset and error status signal, 
forms the SM interface.  In OpenVPX this is bussed between 
modules in most implementations.  In SpaceVPX, it was 
decided that a star or radial distribution provided much more 
fault tolerance and potential error containment.  The switching 
of the utility signals and the power to the logic modules is 
implemented in a Space Utility Management (SpaceUM) 
module.  From a reliability point of view, it is a separate 
physical module that is actually an extension of the controller 
for redriving the control signals, an extension of the power 
supply for redriving the power busses and an extension of each 
module containing a power switch for each supplied voltage 
and a control signal switch or selection for providing a single 
set of control signals to each module.  Through the use of fault 
containment regions in the SpaceUM module, there are no 
common points of failure that cannot be allocated and 
controlled back to a power supply, controller or logic module.  
Thus no module level redundancy is required for a SpaceUM 
module.  SpaceVPX fully defines the SpaceUM operation, 
signals, and connector with profiles provided for various 
combinations of voltages that may be supplied to each module.  
These may also be applied to power supply modules.  Unlike 
OpenVPX with its maximum 560W module specification, 
SpaceVPX limits modules to no more than 100W. 

SpaceVPX also defined the protocols for controlling the 
SM interface (SMI).  It allows two options.  One uses a subset 
of the VITA 46.11 IPMB protocol.  This requires an 
intelligence to respond to each inquiry in under 3.3W which 
may be an issue for many simpler modules or for modules with 
large integrated processors.  Thus SpaceVPX also defined a 
direct access protocol which uses direct access over the SMI to 
registers contained at each target.  These registers provide basic 
information about the module and basic health readings like 
operational, temperature, voltage and built in test results.  It is 
expandable so it has the hooks necessary to access other parts 
of a module that are so connected. 

At the next level, SpaceVPX also defines the connections 
between slots in its backplane profiles.  These are created to 
handle the maximum size for the given topology (such as data 
plane mesh or data plane star) and show how slots should be 
wired to one another.  As before, these draw heavily from the 
OpenVPX heritage but are personalized to span the set of slots 
defined in SpaceVPX.  If a user needs less slots (e.g. only has 6 
payloads with an 8 slot switch), slots may be eliminated.  
Peripheral slots may be added to any part of a backplane since 
they do not contain any data plane connections.  However, if 
they use control or utility plane signals, they must follow the 

rules for other slots in that profile and make sure the controller 
provides sufficient drops to service their needs. 

The top level of standardization is at the chassis level.  In 
OpenVPX, all chasses are defined for development usage.  In 
SpaceVPX, chasses are also defined for flight usage.  Primary 
voltages and the size of the slots are defined at this level.  All 
profiles (slot, module, backplane and chassis) receive a label 
that accurately describes its makeup in a single label. 

V. INTERFACE MAPPINGS 
Figure 1 shows a full slot profile for a SpaceVPX controller 

slot.  Other slot profiles in the Payload family of slot profiles 
are subsets of this.  RapidIO (connector segment P1) is 
currently the only data plane and SpaceWire (connector 
segments P3 and P4) is the only control plane defined in 
SpaceVPX.  The expansion plane may be used for either 
additional RapidIO lanes or any number of user defined I/O.  
Many backplane profiles define a slot to slot daisy chain using 
the P2 interface.  Special capability is defined in P5 to provide 
a CompactPCI bus that may be daisy-chained to peripheral 
modules built of either SpaceVPX or CompactPCI form factor.  
P6 is used by the controller to route the SM interface, resets 
and common clocks to up to four modules or to the SpaceUM 
module to select between A and B controllers. 

SpaceWire is fully defined as the control plane in 
SpaceVPX and ports are defined on this controller slot.  If less 
SpaceWire ports are available, they should be depopulated 
starting with the top of P3 downwards.  A minimum 
SpaceVPX implementation of the control plane for any logic 
module requires only two SpaceWire ports, routed from each 
controller in the system. 

 

 
 

Figure 1: Interface Planes Mapped to Slot Profiles 
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SpaceWire as a control plane can be used for moving 
around configuration data and code, handling updates of 
module memory, collecting telemetry and status from modules 
beyond the 400 Kbps of the SMI in the utility plane.  
SpaceWire may also be used for medium speed data transfer.  
Since SpaceWire ports are capable of up to 400 MHz 
operation, this could be used for many data handling operations 
that don’t need the full performance of SERDES circuitry and 
RapidIO ports.  All defined backplane profiles show 
SpaceWire topologies as stars or radially-driven from each 
controller.  However, with the minimum two ports on each 
module, a daisy chain architecture is possible.  For fault 
tolerance, four ports would be an optimal minimum so that two 
separate daisy chains could be maintained in a system to allow 
working around errors. 

The 2008 version of SpaceWire [20] is currently specified 
to run in SpaceVPX modules up to the data link layer using the 
SpaceVPX backplane and connector as the physical layer.  
Once the updated SpaceWire standard is released, analysis is 
needed to make sure this meets the Type B requirements.  
Higher level layers are currently left up to the user. 

For many systems, SpaceWire will not provide enough 
bandwidth.  RapidIO version 2.1 has been defined as the data 
plane with both switched and mesh topologies included to 
provide sufficient and scalable data moving bandwidth. 

The RapidIO protocol is an international standard that is 
regularly updated by the RapidIO Trade Association.  The 
protocol is designed as peer-to-peer, with a central controller 
used to configure and enumerate the network at the time of 
start-up.  The RapidIO physical layer (PHY) is based on 
SERDES circuitry with encoding of data into characters to 
achieve balance over the long term.  With revision 3.0 of the 
specification, the baud rate per lane was extended to 10.3125 
Gbaud and for this baud rate and those above it the encoding 
mechanism was updated from the standard 8b/10b to 64b/67b, 
significantly decreasing the associated overhead.  As of June 
2016 with revision 4.0, the top baud rate has been extended to 
25 Gbaud/lane.  Valid port widths are 1, 2, 4, 8, and 16 lanes, 
although all commercial products to date support port width 
only up to 4 lanes.  The protocol includes basic read, write, and 
maintenance functions, but also supports a number of optional 
features that address the needs of specific markets and users. 

Updates to the specification are developed by task groups 
under the RapidIO Trade Association.  In 2012, a new task 
group was created specifically to address unique requirements 
of spaceborne applications.  Comprised of both corporate and 
government representatives, the group defined a series of 
enhancements that were published in revision 3.1 in 2014 [21]. 

 The group defined “space device profiles” that included 
some of the optional features as required for use in space, 
including the error management extensions and multicasting.  
The new space features include the following: 

• Structurally asymmetric links simplify the previously 
added dynamic asymmetric link capability, based on 
the assumption that sources such as sensors will 
always transmit far more data than it is necessary for 

them to receive.  Return information will primarily 
consist of commands, responses, and error messages. 

• Fault tolerant enhancements for port width degradation 
vs. the previous capability that limited which lanes 
could be used when a port degraded.  The enhanced 
capability allowed for a 4-lane to 2-lane transition 
using either lanes 0 and 1 or lanes 2 and 3, and also 
allowed for any of the 4 lanes to be used as a single 
lane. 

• Multicast event control symbol (MECS) based time 
synchronization and distribution again simplified an 
existing time distribution mechanism to provide 
accuracy almost as high with far less added hardware. 

• A multiple entry error log was also defined that would 
allow for the capture of the exact sequence of errors as 
they occurred.  This allows for significantly greater 
diagnostic capability than the single entry baseline 
error log register. 

• Pseudo-random binary sequence (PRBS) circuitry 
supports in-flight testing of links to determine issues 
with a port and allow determination which lane of a 
port is the source of difficulty.  During this testing the 
port is not active.  Once testing has been completed, 
the port can be restarted configured as required. 

All of these enhancements are capable of being used 
outside of the space market.  For that reason, they were 
embedded directly into the specification as opposed to being 
identified uniquely for use only in space. 

Hybrid systems with data movement using RapidIO and 
SpaceWire are easily constructed using SpaceVPX profiles. 

VI. SPACEVPX MODULES 
Figure 2 shows a SpaceVPX system with several 

representative module types focused on using SpaceWire for 
Control and Data.  This system controls 6 instruments attached 
to the SpaceVPX chassis.  The controller uses its 16 port router 
to control and move data between all other logic modules.  
Shown in green are BAE Systems ASSPs that could provide 
the SpaceWire interface functions.  A single string solution 
could be created using all the solid modules.  Redundant 
modules are shown and dashed lines connect these to the other 
modules.  Utility plane distribution and cross-strapping is also 
shown out of the bottom of each module routed through the 
SpaceUM module(s).  If a single string is used, only one 
SpaceUM is needed.  In a redundant configuration, two 
SpaceUM modules are required.  Note twice as many 
SpaceWire links are provided to the Mass Memory since that 
often requires more bandwidth to store and retrieve data from 
all the potential data sources. 

Figure 3 shows an upgraded system where RapidIO is used 
for the data plane and SpaceWire continues to function as the 
control plane.  Here many of the SpaceWire components have 
migrated to RapidIO components that also support SpaceWire 
interconnects.  The Mass Memory now relies on RapidIO and 
the data plane for its data stream inputs and outputs.  Note the 
data plane switch is implemented in a seventh logic module.  
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Also, more instruments may be supported by the higher speed external I/O. 
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Figure 2: SpaceVPX system using SpaceWire for control and data 
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Figure 3: SpaceVPX system using SpaceWire for control and RapidIO for data 
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VII. CURRENT STANDARDS EFFORTS 
A second standard effort, SpaceVPXlite, was started in 

2015 and will become VITA 78.1 when approved.  Its purpose 
is to focus on the 3U design space of SpaceVPX.  3U 
SpaceUM modules as defined in SpaceVPX can only control 2 
logic modules versus the 8 logic modules controlled in a 6U 
system.  A major emphasis of SpaceVPXlite has been to 
improve this overhead penalty and has led to the separation of 
the Utility plane signal switching from the Utility plane power 
switching functions by replacing SpaceUM modules with 
Power Switches and redefining the utility plane inputs to each 
logic module.  Additional profiles are being added to match 
recent OpenVPX additions including optical and RF backplane 
connector options.  The standard has mostly been written and is 
now in the working group review stages.   

SpaceVPX is seeing widespread usage among spacecraft 
module developers.  The NGSIS VITA working group 
continues to hold telecons on a weekly basis and discuss any 
shortcomings or corrections.  As a result, a set of errata was 
published in May 2016 pointing out obvious errors.  The group 
is preparing to start a minor revision to VITA 78 which will 
correct identified errors and omissions, pick-up some missing 
3U content from 78.1 and add a few new elements to round out 
the standard.  Also included will be an expanded user guide 
section to help first time users better navigate and use the 
standard. 

VIII. SUMMARY 
SpaceVPX was developed to provide a standardized form 

factor for the next generation of high performance modules 
using interoperable SERDES-based fabrics with a focus on 
fault tolerance and scalability.  It focuses on the use of RapidIO 
for high speed data movement and SpaceWire for command 
and data handling as well as medium speed data transfer.  
SpaceVPX doesn’t forget its heritage and has elements that 
may interface to heritage system elements.  Ratified in 2015, it 
is beginning to see widespread adoption that should lead to 
multiple interoperable modules that may be assembled into 
scalable high performance payloads and other spacecraft 
electronics modules. 
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Abstract — Commercial-off-the-shelf photonic components 

designed for datacenter or industrial applications do not typically 

satisfy the environmental ruggedness requirements of aerospace 

applications. In order to reduce costs and schedule risk for 

insertion of photonic components into these harsh-environment 

applications, we developed ruggedized photonic transceiver 

modules for aerospace fiber-optic datalink applications up to 5 

Gbps. We then performed reliability and environmental testing 

to demonstrate that these modules meet or exceed many of the 

requirements of these applications. In this paper we present 

performance characteristics and results of reliability and 

environmental tests for these transceiver components.   
Index Terms — Relevant indexing terms: SpaceWire, 

SpaceFibre, Spacecraft Networking,  Spacecraft Electronics, 

Spacecraft Photonics.  

I. INTRODUCTION 

Data transmission requirements between avionics modules 

onboard spacecraft continue to increase, driven by the use of 

processors with high-speed serial data I/O to support the 

growing data requirements of advanced sensor systems and 

increased bandwidth of communications switches and satellite 

communications terminals.  Optical fiber is an ideal medium 

for high-speed signal transmission on space platforms, since 

optical fiber cables support data rates up to many tens of 

gigabits per second (Gbps), are much lighter and smaller than 

copper wiring of equivalent bandwidth, are immune to radio-

frequency (RF) interference from adjacent cables, and therefore 

require no RF shielding.  The emerging SpaceFibre standard 

for spacecraft networking anticipates the use of high-speed 

fiber optic transmission between avionics modules and 

subsystems on spacecraft.   

 

However, the availability of suitable photonic transceiver 

components for space applications is not widespread. The 

major manufacturers in the photonics industry are typically not 

able or willing to address the highly-specialized requirements, 

long design cycles, extreme environmental robustness, ultra-

high reliability, traceability, radiation tolerance and small, 

inconsistent production volumes encountered with space 

applications.  Conversely, the development of suitable 

transceiver hardware is typically beyond the engineering or 

budget capacity of most spacecraft programs.  We believe this 

combination of factors has limited the adoption of photonic 

links on spacecraft, while multi-gigabit links have proliferated 

in non-space aerospace applications.  We therefore undertook 

development of photonic transceivers designed to address the 

emerging aerospace requirements.  

 

In this paper we will briefly review the components of photonic 

transmitters, receivers and transceivers, and highlight the 

challenges with spacecraft transceiver design.  We then 

describe the approach to design of rugged photonic transceiver 

developments and the results of performance and 

environmental tests appropriate for space avionics applications.   

II. BACKGROUND AND CHALLENGES WITH SPACECRAFT 

PHOTONIC TRANSCEIVER DESIGN 

We first briefly review the design of photonic transceivers, 

which have two main sub-components:  laser transmitter and 

photodiode receiver.   The function of the transmitter is to 

convert electrical serial data bits to optical pulses, and the 

photodiode receiver converts optical pulses to electrical serial 

data bits.  These functions are realized in multi-gigabit systems 

using opto-electronic semiconductor devices (laser diodes and 

photodiodes) and electronic integrated circuit (IC) amplifier 

and control-loop devices.   

 

The transmitter employs a laser diode which is current-

modulated to impress the electrical serial data onto an optical 

signal as a series of on and off states.  Laser diode threshold 

current and modulation efficiency are strong functions of 

temperature.  Many transmitters incorporate a power monitor 

photodiode to sample and measure the laser output power and 

maintain the average output power at a constant level using a 

feedback loop with the average laser current as a control point.     
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The electronic driver IC amplifies the electrical bit stream from 

standard logic-levels such as Common-Mode Logic (CML)  

typically used as I/O to and from microprocessors, field-

programmable gate-arrays (FPGAs), etc., to the level required 

to modulate the laser current to achieve optical modulation at 

the optimum level.  Since the optical modulation vs bias-

current slope efficiency is also a function of temperature, a 

second control system is used to maintain proper optical 

modulation over the operating temperature range.  Careful 

matching, calibration and tuning of the bias control and 

modulation control circuits are required to insure that high-

speed transmitters at multi-gigabit rates operate within 

industry-standard specifications over temperature. There are 

variations on these approaches, but what is always true is that 

some form of control of the laser current and modulation depth 

is required if the laser temperature will vary in operation.   

 

The receiver contains a PIN photodiode, transimpedance 

amplifier IC, and limiting amplifier IC.  The transimpedance 

amplifier often contains an AGC circuit to maintain the output 

level in an acceptable range when higher-level optical input 

signals are present.  The limiting amplifier may also contain a 

bandwidth-limiting element to improve noise performance at 

lower bit rates.   

 

For bit rates up to 5 Gbps, the above laser diode, photodiode 

and IC components are available that operate from -40C to 

+85C without external thermal controls.  Manufacturers of 

commercially-available lasers, photodiodes and transceiver 

electronic ICs do not typically have test data for the 

performance of their devices in radiation environments.  This is 

a central challenge to realizing photonic transceivers for space 

applications.     

III. TECHNICAL APPROACH 

Most modern datacom transceivers and IC chipsets contain 

CMOS circuitry and memory to support bias control lookup, 

serial I/O monitor and control ports, etc. to conform to datacom 

networking interface standards. However, these transceiver 

products are typically board-mountable units that accept 

commercial-grade optical connectors, and do not need to 

operate in the harsh aerospace environment, including 

radiation.  As such they are not typically suitable for use in 

space.  In order to be suitable for aerospace applications, 

appropriate aerospace-grade connectors need to be 

accommodated and the semiconductors must withstand the 

radiation exposure levels.    

 

One example of an optical transceiver form factor that satisfies 

many of these requirements is shown in Figure 1, called a Size 

#8 opto-electronic contact. These devices provide electro-optic 

conversion of high-speed data signals from electrical to optical 

format, or optical to electrical format, inside of a fiber-optic 

connector on an avionics module in standard size #8 connector 

cavities.   Because of the very small package size (~20 x 6.5 

mm), we developed opto-electronic circuits using very simple 

IC chip sets that provide only basic monitor and control I/O 

signals such as “transmitter enable”, “transmitter fault” and 

“receiver loss of signal (LOS).”  The focus of the development 

was on fitting into the allotted form-factor, strictly complying 

with ARINC 801 optical contact float requirements, and 

surviving harsh aerospace environments. 

  

These transmitter and receiver contacts may be inserted into 

ARINC 400 or 600 avionic-bay connectors, or into special 

front-insert D38999 or D-sub connectors (see Figure 2), to 

provide data translation between electrical and optical domains 

inside of a panel-mount connector on an avionics module.  The 

optical fiber interface of the ARINC 801 fiber optic contact 

used supports repeated blind-mating due to the incorporation of 

a floating optical ferrule, by using a unique design that 

incorporates a flexible circuit board assembly internal to the 

unit [1].   

 

The transmitter contact utilizes a hermetically-sealed GaAs 

VCSEL and the receiver a hermetically-sealed GaAs 

photodiode at 850nm with a multi-mode ARINC 801 fiber 

optic interface. 

 

 

 

 

 

 

 

 
Figure 1.  Opto-Electronic Contact. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  Size #8 contacts in panel-mount avionics connectors:  D-sub (upper) 

and D38999 (lower). 

The optical interface to the cable is accomplished using a 

mating adapter insert in the plug Size 8 cavity that accepts a 

standard ARINC 801 optical contact.  These opto-electronic 

contacts can support data rates from 50 Mbps to 5 Gbps, and 

interface with standard Common-Mode-Logic (CML) 

differential data signal levels on the electrical inputs and 
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outputs.   They operate from 3.3 V input power, consume ~60 

mA of current, and have a transmitter enable input, as well as 

transmitter fault and Loss of Signal (LOS) output status 

discrete signals.  The optical interface specifications conform 

to the output power levels, eye-mask-margins, extinction ratios, 

and receiver sensitivity typical of industry-standard Fiber 

Channel and Gigabit Ethernet specifications, so the optical 

ports will interface via standard 50/125 micron or 62.5/125 

micron multimode optical fiber with other commercial datacom 

optical transceivers as might be encountered in ground test 

equipment.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.  PCB-mountable quad-output transmitter unit:  Top view (upper) and 
bottom view (lower). 

 

In addition to the Size #8 contacts, the same optical and 

electrical device circuits have been incorporated into printed-

circuit-board (PCB) mountable transceivers as shown in 

Figures 3 and 4.  These devices utilize a high-speed surface-

mounted PCB connector on the bottom of the unit to provide 

the connectivity to the host PCB via 100-ohm differential CML 

data streams, and are affixed using captive screws to threaded 

inserts that are soldered into the host PCB.  The four optical 

interfaces of the four-fiber version in Figure 3 are machined 

cavities that strictly conform to the ARINC 801 standard, with 

retaining clips to hold the contact that require the use of an 

extraction tool for contact removal.   

 

The two-fiber form-factor shown in Figure 4 utilizes a new 

connector developed by Glenair (Glenair GC-type) that has 

extremely low mass, low protrusion and very high tolerance to 

shock and vibration. This connector and transceiver permit a 

small footprint to be consumed on the customer PCB, and are 

much smaller than a standard datacom SFP pluggable 

transceiver, as shown in Figure 5.   

 

One benefit of a simplified circuit approach is that there are no 

microprocessor or memory devices in the units, which are 

typically more susceptible to single-event effects (SEE), latch-

up, etc.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.  Two-fiber PCB-mount transceiver form-factor.  Top view (upper) 

and bottom view (lower.) 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.   Size comparison of Glenair 2-fiber transceiver with commercial 

datacom SFP pluggable transceiver. 

 

IV. TEST RESULTS 

 

Various reliability and qualification tests were conducted on 

the parts described above.  Some key results are summarized 

here.   

 

The filtered transmitter eye diagram at 4.25 Gbps for the Size 

#8 contacts at various temperatures is shown in Figure 6, 

showing stable optical power, acceptable eye-mask margins 

and extinction ratios over the -40C to +90C range of ambient 

operating temperature.  The performance of the other 

transceiver form-factors is similar, since they use the same 

circuit schematic and components.  The eye-mask testing was 

performed at 4.25 Gbps due to the availability of test 

equipment with this data rate filter.  The links tested using 

these devices also run error-free at 5 Gbps. 
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Figure 6.  Size #8 contact filtered eye diagrams at 4.25Gbps. 

 

The receiver sensitivity typical for the Size #8 opto-electronic 

contact measured at 4.25 Gbps at various temperatures is 

shown in Figure 7. As evident in the figure, there is 

approximately -19 dBm, which is 5 dB of margin beyond the 

Fiber Channel standard specification for 4.25 Gbps of -14 

dBm.  Given the transmitter output power of approximately -

3.5 dBm, this yields an optical link budget of greater than 16 

dB at 4.25 Gbps.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7.  Receiver sensitivity at 4.25Gbps. 

 

 

Accelerated aging tests were performed on 20 transmitter and 

receiver devices while operating at +85C, and the results are 

shown in Figure 8. No failures were observed.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.  Accelerated aging of Size #8 opto-electronic contacts.  Transmitter 

output power (top) and receiver sensitivity at 1.25 Gbps (bottom). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.  Thermal cycling test from -55C to +125C for Glenair PCB-mount 
transmitter output power and extinction ratio and receiver sensitivity at 4.25 

Gbps.  The units were removed from the test chamber at the intervals indicated. 
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Temperature cycling testing was performed for 1000 cycles 

from -55C to +125C, non-operating on the PCB-mount 

transceivers and the Size #8 contacts.  The units were removed 

at intervals and subjected to full production test regimen over 

temperature from -40C to +85C to insure that the units were 

still within specifications.   

 

Both styles of PCB-mounted transceivers, (ARINC 801 4-fiber 

and GC 2-fiber types) were subjected to operational vibration 

testing to a level of 54 Grms, with spectrum as indicated in 

Figure 10.  The duration was 2 hours per axis, with data 

running and errors being monitored at 5 Gbps.  No errors were 

detected.   

 

This was followed by 650 G, 0.9 ms shock pulses, 10 shocks 

per direction in all three axes.  The units were exposed to these 

levels while operating and errors were monitored at 5 Gbps.  

No errors were detected during any of these exposures.   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10.  Random vibration profile for 54 Grms operating tests. 

Finally, the Size #8 contacts were tested for resistance to 

radiation exposure to 165 krad of gamma radiation from a 

cobalt-60 source, and 2.5 x 10
12

 neutrons/cm
2
, while operating 

under continuous error monitoring, with no errors detected.    

 

Future test plans include charged-particle testing with protons 

and heavy ions, and will be reported in future publications. 

 

I. CONCLUSIONS 

Compact, rugged, opto-electronic transmitters, receivers, and 

transceiver modules in various form-factors were developed 

and tested to 5 Gbps data rates during various harsh 

environmental exposures.  These transceivers were designed to 

interface with aerospace-grade fiber-optic connectors suitable 

for space-flight applications.  These devices were subjected to 

various tests, including thermal cycling, high vibration and 

shock, and gamma and neutron radiation, and found to survive 

with no data errors. Further testing is planned.   
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Abstract— SpaceFibre [1][2][3] is the next generation of 

SpaceWire [4] on-board data-handling network technology for 

spaceflight operations, which runs over both electrical and fibre 

optic media. SpaceFibre has many benefits compared to 

SpaceWire, including much higher data-rates, integrated quality 

of service, fault recovery capabilities, multi-laning with graceful 

degradation and hot and cold redundancy, and low-latency 

broadcast messages that can carry 8-bytes of user information. 

Importantly SpaceFibre is backwards compatible with 

SpaceWire at the network level, allowing existing SpaceWire 

equipment to be incorporated into a SpaceFibre network without 

modification. SpaceFibre networks have been defined by the 

University of Dundee and STAR-Dundee, and incorporated in the 

network layer definition of the current draft SpaceFibre 

standard. STAR-Dundee has designed a SpaceFibre routing 

switch to evaluate various routing concepts, validate the standard 

specification and demonstrate a complete SpaceFibre network. A 

demonstration system has been built and key parts of the 

SpaceFibre network technology have been demonstrated. 

Index Terms — SpaceFibre, SpaceWire, Networking, 

Spacecraft Electronics. 

 

I. INTRODUCTION 

 SpaceFibre is the next generation of SpaceWire technology 

for spacecraft on-board data-handling. It is able to operate at 

multi-Gbits/s over distances of up to 5 m using electrical cable 

and 100 m using fibre optic cable. It is galvanically isolated, 

includes quality of service and fault detection, isolation and 

recovery capabilities. SpaceFibre is backwards compatible with 

SpaceWire at the Network level, which enables existing 

SpaceWire equipment to be connected into a SpaceFibre 

network without modification. Furthermore SpaceFibre has 

been designed to have a small footprint, enabling its 

implementation in flight qualified FPGAs and ASIC devices 

without using a large part of the device.  

This paper outlines the operation of SpaceFibre networks, 

describes the SUNRISE SpaceFibre routing switch, and 

summarises the results of tests with this routing switch. 

II. SPACEFIBRE LINKS 

A. Links and Lanes 

A SpaceFibre link is made up of one or more lanes, which 

carry information from one end of the link to the other. 

SpaceFibre lanes can run over an electrical or fibre optic 

physical layer. In a multi-lane link, some of the lanes can be 

unidirectional provided that at least one lane is bi-directional 

[5]. The SpaceFibre link provides quality of service and error 

recovery [3].  

B. SpaceFibre Virtual Channels 

SpaceFibre links carry traffic (application information) 

through one or more virtual channels. There is a maximum of 

32 virtual channels on a link, which are numbered 

consecutively starting at 0. Traffic entering virtual channel N 

comes out of virtual channel N at the other end of the link. 

Each virtual channel is provided with a quality of service 

(QoS) which has three components: bandwidth reservation, 

priority and scheduling. Bandwidth reservation, reserves a 

portion of the link bandwidth for the virtual channel. Priority 

assigns a priority-level to the virtual channel so that higher 

priority virtual channels are able to send before lower priority 

ones. Scheduling divides time into 64 sequential time-slots and 

specifies in which of those time-slots a virtual channel is 

permitted to send information. These three different QoS 

components are not alternatives, they work together. [3] 

III. SPACEFIBRE NETWORKS 

In this section the operation of a SpaceFibre network is 

described.  

 

A. SpaceFibre Packets 

SpaceFibre packets are identical to SpaceWire packets. 

They are formed from data characters, end of packet markers, 

and error end of packet markers, as illustrated in Figure 1. 

Destination Address Cargo EOP

 

Figure 1 SpaceWire Packet Format 

The "Destination Address" is the first part of the packet to 

be sent and is a list of data characters that represents either the 

identity of the destination node or the path that the packet has 

to take through a SpaceFibre network to reach the destination 

node. In the case of a point-to-point link directly between two 

nodes (no routers in between) the destination address is not 

necessary. 

The "Cargo" is the data to be transferred from source to 

destination. Any number of data bytes can be transferred in the 

cargo of a SpaceFibre packet. 

The "End_of_Packet" (EOP) is used to indicate the end of a 

packet. The data character following an End_of_Packet is the 

start of the next packet. There is no limit on the size of a 

SpaceFibre packet. “Error End of Packet” (EEP) is a form of 

28



EOP which is used to indicate the premature end of a packet 

due to the occurrence an error. 

B. SpaceFibre Virtual Networks 

A SpaceFibre network is effectively a set of independent 

parallel SpaceWire networks. These parallel, independent 

networks are called “SpaceFibre virtual networks”. Each virtual 

network runs over its own, distinct set of SpaceFibre virtual 

channels, comprising a virtual channel across each link used by 

the virtual network. Several virtual networks can then operate 

concurrently over a single physical SpaceFibre network. The 

overall physical network and the collection of virtual networks 

that run over that physical network is called the “SpaceFibre 

network”. 

The traffic running over each virtual network is constrained 

by the SpaceFibre quality of service mechanism to remain 

within its allocated bandwidth and to observer the priority and 

schedule allocated to it. A virtual network is able to 

opportunistically use more bandwidth than it has been 

allocated, when no other virtual network has traffic to send 

over the links of the SpaceFibre network that the particular 

virtual network wants to use. 

As far as the addressing of packets and their routing across 

the network is concerned, SpaceFibre operates in the same way 

as SpaceWire. This has the substantial advantage that existing 

application software or SpaceWire equipment can be used with 

a SpaceFibre network by simply tying a SpaceWire link 

interface to a SpaceFibre virtual channel interface. The 

application does not need to know that it is running over 

SpaceFibre, but gains all the QoS and FDIR advantages of 

SpaceFibre. This make the integration of existing SpaceWire 

equipment both simple and advantageous. 

C. Packet Addressing 

SpaceFibre uses both path and logical addressing, which 

operate in the same way as SpaceWire. It is not possible to 

route a packet between two different virtual networks in a 

routing switch. As already stated virtual networks on a 

SpaceFibre network are like a set of parallel, independent 

SpaceWire networks. The packet routing is within one virtual 

network.  

Path addressing uses the leading data character of a packet 

to determine how the packet should be routed at the next 

routing switch. If the value of the leading data character is in 

the range 0 to 31, it determines which port of the routing switch 

the packet will be forwarded through. For example, if the 

leading data character is 2, the packet will be forwarded 

through port 2 of the routing switch. If the leading data 

character is 0, it will be routed to port 0, the internal 

configuration port of the routing switch. If the leading data 

character is 31 and there are only 9 ports in the router, the 

packet will be discarded. Note that the ports of a router are 

number consecutively, starting at 0 for the internal 

configuration port. 

If the leading data character is in the range 32-255, it is a 

logical address. The value of the leading data character is then 

used as the index into a routing table, which once configured, 

determines which port the packet is to be forwarded through. 

For example, if the leading data character is 40 and the entry in 

the routing table for index 40 contains the value 3, the packet 

will be routed to port 3 of the router. The routing table is 

configured using RMAP commands sent to the router 

configuration port [6]. Before configuration of the routing table 

has been done, any logical address will result in the packet 

being discarded. Path addressing operates at all times, before 

and after the routing table has been configured. 

D. Fills 

SpaceFibre runs much faster than SpaceWire, so requires an 

interface to the application which is wider than that of 

SpaceWire to carry the extra data. The interface to a 

SpaceFibre port is typically 32-bit wide or a multiple of 32-bits, 

whereas SpaceWire is 8-bits wide. If SpaceFibre is to send a 

packet which is not a multiple of 32-bits, the start of the packet 

or its tail end can be filled with Fill characters to make it 32-bit 

aligned. Therefore, a SpaceFibre data word contains four data 

characters, EOPs, EEPs or Fills. The use of Fills is illustrated in 

Figure 2 and Figure 3, where P represents a path-address data 

character, D represents a data character, E an EOP or EEP, and 

F a Fill. 

Filling the start allows for a 32-bit aligned cargo, when path 

addressing is being used, as illustrated in Figure 2. 

 

F F F P 

P P P P 

D D D D 

D D D D 

E F F F 

Figure 2 Fills at the start of a SpaceFibre packet 

Fill characters are added at the beginning of a packet, to 

align a path address which is not a multiple of four data 

characters in length or to fill spaces that were previously 

occupied by a path address. This allows the leading SpaceFibre 

path address bytes to be removed by a router and replaced by 

Fill characters in order to keep the word-alignment of the 

SpaceWire cargo when it arrives at the destination. It also 

allows some fills to be added to the start of a packet to ensure 

that the cargo of the packet is 32-bit aligned when there is a 

path address that is not a multiple of four data characters. 

Filling the end allows for the cargo to be any number of N-

Chars, not a multiple of four N-Chars, as illustrated in Figure 3. 

 

D D D D 

D E F F 

F F P P 

D D D D 

D D D D 

E F F F 

Figure 3 Fills at the end of a SpaceFibre packet 

The Fill character is used in a data word containing an EOP 

or EEP to fill otherwise empty characters that follow the EOP 

or EEP. The above example shows two small packets in part of 

a frame being aligned to 32-bits. 

E. Virtual Network Masters 

A “network master” is a node on a SpaceFibre virtual 

network which is a source of SpaceFibre packets able to send 

packets autonomously, i.e. without first receiving a request 
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from another node. Note that a network master is different to a 

network manager, the latter is a network master that configures, 

controls and monitors the status of the entire SpaceFibre 

network.  

If there is one network master on a virtual network then that 

virtual network can be deterministic. For example, the network 

master might be a control processor sending Remote Memory 

Access Protocol (RMAP) packets to other instrument nodes to 

control them and collect data from them, using RMAP. The 

traffic on the virtual network is controlled by the one network 

master node. The set of virtual channels that the specific virtual 

network runs over is allocated the bandwidth and priority 

according to its needs. If the virtual network is to provide time-

bound determinism, its virtual channel will also be scheduled 

by the SpaceFibre QoS mechanism. 

Within a single SpaceFibre virtual network, if there are two 

independent network masters, it is possible that they both send 

a packet to the same node, or through the same link to a router 

and then on to different nodes. Whenever these two network 

masters want to send a packet over the same link at the same 

time, there is a “collision” and one packet will have to wait for 

the other one to be sent. This is the same as the temporary 

“packet blocking” that can occur in a SpaceWire network. Each 

SpaceFibre virtual network operates just like a separate 

SpaceWire network, including temporary packet blocking. 

Now, in some applications the temporary network blocking 

was a real pain in a SpaceWire network, especially if long 

packets were being used. Traffic from one application could 

delay traffic from another one, which could be difficult to 

handle under some circumstances. SpaceFibre solves this 

problem, by having multiple, independent virtual networks. If 

there is a single network master on each of these virtual 

networks, the packet blocking is avoided completely. It is still 

possible to have multiple network masters on the same virtual 

network, provided that packet blocking is not an issue for the 

traffic flowing over that virtual network, or provided that 

another mechanism is used to control the flow of traffic over 

that network. 

This approach maintains full backwards compatibility with 

SpaceWire at the network level, which is essential if the large 

legacy of existing SpaceWire equipment is not to be 

squandered. Reuse of existing, proven equipment, reflected by 

the Technology Readiness Level (TRL), is an important way of 

improving reliability and reducing the cost of space missions. 

SpaceFibre offers a path for substantially upgrading the 

capabilities and performance of an onboard network without 

losing that valuable legacy. 

IV. REFERENCE ARCHITECTURE 

It is worth considering an example of how the virtual 

networks might be used in a typical space mission.  First, a 

reference architecture is described. 

A. Earth Observation Reference Architecture 

A reference architecture has been devised which is 

representative of a typical high data-rate Earth Observation 

mission. This architecture is illustrated in Figure 4.  

Instruments 1 and 2 are high data-rate instruments each 

with a SpaceFibre interface. They are connected via two 

SpaceFibre routers to the mass-memory unit which has two 

SpaceFibre interfaces. Each instrument is able to transfer data 

at up to 2 Gbits/s using a 2.5 Gbit/s SpaceFibre link. 
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Figure 4 SpaceFibre Earth Observation Mission Reference 

Architecture 

Four existing SpaceWire instruments are attached to a 

SpaceWire to SpaceFibre bridge device, each via a separate 

virtual channel of the SpaceFibre interface. Data from these 

SpaceWire devices is sent over the SpaceFibre network to the 

mass-memory unit. 

Data from the mass-memory unit is passed to the downlink 

telemetry unit. 

A control processor is able to access all of the instruments, 

the mass-memory unit and the downlink telemetry unit along 

with the SpaceFibre routing switches to configure and control 

the devices and to read housekeeping information from them. 

The architecture in Figure 4 does not really need two 

routing switches, but two are included in the reference 

architecture to make it more generic. 

B. Example Allocation of Virtual Networks 

There are several functions that need to be carried out by 

the reference architecture of Figure 4. These functions are 

listed below: 

1. SpaceFibre network management: configuring, 

monitoring and reconfiguring the SpaceFibre network; 

2. Payload management; instrument control and status 

monitoring (housekeeping); 

3. Data-handling system management; control and status 

monitoring (housekeeping) of the mass-memory unit 

and the downlink telemetry unit;  

4. Sending data from the high data-rate Instrument 1 to 

the mass-memory unit 

5. Sending data from the high data-rate Instrument 2 to 

the mass-memory unit; 

6. Sending data from the four SpaceWire instruments to 

the mass-memory unit; 

7. Sending data from the mass-memory unit to the 

downlink telemetry unit. 

Each of these functions could be allocated a separate virtual 

network, requiring a total of seven virtual networks in the 

routing switches and mass-memory unit. Since there is only 

one control processor (ignoring a possible redundant unit), it is 

necessary  to run the SpaceFibre network management, the 

payload management and the data-handling functions on the 

same processor. These functions can then share a virtual 

network since there will always only be the one control 

processor using that virtual network. This reduces the number 
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of virtual networks required to five. The five parallel virtual 

networks are illustrated in Figure 5. 
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Figure 5 Parallel Virtual Networks 

The control processor performing the network management, 

payload management and data-handling system management, 

uses one virtual network (VN0) and is able to access all of the 

instruments, routing switches, mass-memory and downlink 

telemetry units, over that one virtual network. 

Instrument 1 uses another virtual network (VN1) to send 

data to the mass-memory unit. Similarly instrument 2 uses 

VN2. 

The SpaceWire instruments all share one virtual network 

(VN3) for sending data to the mass-memory unit. This means 

that they will compete for access to the virtual network, as if 

they were running over a SpaceWire network.  

C. Networks with Large Number of Nodes 

When there are a large number of nodes in a network, it is 

possible to handle them in several different ways. 

Firstly, a single virtual network could be used for several 

nodes which all act as network masters. It is simply accepted 

that within this virtual network temporary packet blocking will 

occur and will not be a problem for the applications related to 

those nodes. This virtual network operates the same as a 

SpaceWire network 

Secondly, it is possible to increase the number of virtual 

channels so that there is one for each SpaceWire instrument. 

This depends on the number of virtual channels available in the 

SpaceFibre routers and mass-memory unit. In any case there is 

a limit to the maximum number of virtual networks that can be 

used. There is actually a maximum of 32 virtual channels over 

a link and 64 virtual networks across a SpaceFibre network. 

A third alternative is to use one network master on a virtual 

network to handle all the communication for the nodes on that 

network. The configuration, control and housekeeping network 

is an example of this where there is one master node that uses 

RMAP commands to request information to all the nodes on 

the network including the configuration nodes within the 

routing switches. 

A similar approach could be used for sending data from 

several instruments to the mass-memory unit. The mass 

interface controller could send out RMAP commands to request 

data from each of the SpaceWire instruments on a single virtual 

network in turn.  For example the mass-memory unit could use 

VN3 to send RMAP commands to the SpaceWire instruments 

which respond with the requested data, which is then placed in 

memory. 

Another possibility is to schedule the sending of 

information from the various equipment over a virtual network 

using time-slots, which are delimited by broadcast messages 

over the SpaceFibre network or time-codes on the SpaceWire 

network. Each equipment then sends its data in its allocated 

time-slot or time-slots. 

D. Virtual Network to Virtual Channel Mapping 

Virtual networks are mapped on to a set of virtual channels, 

one virtual channel for each link used by the virtual network. 

Each virtual channel on a link is mapped to one and only one 

virtual network. The virtual channel number used by a virtual 

network over one link does not need to be the same as the 

virtual channel number used on another link. 

The simplest way of mapping a virtual network to a virtual 

channel is to use a one to one mapping, so that virtual network 

VN0 uses virtual channel VC0 on all of the links in the 

network. Similarly VN1 uses VC1 and so on. The problem with 

this simple approach is that it complicates the instrument nodes 

of the network. For example, a typical instrument will require 

two virtual networks; VN0 which is used for control and 

monitoring and another virtual network which is used for data 

transfer to a mass-memory unit. This is the case with 

instruments 1 and 2 in Figure 5, which use VN1 and VN2 

respectively. If a mapping is done from the virtual network to 

the virtual channels, the hardware required in the instrument 

interfaces is simplified. For example, instrument 1 VN1 is 

mapped to VC1 and instrument 2 VN2 is mapped to VC1. This 

mapping needs to be done at both ends of the respective links. 

The routing switch then uses this mapping to route a packet to 

an output port on the same virtual network number as that on 

which the packet arrived.  The virtual channel numbers may be 

different on the link over which the packet arrived and the link 

over which the packet is being forwarded, but the virtual 

network numbers mapped to these virtual channels are the 

same. 

Using the example of Figure 5, the links running from 

Router 1 to Router 2 will carry instrument data from instrument 

1 over VN1 and from instrument 2 over VN2. This data can go 

over either of the links between the two routing switches 

depending on the packet address. So over these links the 

following mapping applies: 

 VN0 -> VC0, this is always the case 

 VN1 -> VC1 

 VN2 -> VC2 

 VN3 -> VC3 

VN4 does not use the links between the routers.  

So VN2 is mapped to VC1 for the link from instrument 2 to 

router 1, because there are only two virtual channels available 

in the instrument interface. VN2 is then mapped to VC2 over 

the links from router 1 to router 2. 

The virtual network to virtual channel mapping makes the 

routing switches more complex, because it has to handle the 

mapping, but makes the instrument interfaces simpler, because 

they normally only need two virtual networks, which can be 

supported by two virtual channels. The virtual network 

mapping also permits more virtual networks on a SpaceFibre 

networks than there are virtual channels on a SpaceFibre link, 

i.e. there are up to 64 virtual networks allowed in a network but 

only 32 virtual channels over a link. This is possible because 
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some virtual networks may use completely separate parts of the 

network. 

V. SUNRISE SPACEFIBRE ROUTING SWITCH 

A SpaceFibre router has been designed and implemented in 

the SUNRISE project funded by the UK Space Agency and 

STAR-Dundee. The architecture of this router is shown in 

Figure 6. 

The SUNRISE router has eight SpaceFibre ports, numbered 

1 to 8, each with four virtual channels. There is a configuration 

port (port 0) which is used for device configuration and which 

can be accessed using virtual channel 0 of any of the other 

ports. Another port (port 9) provides an interface to four 

SpaceWire ports using four virtual channels, one for each 

SpaceWire port. SpaceWire and SpaceFibre packets are 

switched by the routing switch in the same way, using the 

leading data character of a packet to determine the output port 

that the packet is to be switched to. Both path and logical 

addressing can be used with the SUNRISE router.  
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Figure 6 SUNRISE SpaceFibre Router Architecture 

 

 

Figure 7 SUNRISE SpaceFibre Routers Under Test 

The SUNRISE router was implemented initially in a Xilinx 

Spartan 6 FPGA. Two of the SUNRISE routers are shown 

under test in Figure 7. The SUNRISE routers are implemented 

on 3U cPCI/PXI boards. Power is taken from the backplane 

and the eight SpaceFibre and four SpaceWire ports are 

available on the 40mm wide front panel. 

The SUNRISE router is now being implemented in a 

Microsemi RTG4 FPGA as shown in Figure 8 [7][8]. 

 

 

Figure 8 Prototype Microsemi RTG4 board for SUNRISE 

SpaceFibre Router  

VI. DEMONSTRATION OF SPACEFIBRE NETWORK 

The reference architecture has been implemented using a 

combination of radiation tolerant FPGAs and commercial 

FPGAs. This is illustrated in Figure 9. 

 

 

Figure 9 SpaceFibre Network Demonstration 

The equipment used in the demonstration system is detailed 

in Figure 10 [9]. 
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Figure 10 SpaceFibre Network Demonstration System 
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The following functions were demonstrated and validated: 

 SpaceFibre network operation: using the two SUNRISE 

routing switches (1). Packets were successfully routed 

across the routing switches, remaining in their virtual 

networks. 

 High data-rate: The STAR Fire unit has two SpaceFibre 

interfaces and incorporates packet generators that are able 

to generate SpaceFibre packets at the full data rate (2.5 

Gbits/s) over each SpaceFibre link. STAR Fire unit (2) 

was used to simulate the two high data-rate instruments of 

the reference architecture. Data from these two 

“instruments” was sent across the network to the STAR 

Fire unit (3), which accepts and checks the high-data rate 

packets. STAR Fire unit (3) is acting like a mass memory 

accepting data from the high data-rate instruments. 

 SpaceWire to SpaceFibre bridging: A SpaceWire Brick 

Mk3 (4) was used to generate two streams of SpaceWire 

packets under control of the host PC (5). The SpaceWire 

links are attached to a Microsemi RTG4 development 

board via a STAR-Dundee FMC board [7]. The RTG4 is 

programmed with a SpaceWire to SpaceFibre bridge 

design connecting four SpaceWire interfaces to four virtual 

channels of a SpaceFibre interface. One SpaceWire link is 

sending video data from a webcam attached to the host PC 

(5). The other SpaceWire link is sending packets from a 

SpaceWire packet generator running on host PC (5) to 

another PC (9) so that they can be checked for errors. The 

SpaceWire packets are converted to SpaceFibre packets, 

which is trivial as they have the same format, and sent 

across the SpaceFibre network. The video data is sent to 

another RTG4 board (7). The other data is sent via port 9 

of a SpaceFibre router (1) which is a port where the virtual 

channels are connected to SpaceWire interfaces. This 

SpaceWire data goes across a SpaceWire link to another 

Brick Mk3 (8) and on to a  host PC (9) where it is checked. 

 Quality of Service: The STAR Fire packet generators (2) 

provide a total data rate of 2 x 2.5 Gbits/s, using all the 

network bandwidth between the two routing switches (1). 

The virtual channels they are using are assigned relatively 

low priority. The SpaceWire to SpaceFibre bridge (6) uses 

a virtual channel with higher priority. Whenever it wants 

to send data, it is able to do so, within the constraints of its 

allocated bandwidth. This is demonstrated by the real-time 

video data stream being transferred across the network. 

 Fault detection, isolation and recovery: the link being 

used to transfer the traffic from the SpaceWire to 

SpaceFibre Bridge (6) between the two routing switches 

(1) can be unplugged. The video traffic then stops and the 

SpaceWire packet generated data stops. When the link is 

plugged back in the SpaceWire packet generated data 

continues and there is no loss of packets. The packets are 

checked for errors including missing packets in the host 

computer (9). While the link was disconnected no packets 

could be transferred but the packet being transferred when 

the link was disconnected was not lost. Clearly with the 

video data stream, data is lost once the buffers in the 

system are filled. The key point is that packets in transit 

across the network are not lost. 

 Network configuration: the network is configured using 

the host computer (9) via a SpaceWire connection to the 

right hand routing switch (1). 

For debugging and analysis purposes, a third STAR Fire 

unit (10) operating as a link analyser is included on one of the 

links between the two routing switches (1) [10]. 

VII. CONCLUSIONS 

SpaceFibre networks have been defined by the University 

of Dundee and STAR-Dundee, and incorporated in the network 

layer definition of the current draft SpaceFibre standard. 

STAR-Dundee has designed the SUNRISE SpaceFibre routing 

switch to evaluate various routing concepts, validate the 

standard specification and demonstrate a complete SpaceFibre 

network. A reference architecture for a SpaceFibre network 

targeted at Earth Observation applications has been defined. A 

demonstration system has been built reflecting this reference 

architecture and key parts of the SpaceFibre network 

technology have been demonstrated. 
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For those responsible for the design and implementation of a 

SpaceFibre network it is essential to be able to capture and view 

the traffic on a SpaceFibre link in order to help validate the link 

is operating as expected and debug the link should any 

unexpected behaviour be observed. STAR-Dundee Ltd have 

developed hardware independent SpaceFibre Link Analyser 

software for this purpose. This paper describes how the software 

views, combined with the traffic capture capabilities of the STAR 

Fire unit, can be used to perform SpaceFibre link analysis. 

Index Terms— SpaceFibre, Link Analysis, STAR Fire 

I. INTRODUCTION 

SpaceFibre [1][2] is a multi-Gbits/s, on-board network 

technology for spaceflight applications that will soon become a 

formal European Cooperation for Space Standardization 

(ECSS) standard. At present the SpaceFibre enabled STAR 

Fire unit [3] from STAR-Dundee Ltd has allowed users to 

transmit and receive simple data patterns and perform some 

basic SpaceFibre link analysis for prototyping purposes. Over 

the past couple of years work has been undertaken to replace 

the software provided with the STAR Fire to leverage new 

advanced data generators and checkers and to greatly improve 

on the SpaceFibre link analysis capabilities. One result of this 

work has been the development of the hardware independent 

SpaceFibre Link Analyser software. This paper aims to 

describe how using this software, those responsible for the 

design and implementation of a SpaceFibre network might 

perform SpaceFibre link analysis. This is very important in 

order to help validate a SpaceFibre link operates as expected 

and to debug any unexpected behaviour. 

In this paper the key requirements of the software are 

described along with the hardware currently supported, and a 

short overview of how the software is controlled is provided 

along with a description of the triggering capabilities. Each of 

the different SpaceFibre traffic views are briefly described and 

the key features of these summarised. Screenshots of different 

SpaceFibre traffic scenarios captured and displayed using the 

SpaceFibre Link Analyser software are then presented as 

simple examples of its use. 

II. AIMS 

Initial discussions regarding the SpaceFibre Link Analyser 

software highlighted a number of requirements outlined below. 

 SpaceFibre traffic shall be captured when an event of 

interest occurs, for example a specific word such as a 

receive error or symbol such as EDF (End of Data 

Frame). This ensures the user captures the traffic they 

are most interested in. 

 Three initial views shall be developed that display 

SpaceFibre traffic at the SpaceFibre symbol/word, 

frame and packet levels. This allows the user to 

thoroughly inspect the SpaceFibre traffic with varying 

levels of detail. 

 The software shall be designed to support multiple 

device types capable of capturing/recording 

SpaceFibre traffic. This ensures continuity for users 

familiar with one device type switching to another. 

This also minimises custom development work for 

future devices with common functionality. 

III. HARDWARE 

The SpaceFibre Link Analyser software has been designed 

to support multiple device types with capture/recording 

capabilities. However, currently the STAR Fire is the only 

device type supported. The STAR Fire can transparently 

capture SpaceFibre traffic on a single link in both directions. 

Traffic capture can be triggered on detection of a SpaceFibre 

word, sequence of four symbols or an error. In addition to its 

capture capabilities, the STAR Fire can transmit and receive 

SpaceFibre traffic using data generators and checkers (these 

have recently been updated and now support more advanced 

data patterns), can route SpaceWire traffic over the SpaceFibre 

interfaces and can also decode SpaceFibre signals for use with 

a logic analyser. 
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Fig.  1. STAR Fire Unit 

The STAR Fire has two SpaceFibre interfaces, two 

SpaceWire interfaces and two external triggers on the front of 

the unit. On the rear there are a further two external triggers, a 

USB 2.0 interface (soon to be USB 3.0), two MICTOR 

connectors and a power connector. 

The STAR Fire is a great target for the SpaceFibre Link 

Analyser software as it provides the trigger and capture 

capabilities required, and can also act as a node for testing 

purposes, transmitting and receiving SpaceFibre traffic. 

IV. OPERATION 

Using the SpaceFibre Link Analyser software is quite 

simple. First the user should set the capture properties, for 

example the post trigger memory size. Next the capture trigger 

is configured, for example trigger on an SDF (Start of Data 

Frame) word. Then start SpaceFibre traffic capture (this causes 

the device to continuously capture to a circular buffer) and wait 

for the trigger to occur. When the trigger is detected or is 

forced by the user, the device memory is filled. The captured 

SpaceFibre traffic is then displayed in the different views. 

V. TRIGGERING 

Triggering is used to ensure SpaceFibre traffic of interest is 

captured. Before a trigger occurs SpaceFibre traffic is captured 

to a circular buffer continuously. When the trigger occurs, and 

the post trigger memory is filled, the contents of the capture 

buffer are accessed by the software and displayed. 

The SpaceFibre Link Analyser software can trigger on 

nothing, a sequence of four SpaceFibre symbols or a 

SpaceFibre word. When trigger on nothing is selected, the 

trigger immediately occurs when the user chooses to stop 

capture. When trigger on word is selected, the user selects the 

word type and can optionally specify properties specific to that 

word. This is shown below for the SDF word. In this example 

the trigger will occur when an SDF word is detected on virtual 

channel one. 

 

Fig.  2. Trigger on SpaceFibre Word 

When trigger on symbol is selected, the user can select four 

consecutive symbols on which to trigger. This is shown in the 

screenshot below. In this example the trigger will occur when 

an SBF (Start of Broadcast Frame) word is detected on 

broadcast channel zero with sequence number five. 

 

Fig.  3. Trigger on SpaceFibre Symbol 

As is shown in the figures above, in addition to triggering 

on specific SpaceFibre symbols and words, the user can also 

choose to trigger on specific errors. 

The triggering capabilities of the SpaceFibre Link Analyser 

software currently match the functionality provided by the 

STAR Fire. This could be extended further in the future with 

the addition of further advanced hardware triggering 

capabilities. 

VI. SYMBOL VIEW 

SpaceFibre uses 8B10B encoding to transfer 10-bit symbols 

over a SpaceFibre link. A symbol can be either a control or 

data symbol. A group of four consecutive symbols form a data 

word or control word. 
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The symbol view displays the captured SpaceFibre symbols 

and corresponding words travelling in both directions over a 

SpaceFibre link. One half of the symbol view displays the 

SpaceFibre traffic travelling in one direction whilst the other 

half displays the opposite direction. The left most column 

displays the time at which each word was captured relative to 

the trigger. For the STAR Fire unit this is simply the word 

index currently (the timing can be calculated knowing the link 

speed). For both SpaceFibre link directions there are four 

columns displaying four captured SpaceFibre symbols, plus a 

fifth column showing the SpaceFibre word the symbols equate 

to. Below is a screenshot of the symbol view showing data 

captured travelling in both directions. 

 

Fig.  4. Symbol View 

The SpaceFibre symbol and word types supported are those 

found in the latest draft of the SpaceFibre standard (SpaceFibre 

ECSS Draft H6 [1]). These have long been defined. 

VII. FRAME VIEW 

SpaceFibre uses frames to manage the flow of information 

over a SpaceFibre link. There are three frame types: data, 

broadcast and idle frames. Data frames are transmitted across a 

SpaceFibre link over virtual channels whilst broadcasts are 

transmitted over a broadcast channel. Idle frames are 

transmitted when there are no data or broadcast frames to be 

transmitted. Virtual channels provide multiple independent 

communication channels over a single physical link. 

The frame view was designed to display the data and 

broadcast frames in their appropriate channel, relative to the 

capture trigger time. As with the symbol view, the left most 

column displays the time relative to the capture trigger. Every 

other column represents a virtual channel or broadcast channel 

as indicated by the column header. Below is a screenshot of the 

frame view showing data frames captured travelling in both 

directions over four virtual channels on a SpaceFibre link. 

 

Fig.  5. Frame View 

Each data frame consists of a start of a data frame (SDF) 

control word, up to 64 data words and an end of data frame 

(EDF) control word. Each broadcast frame consists of a start of 

broadcast frame (SBF) control word, two data words and an 

end of broadcast frame (EBF) control word. The properties of 

the different control words are displayed in both the symbol 

and frame views, the EDF word sequence number in the 

screenshot above is an example of this. 

VIII. PACKET VIEW 

A SpaceFibre packet consists of a destination address, 

cargo and an end of packet (EOP) or error end of packet (EEP) 

marker. The SpaceFibre packet format is the same as 

SpaceWire, enabling simple connection between existing 

SpaceWire equipment and high-speed SpaceFibre links. This 

also means existing software designed to display SpaceWire 

packets can be used as a basis for a SpaceFibre packet display. 

One such view is the SpaceWire packet view provided with 

the SpaceWire Link Analyser Mk2 software application. The 

SpaceWire Link Analyser Mk2 packet view has benefitted 

from the feedback of numerous users over several years, and 

many users of SpaceWire, and potentially users of SpaceFibre, 

are familiar with this display. For these reasons it was decided 

that the SpaceWire Link Analyser Mk2 packet view should 

form the baseline design for the SpaceFibre Link Analyser 

software packet view. Revisiting the design provided an 

opportunity to extend the reusability of the view (to support 

packet data formats of multiple device types rather than simply 

one device) and review the functionality offered. 

The SpaceFibre packet view displays the captured 

SpaceFibre packets travelling in both directions over a 

SpaceFibre link. The left most column displays the time 

relative to the capture trigger. Every other column represents a 

virtual channel. This display allows the user to view the 

SpaceFibre traffic at the packet level without concerning 

themselves with the symbols, words and frames used to 

construct the packets. Work on this view is currently ongoing 

and should be complete in the near future. 
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IX. STATISTICS 

In addition to the SpaceFibre Link Analyser software, the 

STAR Fire will also be supplied with a standalone STAR Fire 

Statistics application. This displays virtual channel and 

broadcast channel statistics associated with the STAR Fire 

SpaceFibre data/broadcast generators and checkers. A running 

count of data errors, EEPs and broadcast errors is displayed 

alongside the data generator rate and bandwidth reservation for 

each channel. Virtual channel lane utilisation is also graphed 

over time. Below is a screenshot of the STAR Fire statistics 

application. 

 

Fig.  6. STAR Fire Statistics 

This immediately alerts the user to any errors detected by 

the data and broadcast checkers. The lane utilisation graph can 

be used to visualise the effect that changing the quality of 

service properties and data generator rate for each virtual 

channel has on lane utilisation. 

X. FEATURES 

The symbol, frame and packet views provide a great way of 

inspecting captured SpaceFibre traffic at different levels of 

detail. Each view is docked within a separate floating window. 

The positioning of these windows is user configurable. They 

can be placed side by side, above and below, or on top of each 

other in separate tabs. This allows the user to layout the views 

in the most effective manner for them. 

Selection of SpaceFibre traffic in one view automatically 

selects and navigates to the corresponding traffic in the other 

views. This allows the user to navigate multiple views 

simultaneously and therefore makes them much easier to 

manage. 

Each view shall have search capabilities specific to that 

view. This will allow the user to quickly locate SpaceFibre 

traffic of interest within very large quantities of data that could 

otherwise be difficult and time consuming to identify. Filtering 

options shall allow users to limit the traffic presented to only 

that pertinent. 

XI. TESTING 

Testing the SpaceFibre Link Analyser software was 

necessary throughout the development to ensure it behaved as 

expected. To test the SpaceFibre Link Analyser two 

SpaceFibre nodes were simulated transmitting and receiving 

SpaceFibre traffic to and from each other over a point to point 

link. This was achieved using a STAR Fire ("STAR Fire N"). 

A second STAR Fire unit ("STAR Fire LA") was inserted on 

the link and configured to operate as a SpaceFibre Link 

Analyser. The diagram below shows the setup. 

 

Fig.  7. SpaceFibre Link Analyser Test Setup 

To configure STAR Fire N to transmit and receive 

SpaceFibre traffic the STAR Fire Controller application was 

used. The SpaceFibre port settings, quality of service, and 

advanced data generators and checkers can all be configured 

using the STAR Fire Controller. Numerous different 

configurations were used. Each could be saved and reused at a 

later date for regression testing. The STAR Fire Controller 

screenshot below shows virtual channel one settings for 

SpaceFibre port one of a STAR Fire unit. 

 

Fig.  8. STAR Fire Controller 

The STAR Fire Controller application leverages the 

advanced data generators and checkers that have been added to 

the STAR Fire. These allow the user to specify data patterns of 

different types (fixed, increment, rotate right and rotate left), 

with an initial value, pattern length, packet length and four 

configurable header bytes. Below is a screenshot of the STAR 

Fire Controller dialog used to create and edit data patterns. 
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Fig.  9. STAR Fire Controller Advanced Data Patterns 

XII. SPACEFIBRE TRAFFIC SCENARIOS 

The test setup described was used to capture and analyse a 

range of typical scenarios encountered on a SpaceFibre link. 

Below are some typical SpaceFibre scenarios captured by the 

STAR Fire and displayed using the SpaceFibre Link Analyser 

software. 

A. Lane Initialisation 

Lane initialisation is responsible for initialising a lane prior 

to transfer of data frames, idle frames or broadcast frames. This 

is handled by a lane state machine. A handshake protocol is 

used to ensure that both ends of the lane have achieved 

synchronisation. Below is a screenshot of the symbol view 

showing part of the lane initialisation handshake where the 

near end is moving to the connected state. 

 

Fig.  10. Lane Initialisation Handshake 

B. Frame Acknowledgment 

Each correctly received SpaceFibre frame or FCT (Flow 

Control Token) is acknowledged with an ACK 

(acknowledgement) control word. Below are two combined 

screenshots of the symbol view showing a data frame with 

sequence number +47 captured travelling in one direction and 

the corresponding +47 ACK travelling in the opposite 

direction. 

 

Fig.  11. Data Frame Acknowledgement 

C. Error Recovery 

A negative acknowledgement (NACK) is used to indicate 

that a data frame, broadcast frame or FCT has not been 

received correctly. NACKs are used to support link error 

recovery. In the symbol view screenshot below a NACK is 

captured indicating that a data frame, broadcast frame or FCT 

has not been received correctly.  

 
 

Fig.  12. Symbol View: Negative Acknowledgement 

When the NACK is received this initiates the error recovery 

operation. The frame view screenshot below shows the 

retransmission of data frame 89. Data frame 89 was 

retransmitted as the NACK indicated that 88 was the sequence 

number of the last successfully received data frame, broadcast 

frame or FCT. 
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Fig.  13. Frame View: Data Frame Retransmission 

D. Frame Precedence 

SpaceFibre includes low latency event signalling and time 

distribution with broadcast messages. Broadcast frames have 

higher precedence than data frames ensuring broadcasts have 

minimum latency. Data frames have greater precedence than 

idle frames. Below is a screenshot of the symbol and frame 

views showing a broadcast frame embedded within a data 

frame. 

 

Fig.  14. Broadcast Frame Embedded in a Data Frame 

The data frame was part way through being transmitted 

when the broadcast frame became ready to send. The 

transmission of the data frame was suspended and the 

broadcast frame was sent immediately. After the broadcast 

frame was transmitted, the remainder of the data frame was 

transmitted. 

E. Quality of Service Example 

Each virtual channel is assigned quality of service (QoS) 

parameters that are used to determine which channel should be 

permitted to transmit data at any one time. Priority, bandwidth 

reservation and scheduling are used to do this. Below is a 

screenshot of the frame view showing four virtual channels 

where VC 0 is assigned 60% of the bandwidth, VC 1 10%, VC 

2 10% and VC 3 10%. As you can see VC 0 is utilising the link 

far more than the other virtual channels as a result. 

 
 

Fig.  15. Frame View QoS Example 

XIII. CONCLUSION 

As the popularity of SpaceFibre increases so too will the 

demand to perform effective SpaceFibre link analysis. This 

paper has described the current capabilities of the SpaceFibre 

Link Analyser software in an effort to make those responsible 

for the design and implementation of SpaceFibre networks 

aware of the existing tools available to them. 

Currently in conjunction with the STAR Fire unit, users can 

capture SpaceFibre traffic in response to a trigger event. Once 

captured this traffic is automatically translated and displayed in 

symbol, frame and packet views. These views are all selection 

synchronised for easy navigation of the data. In the future 

additional functionality will be added to the existing views and 

additional devices will be supported by the SpaceFibre Link 

Analyser software. 
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Abstract— The paper deals with the aspects of implementation 

and validation of the SpaceWire-R protocol as carried out in the 

ESA-funded project SpaceR. We give a brief overview of the 

SpaceWire-R protocol for providing reliable data transfer 

services over SpaceWire networks and describe the SpW-R 

protocol software implementation elaborated in the SpaceR 

project. The testing platform developed for validation of the 

protocol is presented, as well as preliminary SpW-R performance 

results obtained within the project. 

Index Terms—SpaceWire, network protocols, SpaceWire-R 

I. INTRODUCTION 

Many spacecraft on-board applications process and 

compress information in complex ways before sending it over a 

SpaceWire network. In these cases, a failure affecting even a 

small amount of data may lead to a loss of significant 

information. SpaceWire-R [1] is a communications protocol 

that addresses the needs of such applications by providing 

reliable data transfer services over SpaceWire networks. In 

addition to support for transmission reliability (with 

acknowledgements and retransmissions), its functions include 

multiplexing, segmentation, flow control, and keep-alive 

heartbeat. 

The SpaceWire-R protocol has been implemented and 

tested as software on a PC and SpaceCube2 platforms [2] as 

well as an IP core targeting the Microsemi RTAX2000S 

FPGAs [3]. A revised version of the draft protocol 

specification has been recently issued [4]. As a step towards its 

standardization, an independent software implementation of the 

protocol based on the TELETEL iSAFT PVS platform [5] is 

under developement in the ESA-funded project SpaceR. 

This paper presents the SpaceR project and its preliminary 

results. The objectives of the project include functional and 

performance tests and validation of the protocol, assessing its 

effectiveness, and deriving recommendations for the 

specification. The implementation is done in C++ on 

computers of x86_64 architecture and is portable at the source 

code level down to the layer of transfer of raw SpaceWire 

packets. The latter employs a new socket-based Application 

Programming Interface (API), developed by TELETEL 

specifically for the project. The testing environment is 

composed of a subsystem dedicated to upper-lower testing (for 

verifying the correctness of transformations between 

SpaceWire-R and SpaceWire packets) as well as one dedicated 

to end-to-end testing (for transmission between SpaceWire-R 

end point applications) with error injection facilities. 

The paper is structured as follows. Section II gives an 

overview of the SpaceWire-R protocol and discusses the 

implementation aspects as realized in the SpaceR project. Next, 

in Section III a testing platform developed for SpaceWire-R 

testing and validation is described. The preliminary 

performance results obtained in the SpaceR project are 

presented and discussed in Section IV. Finally, Section V 

contains concluding remarks.  

II. IMPLEMENTATION OF THE SPACEWIRE-R PROTOCOL 

The SpaceWire-R (SpW-R) communications protocol is 

intended to provide on-board applications with reliable data 

transfer services over SpaceWire networks. The position of the 

SpW-R protocol in the SpaceWire protocol stack is shown in 

Fig. 1. The main functions of the SpW-R protocol that are 

subject to implementation are the following: retransmission 

control, multiplexing, segmentation, flow control, and keep-

alive. 

A. Retransmission Control (reliable transfer) 

 Transmits a series of data from the sender to the receiver 

without error, without loss, without duplication, and in 

sequence. 

 Uses the concept of “transport channels”, which are 

virtual transmission lines from the sender to the receiver. 

 A channel is established before starting transmission of 

data. 

 Data is transmitted using SpW-R packets. A SpW-R 

packet is contained in a SpaceWire packet as its cargo. 

Each SpW-R packet is given a sequence number. 
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Fig. 1. SpaceWire-R protocol in the SpW protocol stack 

 

 The receiver accepts packets in the order of the sequence 

number. When it has accepted a packet, it sends back an 

Ack (acknowledgment) packet to the sender. 

 The sender retransmits the same packet if no Ack packet 

has been returned from the receiver. It disconnects the 

channel if no Ack packet has been returned after a certain 

number of retransmissions. 

B. Multiplexing 

 Enables simultaneous transfer of multiple independent 

streams of data from a sender node to a receiver node. 

 Realized using multiple channels established between the 

sender and the receiver. 

C. Segmentation 

 Segments a data unit provided by the sending application 

into smaller segments so that each segment fits in a SpW-

R packet, if the data unit provided by the sending 

application is larger than the size allowable in the SpW-R 

packet. 

 At the receiver, the original data unit is reconstructed 

from the received segments and delivered to the receiving 

application. 

D. Flow control 

 Enables the receiver to dynamically inform the sender 

about how many more packets it can receive at the 

moment. 

 Used if the receiver cannot accept many packets 

temporarily for some reason and wants the sender to slow 

down transmission. 

E. Keep-alive (heartbeat) 

 Enables detection of a line failure by sending signals 

between a sender and a receiver periodically when no 

data is being transmitted. 

 When data is being transmitted, a line failure can be 

detected by not receiving Ack packets. 

A SpW-R packet is sent as the cargo of a SpaceWire packet 

– preceded by the destination address and followed by the end-

of-packet mark. The detailed structure of an SpW-R packet can 

be found in [4]. 

Key notions used to describe the protocol are the Transport 

End Point (TEP) and the transport channel. The TEP is defined 

as a point in a node that transmits (Tx TEP) or receives (Rx 

TEP) application data using a transport channel over a 

SpaceWire network. The transport channel is a protocol-

defined one-way logical data path between a Tx TEP and a Rx 

TEP. There is only one transport channel between a Tx TEP 

and a Rx TEP; in other words, each TEP is dedicated to a 

certain channel. There can be multiple transport channels 

between any pair of nodes. This implies that multiple Tx and 

Rx TEPs can co-exist in a node. These relations are illustrated 

in Fig. 2.  
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Fig. 2. Illustration of relationship between transport channels, TEPs, and nodes 

The implementation of the protocol follows the relevant 

draft specification [4] and is intended to be separate from the 

rest of the system so as to be easily portable to possible other 

testing environments. As specified by the draft standard, the 

procedures performed by the protocol entities can be classified 

into three categories: 

 procedures at a Tx TEP, 

 procedures at a Rx TEP, 

 common procedures at a node. 

The TEP procedures communicate with an application sending 

or receiving the data in the form of Service Data Units (SDU). 

The protocol implementation provides function calls for the 

application to be used to request services and signals to inform 

the application of asynchronous events, e.g. a packet arriving 

from the network. These facilities are as follows: 

 functions: 

o ChannelControl.request(ChannelNumber, 

DirectiveType) 
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o DataTransfer.request(ServiceDataUnit, SduId, 

ChannelNumber) 

 signals: 

o ChannelControl.indication(ChannelNumber, 

NotificationType) 

o DataTransferNotify.indication(SduId, 

ChannelNumber, NotificationType, Reason) 

o DataTransfer.indication(ServiceDataUnit, 

TransportChannel) 

It should be noted that according to [4] a number of 

protocol parameters related to transport channels are specified 

by means external to protocol service primitives or protocol 

packet data. With the implementation of the SpW-R protocol in 

the SpaceR project, the parameters are kept in a programmatic 

structure associated with the channel and can be set at runtime 

before or at invoking the operation of opening a transport 

channel.  

The common procedures at a node communicate with the 

SpW network via the TELETEL’s iSAFT PVS platform [5], 

specifically a new API to the iSAFT SpW Simulator, based on 

TCP sockets [6]. Thus the SpW-R to be transmitted via the 

network are embedded in SpW packets, which in turn are 

encapsulated in TCP segments and delivered to the iSAFT 

SpW Simulator. 

The primary programming environment for the 

development of the SpW-R protocol implementation is C++ 

(gcc on Linux) with the standard library and some Boost 

libraries (notably MSM – the Meta State Machine – for 

implementing the finite state machine of the protocol, and 

Signals2 for implementing signals and slots). 

III. TESTING PLATFORM 

There are two groups of tests performed in the project: 

 upper-lower and lower-upper tests, where the 

transformations between SpW-R and plain SpW 

packets, done by the protocol, are verified; 

 end-to-end tests, where the correctness and performance 

of the protocol in actual traffic between end point 

applications is tested. 

The underlying SpW network is a physical one, composed 

of one or more SpW switches. As the software is being 

implemented on general-purpose computers, an intermediary is 

required to connect to the SpW network; this is provided by the 

iSAFT PVS platform with a four-port SpW board. The board 

can be used for transmitting and receiving SpW traffic via the 

iSAFT SpW Simulator subsystem; detailed traffic and its 

statistics can also be observed and captured by the iSAFT SpW 

Recorder subsystem. 

Since the iSAFT Simulator Client API allows one user 

application to be connected to the Simulator at the same time, 

in order to have more flexibility a Proxy system has been 

implemented, facilitating connection of several clients 

simultaneously, each of them having a dedicated SpW port (up 

to four total in the current configuration). The clients to the 

Proxy are mainly the implementations of the SpW-R nodes, 

which combine in a single compiled executable the SpW-R 

protocol implementation, the Proxy client, and the application 

producing or consuming the SDUs. The protocol 

implementation and the Proxy client are available as an object 

library. 

In order to test the protocol behaviour in the presence of 

errors, a link emulator has been developed. This is an 

application that connects to the SpW network via two SpW 

ports, capturing plain SpW packets on either of them and 

optionally performing transformations on the packets before 

forwarding them through the other port. The transformations 

are directed by rules specifying under what conditions 

(triggers) a packet is to be transformed and what 

transformation (action) is to be done. Example triggers include 

the sequential number of the packet meeting certain criteria, as 

well as packet type, length, values of specific bytes. Possible 

actions include forwarding with no changes, dropping, 

delaying, truncating, extending or changing parts of the packet. 

Figure 3 presents the various elements of the testing 

platform. Some of them exchange information inside the same 

executable; others communicate over TCP/IP. In order to 

minimize the overhead of the IP network, all the elements have 

been installed on the iSAFT PVS, in a dedicated virtual 

machine, although it is possible to run each block depicted on a 

separate computer. 

 

 
Fig. 3. Structure of the testing platform 
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Figure 4 shows the paths taken by data in an example 

configuration with two SpW-R nodes, each being used by three 

SDU transmitting/receiving applications, and a link emulator in 

the way between the nodes. 

 

 
Fig. 4. Data flow through the testing platform 

IV. RESULTS 

Preliminary tests have shown correctness of the protocol 

implementation, including boundary values for the protocol 

parameters. Comprehensive test runs are currently being 

executed, and the influence of a number of input parameters, 

including the SpW-R transport channel specifications, on the 

performance are examined. Figures 5 and 6 show some initial 

results for throughput and latency at the SDU level, the 

independent variables being the packet payload length (or SDU 

segment length) and the sliding window size. With the current 

implementation, obtaining throughput of the order of 50Mbit/s 

(as an objective of the project) with interfaces of 100Mbit/s 

line rate is feasible, although dependent on the sizes of the 

SDUs and segments. 
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Fig. 5. Sample performance results obtained in the project (throughput) 
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Fig. 6. Sample performance results obtained in the project (latency) 

V. CONCLUSION 

The paper discussed the implementation and testing of the 

SpaceWire-R protocol performed in the SpaceR project. The 

independent implementation is useful in standardization 

efforts. The testing platform, which is equipped with a flexible 

interactive operator’s console involving full Python support 

and scripting, gives possibility of independent functional and 

performance testing. 
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Abstract— This paper presents the main outcomes of the ESA 

funded project entitled: “SPACEMAN – A SpaceWire Network 

Management Tool” that was jointly carried out by ITTI Sp. z o.o. 

and TELETEL SA., and dealt with SpaceWire Network 

Discovery and Configuration Protocol (SpW-NDCP). We give a 

brief overview of the SpW-NDCP, present the main features of 

the SPACEMAN tool for discovering and configuring SpaceWire 

networks, and introduce a novel XML representation of 

SpaceWire networks, implemented in the tool. 

Index Terms—SpaceWire, network management, NDCP, 

digital representation of SpaceWire networks. 

I. INTRODUCTION 

It is well known that SpaceWire – a standard for high speed 

data-handling networks on board spacecraft [1, 2] – does not 

offer mechanisms for automatically discovering the topology 

of a network and devices (switches and nodes) it consists of. 

Moreover, services for configuring network devices and links 

are not present in the SpaceWire either. On the other hand, the 

increasing complexity and functionality of SpaceWire 

networks yield apparent need for providing such network 

management mechanisms. 

To fill this gap, the SpaceWire Network Discovery and 

Configuration Protocol (SpW-NDCP) has been recently 

elaborated [3] as a development of the so-called “SpaceWire 

Plug-and-Play protocol” [4]. The SpW-NDCP assumes a 

simple two-layered architecture for performing network 

management activities that consists of a network management 

service and a communications protocol.  

This paper presents the main outcomes of the ESA funded 

project entitled: “SPACEMAN – A SpaceWire Network 

Management Tool” that was jointly carried out by ITTI Sp. z 

o.o. and TELETEL SA. The general objective of the activity 

was to make a further development in the domain of 

SpaceWire network management through: 

 developing a software implementation of the SpW-

NDCP, 

 developing a network management tool for 

discovering and configuring SpaceWire networks, and 

 designing an XML representation of SpaceWire 

networks. 

The paper reviews the SpaceWire NDCP and presents the 

basic features of the SPACEMAN Network Management Tool 

with the emphasis on functionality of design, discovery, 

comparison, and configuration of SpaceWire networks. The 

tool can handle networks with SpaceWire devices of different 

classes: NDCP-enabled, RMAP-enabled, and non-

configurable. Methods for discovering them are shown in 

detail. Special cases of multiple control devices discovering the 

same network are also discussed. Finally, an advanced XML 

representation of SpaceWire networks, elaborated and used in 

the SPACEMAN project, is presented. 

II. SPACEWIRE NDCP  

The SpaceWire NDCP is one of the protocols that work 

over SpaceWire and is intended to permit SpaceWire network 

discovery and configuration in a standard and interoperable 

manner [3]. 

The SpW-NDCP protocol considers the SpaceWire 

network from the perspective of SpaceWire-based protocols. 

Applications are understood as users of the SpaceWire-based 

protocols and are the ultimate sources and destinations of 

messages carried over SpaceWire. In order to communicate 

over SpaceWire, each application uses a set of communication 

protocols, with SpaceWire itself as the lowest level protocol. 

For example, the Bepi Colombo and Solar Orbiter payload 

TM/TC is based on PUS [5] messages carried over SpW-CPTP 

[6], which itself is based on SpW-PID [7] over SpaceWire. 

In NDCP terminology, every SpW End-Point and SpW 

Switch is referred to as an NDCP Device or SpW Device or 

Device. There are two kinds of NDCP Devices: 

 Devices which will be managed by other Devices on the 

network are referred to as Peripheral Devices; 

 SpW Nodes which will be engaged in managing 

Peripheral Devices on the network are referred to as 

Control Devices. 

Devices are the functional elements of a SpaceWire network. 

Hence, the physical units of which a SpaceWire network is 

comprised may each be composed of one or more Devices. 
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SpW-NDCP assumes that each application and protocol has 

a number of management parameters which provide 

information on, or control, its operation. As each application 

uses one or more protocols, there are also management 

parameters which define an application’s use of a protocol. The 

SpW-NDCP protocol provides a generic mechanism to access 

management parameters across a network.  

The core set of NDCP management parameters offered by 

every Peripheral Device are those that relate to the Device 

itself. They allow the following to be identified: 

1. the type of the device (i.e. whether it is a SpW Node or 

a SpW Switch); 

2. the model of the Device (i.e. what product the Device 

is); 

3. the physical unit that the Device belongs to; 

4. the connections a Device has, enabling network 

discovery; 

5. the protocols a Device supports; 

6. the applications a Device supports; 

7. the protocols (amongst the supported ones) that each 

application uses. 

It is also possible to assign an identifier to the Device (Device 

ID). Device ID is necessary for network discovery to detect 

network loops.  

The network management architecture consists of two 

layers: 

1. a network management service; and 

2. a communication protocol. 

The network management service on a Control Device carries 

out network discovery, Device identification, and Device 

management activities using a communications protocol. A 

Peripheral Device allows itself to be managed by providing 

management parameters, which may be accessed using the 

communications protocol. The NDCP Control and Peripheral 

Device reference architecture is shown in Fig. 1. 
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Fig. 1. SpW-NDCP Control and Peripheral Device reference architecture 

 

The NDCP communications protocol provides a standard 

mechanism for accessing Peripheral Device management 

parameters from a Control Device. The communications 

protocol makes use of the syntax defined for the Remote 

Memory Access Protocol (RMAP) [8] and offers three 

operations: write, read, and compare-and-swap (CAS); not on 

memory addresses (like RMAP) but on NDCP Field 

Identifiers. Each operation accesses Peripheral Device 

information in a uniform way. Device information is held in 

regular sized fields of 32 bits and each field has an identifier. 

Related fields are grouped together into field sets. There are 

field sets for each supported protocol, service, and service 

protocol use. To identify a field as a part of read, write, or CAS 

operation, the Control Device must specify four values: the 

service (application) index, the protocol index, the field set 

identifier, and the field identifier.    

III. SPACEMAN NETWORK MANAGEMENT TOOL 

The primary functionality of the SPACEMAN Network 

Management Tool software application is discovering and 

configuring SpaceWire networks by employing features of the 

NDCP protocol. This functionality is complemented by 

facilities for editing and comparing network models, 

monitoring network changes, and exporting/importing internal 

network models to/from XML-format files. These 

functionalities are described below. 

A. Network Discovery 

The SpW Network discovery procedure builds up a graph 

model of the connected network by interrogating each Device 

in turn for the values of NDCP fields that it holds. These values 

describe the type of Device (Node vs. Switch), the number and 

status of its ports and other information. If the interrogated 

Device does not support the NDCP protocol, the interrogation 

is not answered and the SpW Network discovery application 

tries to read some information from the Device using the 

RMAP protocol, assuming that it might be a SpW-10X or a 

similar Device. If the RMAP reply values do not match certain 

assumptions adopted based on the SpW-10X memory layout 

and contents, or if there is no reply (but the relevant port status 

implies there is a device connected on the other end of the 

link), the device is assumed to be ‘generic’ and no further 

information on it is sought. 

The application detects any loops that might be present in 

the topology of the network as well as any Device that might 

be discovered and owned by another instance of a management 

tool (another Control Device). A unique identifier is set on 

each discovered Device; with NDCP-capable devices, such an 

ID is protected from unauthorized overwriting by the NDCP 

protocol while, with SpW-10X devices that only support 

RMAP, the device ‘identity’ register is used by the SpW 

Network discovery application for ID storage, with no 

overwriting protection. Generic Devices do not have any 

discoverable identity and each time such a Device is 

encountered it is considered a distinct one. This does not 

constitute a severe limitation in case this Device is a SpW 

Node but could lead to undetected loops in the SpW Network 

in case this Device is a SpW Switch. 

Figure 2 shows a graph of a discovered network. Windows 

listing the values read from two of the discovered devices are 

shown in Fig. 3 (for an NDCP-enabled Device) and Fig. 4 (for 

a SpW-10X device). 
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B. Network Configuration 

Configuration consists of changing values of some NDCP 

fields stored in the Devices. This is possible either on a Device-

by-Device basis by altering the values shown in the NDCP 

field windows (see Fig. 3); or by bulk loading values from an 

existing SpW Network model into all writeable NDCP fields of 

all Devices of the connected Network – provided the topology 

of the source model and the connected Network are 

compatible. 

C. Network Model Editor 

The application provides facilities for editing SpW Network 

models. A model can be created by the user from scratch or can 

be captured by discovering a physical Network. It is possible to 

add, modify, and delete Network model elements – SpW 

Nodes, Switches, and Links. 

 

Fig. 2. Graph of a SpaceWire Network discovered by the SPACEMAN tool. 

Shown Devices are: square – Switch; circle – Node; double circle – Control 

Device; hexagon – generic SpW Device 

 

Fig. 3. NDCP field values read from a Device in the discovered Network 

 
 

Fig. 4. SpW-10X registers read from a Control Device in the discovered 

Network 

D. Network Comparison and Monitoring 

Any two network models can be compared against each 

other and the differences marked by colour. Topological 

differences: an element of one model that is added to or 

missing from the other model, are marked in a graphical 

representation. Configuration differences: values of NDCP 

fields or SpW-10X registers different between the models, are 

marked in the graphical representation as changed Network 

elements and in the windows listing the values as changed 

fields. 

The comparison can be invoked as a one-time operation on 

any two models, or it can be invoked automatically in a 

continuous discovery loop, in which the application repeatedly 

discovers the network and marks any changes found, thus 

monitoring its topology and configuration. Figure 5 shows a 

snapshot of a network monitoring session with some 

differences detected. 

 

 

Fig. 5. Network differences discovered in a monitoring session. Element 
colours: blue – new; grey – missing; yellow – changed; green – unchanged 
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E. Packet-Level Testing 

For trouble-shooting or fine analysis purposes, the Network 

Management Tool allows constructing, sending and receiving 

individual packets of different protocols: NDCP, RMAP, and 

plain SpaceWire, as well as matched command-reply 

transactions where applicable. 

F. XML Export/Import 

The internal SpW Network model can be exported to and 

imported from an XML file. The file to import from need not 

be written by SPACEMAN, as long as its format complies to 

the schema defined in SPACEMAN. 

In its current version, the Network Management Tool 

connects to SpaceWire networks via TELETEL’s iSAFT PVS 

hardware and Application Programming Interface [9], as 

shown in Fig. 6. The SpaceWire Network used in the project 

consisted of STAR-Dundee Mk2S Routers and Mk2 Bricks 

[10] (special versions with NDCP implemented in hardware) as 

well as a SpW-10X Router [11] with no NDCP support 

. 

 

Fig. 6. Structure of the SPACEMAN Network Management Tool 

IV. XML REPRESENTATION OF SPACEWIRE NETWORKS 

Developments of SpaceWire Networks naturally bore the 

need for representing these networks in a digital form. Digital 

representation is indispensable in many aspects related to SpW 

networks: designing, testing, preparing demonstrations, 

managing, etc. In recent years a few proposals for describing 

SpaceWire Networks by means of an Extensible Markup 

Language.(XML) format have appeared in the literature and 

been presented to the SpW community [6]-[8]. Elaboration of a 

holistic, universal structure for an XML representation of 

SpaceWire Networks is also of high interest to ESA/ESTEC. In 

reply to this need, the SPACEMAN project team made an 

attempt to develop a novel and advanced XML-based SpW 

Network representation. The proposed format is used in the 

XML export/import functionality of the tool (cf. Sec. III.F). 

In the proposed XML structure, each element that 

represents a SpaceWire Device has some key attributes (e.g. 

name, number of SpW ports, logical address) and consists of a 

generic section and sections specific to the protocols that the 

Device supports. The generic section provides basic 

information on the device’s ports. Both attributes and generic 

section are redundant in the sense that they contain information 

extracted from protocol sections. However, they provide the 

basic parameters of the device and hence favourably allow user 

to have a quick overview of these parameters. Protocol sections 

are made of nested sections and elements that correspond to the 

field sets, parameters, or registers relevant to a respective 

protocol. 

The generic structure of the proposed XML scheme is 

depicted in Fig.7. The highest level element (root element), 

DataHandlingSystem, can contain several Network 

elements. Such an approach results from practical needs. For 

example, in real cases such as Bepi Colombo, several distinct 

SpW Networks are "linked" from data handling point of view 

by sharing common SpW Units. In the example shown in 

Fig. 7, a data handling system consists of only one SpW 

Network. Each Network element can contain the following 

nested elements that correspond to the Devices and Links the 

SpW Network is made of: SpWSwitch, SpWNode, and 

SpWLink. Additionally, when the NDCP protocol is used, the 

NDCPControlDevice element (or elements) is nested in the 

Network element as well. SpWSwitch and SpWNode 

elements have NDCP_Device attribute that specifies whether 

the device supports the NDCP protocol. 

 

Fig. 7. Example of the XML representation of a SpW network 

 

An example of the XML representation of a SpW Switch 

that supports the NDCP is shown in Fig. 8. As can be seen 

from Fig. 8, the SpWSwitch element contains the generic 

section <Ports> and the section specific to the NDCP 

protocol <NDCP>. The <NDCP> section is made of sections 

and elements that correspond to the respective NDCP field sets. 

For non-NDCP Devices that support the RMAP protocol, this 

section is replaced by an <RMAP> section. The same structure 

<?xml version="1.0" encoding="UTF-8"?> 

<DataHandlingSystem Id="DHS1" 

Name="DataHandlingSystem_1"> 

<Network Id="Net1" Name="network_1"> 

<NDCPControlDevice Name="pvs_1" 

NoOfPorts="4" LogicalAddress="0xfc"> 

<SpWSwitch Name="switch_101" NoOfPorts="8" 

LogicalAddress="0xfe" NDCP_Device="false"> 

<SpWSwitch Name="switch_102" NoOfPorts="8" 

LogicalAddress="0xfe" NDCP_Device="true"> 

<SpWNode Name="node_103" NoOfPorts="2" 

LogicalAddress="0xfe" NDCP_Device="true"> 

<SpWLink 

Id="link_switch_101_4_switch_102_6"> 

</Network> 

</DataHandlingSystem> 
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is used for SpWNode elements that describe SpW nodes in the 

XML representation. Examples of the XML representation of a 

SpW-10X and a SpW NDCP node are depicted in Figs. 9 and 

10, respectively. 

 

Fig. 8. Example of the XML representation of a SpW NDCP switch (detailed 
description of sub-elements has been replaced by the ellipses for brevity) 

 

Fig. 9.. Example of the XML representation of a SpW-10X (detailed 

description of sub-elements has been replaced by the ellipses for brevity) 

 

Fig. 10. Example of the XML representation of a SpW NDCP node (detailed 
description of sub-elements has been replaced by the ellipses for brevity) 

An example of a <Ports> section is given in Fig. 11. It 

contains elements that describe SpW ports of the Device. The 

attributes give information on the port number, the transmit 

rate (expressed in Mbit/s) and the status of a link associated 

with this port (connected/disconnected).   

 

Fig. 11. Example of the <Ports> section 

 

The structure of the <SpWLink> element is depicted in 

Fig. 12. The <SpWLink> describes a unidirectional link with 

the transmission direction from <Endpoint1> to 

<Endpoint2>. Hence, a bidirectional SpW link is 

represented by a pair of <SpWLink> elements. 
 

 

Fig. 12. Example of the <SpWLink> element 

 

<SpWNode Name="node_103" NoOfPorts="2" 

LogicalAddress="0xfe" NDCP_Device="true"> 

<Ports> ... </Ports> 

<NDCP> 

<DeviceIdentification> ... 

</DeviceIdentification> 

<VendorProductStrings> ... 

</VendorProductStrings> 

<ProtocolSupport> ... 

</ProtocolSupport> 

<ApplicationSupport> ... 

</ApplicationSupport> 

<DeviceConfiguration> ... 

</DeviceConfiguration> 

<LinkConfiguration NoOfLinks="4"> ... 

</LinkConfiguration> 

<TimeCodeGeneration> ... 

</TimeCodeGeneration> 

<ProtocolInformation> ... 

</ProtocolInformation> 

</NDCP> 

</SpWNode> 

<SpWSwitch Name="switch_101" NoOfPorts="8" 

LogicalAddress="0xfe" NDCP_Device="false"> 

<Ports> ... </Ports> 

<RMAP> 

<PortControlStatusRegisters> ... 

</PortControlStatusRegisters> 

<GroupAdaptiveRoutingTableRegisters> ...  

</GroupAdaptiveRoutingTableRegisters> 

<RouterControlStatusRegisters> 

<NetworkDiscoveryRegister Address="256" 

Value="0x00 0x03 0xF9 0x01"/> 

<RouterIdentityRegister Address="257" 

Value="0x00 0x00 0x00 0x65"/> 

<RouterControlRegister Address="258" 

Value="0x00 0x00 0x00 0x63"/> 

<ErrorActiveRegister Address="259" 

Value="0x00 0x00 0x01 0xF3"/> 

<TimeCodeRegister Address="260" 

Value="0x00 0x00 0x00 0x00"/> 

<DeviceManufacturerAndChipIDRegister 

Address="261" Value="0x00 0x01 0x00 0x00"/> 

<GeneralPurposeRegister Address="262" 

Value="0x00 0xFE 0x00 0x01"/> 

<TimeCodeEnableRegister Address="263" 

Value="0x00 0x00 0x02 0x00"/> 

<ClockControlRegister Address="264" 

Value="0x00 0x05 0xFF 0x01"/> 

<DestinationKeyRegister Address="265" 

Value="0x00 0x00 0x00 0x20"/> 

</RouterControlStatusRegisters> 

</RMAP> 

</SpWSwitch> 

<SpWLink Id="link_switch_101_4_switch_102_6"> 

<Endpoint1 Name="switch_101" Port="4"/> 

<Endpoint2 Name="switch_102" Port="6"/> 

</SpWLink> 

<SpWSwitch Name="switch_102" NoOfPorts="8" 

LogicalAddress="0xfe" NDCP_Device="true"> 

<Ports> ... </Ports> 

<NDCP> 

<DeviceIdentification> ... 

</DeviceIdentification> 

<VendorProductStrings> ... 

</VendorProductStrings> 

<ProtocolSupport> ... 

</ProtocolSupport> 

<ApplicationSupport> ... 

</ApplicationSupport> 

<DeviceConfiguration> ... 

</DeviceConfiguration> 

<LinkConfiguration NoOfLinks="12"> ... 

</LinkConfiguration> 

<SwitchingTable> ...  

</SwitchingTable>   

<TimeCodeGeneration> ... 

</TimeCodeGeneration> 

<ProtocolInformation> ... 

</ProtocolInformation> 

</NDCP> 

</SpWSwitch> 

<Ports> 

<Port Number="1" TransmitRate="100" 

PortConnected="true"/> 

<Port Number="2" TransmitRate="100" 

PortConnected="false"/> 

<Port Number="3" TransmitRate="100" 

PortConnected="false"/> 

<Port Number="4" TransmitRate="100" 

PortConnected="true"/> 

<Port Number="5" TransmitRate="100" 

PortConnected="true"/> 

<Port Number="6" TransmitRate="100" 

PortConnected="true"/> 

<Port Number="7" TransmitRate="100" 

PortConnected="true"/> 

<Port Number="8" TransmitRate="100" 

PortConnected="true"/> 

</Ports> 
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The rules for the XML representation have been described 

in an XSD (XML Schema Definition) file. 

V. CONCLUSIONS 

The paper dealt with the issue of SpaceWire Networks 

management by means of the Network Discovery and 

Configuration Protocol. The topic was tackled from the 

perspective of the ESA-funded SPACEMAN project that 

aimed at developing a software network management tool 

(NMT) based on the NDCP for discovering and configuring 

SpaceWire networks. 

The SPACEMAN NMT allows performing main NDCP 

operations, i.e. discovering unknown SpaceWire Networks and 

configuring SpaceWire Devices by changing values of some 

NDCP fields stored in the Devices. The discovery process is 

carried out for NDCP-enabled SpW Devices, as well as for 

SpW-10X or compatible devices that are not NDCP-enabled. 

The tool is also capable of discovering existence of so-called 

Generic Devices that are neither NDCP-enabled nor SpW-10X 

compatible. The tool includes some additional functionalities 

such as slow mode of discovery (step-wise), network 

comparison and monitoring, network model editing, packet-

level testing for SpaceWire, RMAP and NDCP protocols, and 

SpW network model export to and import from XML files. As 

such, the SPACEMAN NMT allows testing and validating the 

NDCP protocol towards its future standardisation and can be a 

useful tool for engineers working with SpaceWire networks. 

The novel digital representation of SpaceWire networks by 

means of XML was also presented in the paper. The approach 

aims at providing a holistic and flexible structure that is 

capable of representing a variety of different SpaceWire 

Networks and Devices. The proposed XML scheme is 

implemented in the SPACEMAN NMT. 
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Abstract—SpaceWire is valuable because it facilitates the 

development of spacecraft subsystems such as payload 

instruments, mass memory, and onboard computers. On the 

other hand, it takes much time and effort for developers to 

configure an initiator of the SpaceWire network because they 

have to take account of the entire SpaceWire network in a 

spacecraft. As the target network becomes larger, the path 

addressing and the packet collision-free timeslot allocation are 

harder for the developers to configure. Furthermore, the 

configuration tables of the initiator should satisfy various 

constraints, such as the bandwidth limitation and priority of 

specific packets. These constraints are different in each 

spacecraft. In order that the developers can design the large-scale 

SpaceWire network efficiently, automatic configuration table 

generation under the constraints is indispensable. This paper 

presents a constraint-based configuration table generator (CTG) 

that automatically provides reliable redundant path routing and 

collision-free timeslot allocation for required transactions in the 

target topology. We apply a constraint solver to the CTG to set 

many kinds of user-defined constraints in the network. For 

example, the bandwidth limitation, priority of the packets, and 

other various constraints can be easily inputted into the CTG. 

The CTG automatically generates configuration tables satisfying 

these constraints. Additionally, the CTG reports network 

topology views with bandwidth utilization ratios. This helps 

developers to verify whether a generated configuration is just as 

designed. The CTG can also notify developers that their 

requirements cannot be solved. In this paper, we show the 

feasibility and effectiveness of this tool through evaluation using 

a large-scale SpaceWire network case.  

Index Terms—  SpaceWire, SpaceWire-D, timeslot, constraint 

satisfaction problem, scheduling. 

I. INTRODUCTION 

SpaceWire has been adapted to a lot of satellite networks 

because it provides a standard data communication interface 

for spacecraft and facilitates the development of spacecrafts 

[1]. In ASTRO-H which is the space X-ray astrophysical 

observatory, all the transactions are controlled by the central 

master unit, which is called the satellite management unit 

(SMU) [2]. The transmission schedule of the transactions is 

described by configuration tables in the SMU. The SMU can 

realize deterministic transmissions of information, such as 

housekeeping data and instrumental data, by following the 

information in the tables. 

On the other hand, it takes much time and effort for 

developers to test the functions of SMU. To test the 

configuration of initiators such as the SMU, developers have 

to take account of the entire network in a spacecraft. As the 

target becomes larger, the path address uses strict source 

routing in the SpaceWire network and the packet collision-free 

schedule is harder for the developers to configure. 

In the actual SpaceWire network, all transactions are 

allocated to a timeslot introduced by SpaceWire-D to avoid 

packet collisions [3]. For example, the real time in ASTRO-H 

is divided into 64 timeslots using 64-Hz time codes emitted by 

SMU [2]. In addition, bus slots and system slots are 

introduced so that the SpaceWire network is able to operate in 

a deterministic manner without suffering from congestion and 

unexpected packet delivery delays. The important 

communications such as housekeeping data collections are 

allocated to bus slots while the system slots are used for the 

mission instrument data collections. However, it is too 

complex for developers to set the configurations that satisfy 

the user-defined management policy although such policies 

improve the reliability of the configurations. 

Some authors have suggested scheduling methods for the 

SpaceWire network [4, 5, 6]. However, these methods cannot 

be adapted to ensure that the generated schedule satisfies user-
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defined constraints such as timeslot number restriction, which 

depends on the kind of communication service. Hence, it is 

difficult to apply these methods to the actual SpaceWire 

network. 

In this paper, we propose a constraint-based configuration 

table generator (CTG) that computes reliable path routing and 

safe timeslot allocation in the SpaceWire network. 

Communication requirements are inputted into the CTG, and 

the CTG outputs configuration tables that include routing 

tables for each initiator (initiator table) and tables for timeslot 

allocation (scheduling table). The CTG also outputs a network 

topology figure with bandwidth utilization information. This 

topology figure can clarify the bandwidth bottleneck in the 

target network and validate the outputted scheduling table. 

II. FORMULATION 

A. Architecture 

CTG can make configuration tables of initiators in the target 

SpaceWire network. In a similar manner to that of related 

studies [5, 6], the configuration tables have information of 

transactions specified by the remote memory access protocol 

(RMAP), a standard communication protocol for the 

SpaceWire network [7]. To make the tables, network topology 

and communication requirement information are inputted into 

the CTG. In addition, constraint definition information, which 

describes user-defined requirements for timeslot allocation, is 

also inputted into the CTG. The details of the constraints are 

explained below. 

The network topology information has the parameters of 

nodes, routers, and links in the target network. These 

parameters are the same ones used in preceding studies [5, 6]. 

The communication requirement information includes the 

parameters of the transactions. These parameters include the 

names of the source and destination nodes, RMAP address, 

RMAP packet types, and other pieces of information used for 

specifying communication service types. 

By referring to the input information, the CTG searches all 

paths from the source node to the destination node for each 

required transaction. From all the paths, redundant paths are 

chosen to minimize the number of shared links. Hence, the 

CTG makes initiator tables that configure the redundant paths 

for each required transaction. 

After making initiator tables, the CTG allocates timeslots to 

the required transactions. The details of timeslot allocation are 

shown in the section below. In the CTG, the scheduling tables 

for the target network are made in accordance with the result 

of timeslot allocation. By using the result, the CTG can also 

estimate the bandwidth utilizations of links for each timeslot. 

The bandwidth utilizations are visualized by generating 

network topology figures for each timeslot. 

Note that the communication requirement with information 

of partially or fully allocated timeslots can be inputted into the 

CTG. The CTG can complement the timeslot allocation for 

remainder transactions if timeslots are partially allocated. In 

the case of fully allocated timeslot input, the CTG verifies 

whether the timeslot allocation satisfies the user-defined 

management policy. 

B. Constraint-based timeslot allocation 

The CTG solves the constraint satisfaction problem 

mentioned below to allocate timeslots to required transactions. 

Our goal is to find a timeslot allocation that satisfies all the 

constraints. 

To control the allocation of transactions, we introduce 

Boolean decision variables as follows, 

 𝑎𝑚,𝑛 ∈ {0,1}, (1)  

where 𝑚 = 0. . 𝑁𝑡 , 𝑛 = 0. . 𝑁𝑠 − 1. 𝑁𝑡  and 𝑁𝑠  are the number 

of required transactions and timeslots, respectively. The 

variable 𝑎𝑚,𝑛 is set to 1 if transaction ID = 𝑚 is allocated to 

the 𝑛 th timeslot. 

In this problem, we find an assignment of values of 𝑎𝑚,𝑛 

under the constraints below. 

 

 ∀𝑚 ∑ 𝑎𝑚,𝑛

𝑛

=
𝑁𝑠

𝑇𝑝𝑒𝑟𝑖𝑜𝑑
𝑚 , (2)  

 ∀𝑙 ∑
𝑇𝑥

𝑚

𝑇𝑠𝑙𝑜𝑡
(𝑚,𝑥)∈𝑇𝑅𝐴𝑁𝑆𝑙

𝑎𝑚,𝑛 = 1.0, (3)  

 ∀𝑚 ∑ 𝑎𝑚,𝑛

𝑛∉𝑆𝐿𝑂𝑇𝑆𝑚

= 0, (4)  

 ∀𝑛 ∑ 𝑎𝑚,𝑛

𝑚

≤ 𝑁𝑚𝑎𝑥
𝑛 , (5)  

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ( ∑
𝑇𝑥

𝑚

𝑇𝑠𝑙𝑜𝑡
(𝑚,𝑥)∈𝑇𝑅𝐴𝑁𝑆𝑙

𝑎𝑚,𝑛)

2

𝑙∈𝐿

, (6)  

where 𝑇𝑝𝑒𝑟𝑖𝑜𝑑
𝑚  is the number allocated in 1 cycle timeslot for 

the m th transaction [6]. In the case of 𝑁𝑠 = 𝑇𝑝𝑒𝑟𝑖𝑜𝑑
𝑚 = 64 , 

constraint (2) ensures that there is only one decision variable 

set to 1 for each required m th transaction since the 𝑇𝑝𝑒𝑟𝑖𝑜𝑑
𝑚

  set 

to 64 means the transaction is required to be used for each 

time slots. 

Constraint (3) represents the bandwidth constraint ensuring 

that capacity limitations will not be exceeded. 𝑇𝑠𝑙𝑜𝑡is the time 

for each timeslot. In the case of 𝑁𝑠 = 64, 𝑇𝑠𝑙𝑜𝑡 = 15.625 𝑚𝑠. 

The set of tuples, 𝑇𝑅𝐴𝑁𝑆𝑙 , shows all the IDs of transactions 

that pass the link . The ID of a transaction that has passed and 

the packet’s direction are indicated by 𝑚 and 𝑥, respectively. 

In a SpaceWire network, transactions include a sending packet 

(s) and a reply packet (r). The spending times of two packets 

are individually estimated in the CTG. The spending time 

𝑇𝑥
𝑚 (𝑥 = 𝑠, 𝑟) is evaluated with the following formulas, which 

are based on related studies [5, 6]. 

 𝑇𝑠
𝑚 = 𝑇𝑠𝑟𝑡

𝑚 + 𝑇𝑠𝑚𝑑𝑡
𝑚 , (7)  

 𝑇𝑟
𝑚 = 𝑇𝑟𝑟𝑡

𝑚 + 𝑇𝑟𝑚𝑑𝑡
𝑚 . (8)  

The time spent on sending the 𝑚th packet 𝑇𝑠𝑟𝑡
𝑚  and the time 

spent on sending the reply to the 𝑚th packet 𝑇𝑟𝑟𝑡
𝑚  depend on 

the RMAP packet type of the 𝑚th transaction. 
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  RMAP write: 

 𝑇𝑠𝑟𝑡
𝑚 = 10 ×

(𝑅𝑚 + 𝑃𝑚 + 𝐷𝑚 + 17)

𝑆
+ 𝑇𝑝𝑑𝑅𝑚 (9)  

 𝑇𝑟𝑟𝑡
𝑚 = 10 ×

(𝑅𝑚 + 8)

𝑆
+ 𝑇𝑝𝑑𝑅𝑚, (10)  

RMAP read: 

 𝑇𝑠𝑟𝑡
𝑚 = 10 ×

(𝑅𝑚 + 𝑃𝑚 + 16)

𝑆
+ 𝑇𝑝𝑑𝑅𝑚 , (11)  

 𝑇𝑟𝑟𝑡
𝑚 = 10 ×

(𝑅𝑚 + 𝐷𝑚 + 13)

𝑆
+ 𝑇𝑝𝑑𝑅𝑚 , (12)  

  RMAP read modify write: 

 

where 𝐷𝑚  is the transmission data length of the 𝑚 th 

transactions. The spending time is strongly affected by 𝐷𝑚 . 

Hence, 𝑇𝑠𝑟𝑡
𝑚  in the RMAP write packet is larger than 𝑇𝑟𝑟𝑡

𝑚 . The 

minimum line speed (M bit/s) in the target network is 

indicated by 𝑆. In the above formula, the spending time also 

depends on the number of routers that have been passed 𝑅𝑚, 

delay time of each router 𝑇𝑝𝑑 , and number of reply path 

addresses 𝑃𝑚 . The spending times defined by the above 

formula are estimated by the data size of the packet header 

specified by SpaceWire [1, 7]. 

Constraint (4) and (5) reflect a user-defined constraint that is 

different in each project. For example, the transactions for 

housekeeping data are allocated to the (4𝑛 + 0)th timeslot, 

which is called the bus slot. This restriction can be encoded in 

constraint (4), where 𝑆𝐿𝑂𝑇𝑆𝑚 is the set of permitted timeslots 

for the ID = m transaction. The information of  𝑆𝐿𝑂𝑇𝑆𝑚  is 

included in the constraint definition information inputted into 

CTG. By using constraint (4), unpermitted timeslot allocation 

can be prohibited because the values of 𝑎𝑚,𝑛  where 𝑛 ∉
𝑆𝐿𝑂𝑇𝑆𝑚  become zero.  

For another example, the limitation of the number of specific 

transactions for the bus slot is described by the network 

management policy. This policy can be encoded in constraint 

(5). Constraint (5) ensures that the number of transactions for 

the 𝑛th timeslot does not reach the maximum number 𝑁𝑚𝑎𝑥
𝑛  

given by the inputted constraint definition information. 

Optionally, CTG can consider the optimization constraint (6), 

which disperses the bandwidth utilization of links. 

Many existing off-the-shelf SMT solvers can solve the 

scheduling problem under constraint (2-5). In addition, Z3 [8], 

an existing SMT solver, can also consider optimization 

constraint (6). 

III. EXPERIMENT 

We apply the proposed CTG to a SpaceWire network that is 

composed of 1 initiator (BMC) and 3 targets (data recorder, 

Node 1, and Node 2). There are 70 transactions per second in 

this system. To show the function of timeslot allocation in the  

<SpaceWireConstraintsInfo> 

<PermittedSlot CharacterId="Housekeeping"  

Slot="0;4;8;12;16;20;24;28;32;36;40;44;48;52;56;60"/> 

<PermittedSlot CharacterId="System Polling"  

Slot="5;6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26;27;29;30;31;33; 

34;35;37;38;39;41;42;43;45;46;47;49;50;51;53;54;55;57;58;59"/> 

<Character Id="Housekeeping "> 

<Packet ServiceType=" Housekeeping" /> 

</Character> 

<Character Id="System polling"> 

<Packet ServiceType="System polling" /> 

</Character> 

</SpaceWireConstraintsInfo> 

Fig. 1.  Snippet of constraint definition information (XML format). 

TABLE I.   RESULT OF TIMESLOT ALLOCATION. 

(a) Timeslot table. 

Slot number Transaction IDs 

0 0,1,4,5,8 

1   

2   

3   

4 0,1,3,4,5,7,8 

5   

6 2,6 

7 9, 10 
 

(b) List of parameters of required transactions. 

ID Source Destination Type Service 

0 BMC Node 1 Read Housekeeping 

1 BMC Node 1 Read Bus polling 

2 BMC Node 1 Read System polling 

3 BMC Node 1 Read Instrument 

4 BMC Node 2 Read Housekeeping 

5 BMC Node 2 Read Bus polling 

6 BMC Node 2 Read System polling 

7 BMC Node 2 Read Instrument 

8 BMC DR Read Housekeeping 

9 BMC DR Write Command 

10 BMC DR Write Command 

 

CTG comprehensively, the redundancy of all the paths is set to 

1 in these evaluation results. The information inputted into the 

CTG is in XML format based on preceding studies [5, 6]. 

Figure 1 shows a snippet of the constraint definition 

information. 

The results of timeslot allocation for the 0th - 7th slot are 

shown in Table 1. Note that the transactions in this experiment 

are allocated to 64 timeslots ( 𝑁𝑠 = 64 ). The allocated 

transaction IDs for each timeslot are shown in Table 1(a). 

Table 1(b) shows the parameters of the transactions. In this 

experiment, we consider the constraints that bus polling and 

housekeeping communications have to be allocated to the bus 

slot. Therefore, ID = 0, 1, 4, 5, 8 are allocated to slot 0 or slot 4  

 𝑇𝑠𝑟𝑡
𝑚 = 10 ×

(𝑅𝑚 + 𝑃𝑚 + 25)

𝑆
+ 𝑇𝑝𝑑𝑅𝑚 , (13)  

 𝑇𝑟𝑟𝑡
𝑚 = 10 ×

(𝑅𝑚 + 17)

𝑆
+ 𝑇𝑝𝑑𝑅𝑚 , (14)  
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 (a) 

 
(b) 

 
Fig. 2.  Network topology figures for case of 1 initiator (BMC) and 3 targets 

(DR, Node 1, and Node 2). DR stands for data recorder. (a) 0th slot (b) 
7th slot. The figures show bandwidth utilizations of sending and reply 

packets by each link. 

(a) 

 

(b) 

 

Fig. 3.  Network topology figures for case of 2 initiators (BMC, DR) and 6 

targets (Nodes 1-6).  Bandwidth utilizations of reply packets are shown. 

in Table 1(a) because the results of the CTG always satisfy the 

inputted user-defined constraints such as the restriction shown 

in Fig. 1. The network topology figures for the 0th slot and 7th 

slot are shown in Fig. 1. The circles and arrows on the maps 

are network nodes and links, respectively. The maps also show 

bandwidth utilizations by each link. 

In the figures, arrows from the left nodes to the right nodes 

indicate sending packets; arrows in the opposite direction 

indicate reply packets. Figure 2(a) shows that the bandwidth 

utilizations of reply packets are larger than those of the 

sending packets because the RMAP packet types of all 

transactions allocated to the 0th timeslot are RMAP read 

transactions. On the other hand, bandwidth utilizations of the 

sending packets are larger in Fig. 2(b) because the RMAP 

packet types of all transactions allocated to the 7th timeslot are 

RMAP write transactions. 

Figure 3 shows the results of another experiment where the 

evaluated network is composed of 2 initiators (BMC, DR) and 

6 targets (Nodes 1-6). The experiment simulates timeslot 

allocation for 120 transactions for data collection. Figure 3(a) 

shows that the bandwidth utilization ratios for all links are 

lower than 100% because of the safe timeslot allocation by 

using the CTG. As a result, the link between SWR and 

SWR_sub1 becomes the bandwidth bottleneck in the network. 

This bottleneck seems to be reduced by adding another router. 

Figure 3(b) shows the results of the additional experiment. 

The visualization of bandwidth utilization is useful for 

developers to make a strategy for increasing the total 

bandwidth utilization efficiently. 

IV. CONCLUSION 

In this paper, we propose a constraint-based configuration 

table generator to reduce the number of man-hours for 

verification of network configurations. The configuration 

tables outputted by the CTG can be applied to an actual SMU 

since the tables satisfy the user-defined constraints encoded 

from management policies for each project.  
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Abstract— The Geostationary Operational Environmental 

Satellite R-Series Program (GOES-R) mission is a joint program 

between National Oceanic & Atmospheric Administration 

(NOAA) and National Aeronautics & Space Administration 

(NASA) Goddard Space Flight Center (GSFC).  GOES-R project 

selected SpaceWire as the best solution to satisfy the desire for 

simple and flexible instrument to spacecraft command and 

telemetry communications.  GOES-R development and 

integration is complete and the observatory is scheduled for 

launch October 2016.   

The spacecraft design was required to support redundant 

SpaceWire links for each instrument side, as well as to route the 

fewest number of connections through a Slip Ring Assembly 

necessary to support Solar pointing instruments. The final design 

utilized two different router designs. 

The SpaceWire standard alone does not ensure the most 

practical or reliable network.  On GOES-R a few key hardware 

capabilities were identified that merit serious consideration for 

future designs.  Primarily these capabilities address persistent 

port stalls and the prevention of receive buffer overflows.  

Workarounds were necessary to overcome shortcomings that 

could be avoided in future designs if they utilize the capabilities, 

discussed in this paper, above and beyond the requirements of 

the SpaceWire standard. 

Index Terms—SpaceWire, Networks, Routers, GOES-R, 

GRDDP. 

I. INTRODUCTION 

This paper seeks to describe some of the pitfalls 

encountered during the design and integration of major 

components for the Geostationary Operational Environmental 

Satellite-R Series (GOES-R) program [1]. An awareness of 

those pitfalls may prevent a similar experience in future 

designs. 

The GOES-R spacecraft uses European Cooperation for 

Space Standardization (ECSS) SpaceWire [2] for the transfer 

of sensor, telemetry, ancillary, command, time code, and time 

synchronization information between instruments and the 

spacecraft. Capabilities beyond those specified in the standard 

are offered in the interest of providing a more robust system.  

This paper describes four instances where considerable 

effort was expended to avoid or mitigate problems concerning 

persistent port stall, receive buffer overflow, pipeline side-

effects, and a situation where buffer depth configuration of a 

node exposed a router defect that locked out further transfers. 

This specific configuration can be avoided given the details in 

that section. 

A. Background Information 

GOES-R uses Reliable Data Delivery Protocol (GRDDP 

[3]) which specifies that Reset packets are transmitted at that 

channel’s transmit timeout rate from the time that the channel 

is placed into an Enabled state, until an Acknowledge packet is 

received. The   transmit timeout is specified in an instrument 

Interface Control Document (ICD), and is on the order of 

100ms for the instruments described in this paper. During 

instrument power-on, the spacecraft will begin transmitting 

Reset packets (9 bytes in length) to the instrument at a 100ms 

rate until the instrument responds.  

The spacecraft transition to Enabled state is delayed from 

the application of instrument power to coincide with the point 

at which the instrument enters Run Mode, and is able to 

process GRDDP messages. If the instrument indeed enters Run 

Mode at about the expected time, few Reset packets will be 

transmitted. Problems may arise, however, if there is a problem 

with either the instrument or the link.  

GOES-R also specifies that instruments shall transition to a 

Safe Mode if time ticks or time-of-day messages are absent for 

10 consecutive seconds. 
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I. PERSISTENT PORT STALL PREVENTION 

The first capability to be discussed is a mechanism to 

prevent an indefinite network stall. This is especially important 

when routers are employed between nodes. The need will be 

illustrated in the following sections by way of an example. 

A. Routing example 

The following is a simplified example of a real-world 

condition encountered on GOES-R during instrument emulator 

integration. Router 1 in the following example is implemented 

as a Goddard Space Flight Center (GSFC) developed core [4] 

which is part of the BAE Systems SpaceWire ASIC [5]. Router 

2 is an Aeroflex 4-port router [6]. 

Details such as Lookup Tables (LUTs), registers, arbiters 

and other router components are not included since it assumed 

that the reader has a working knowledge of those mechanisms. 

B. Initial Condition 

In Figure 1 above, Router 1 has port transmit timeout 

capabilities, while Router 2 does not. Router 2 Port 3 is in 

disconnect due to an instrument or cable failure, and cannot 

reconnect. This condition may be present prior to instrument 

power-on or may occur during operation. 

R2P1 is Router 2 Packet 1; it is 192 bytes including the End 

of Packet marker (EOP) and its destination is Port 3. No part of 

Packet 1 has been transmitted yet, in this example. 

R2P2 is Router 2 Packet 2; it is 58 bytes including the EOP 

and will be routed to Port 4 (not shown). 

R2P3 is the leading portion of Packet 3, while R1P3 is the 

trailing portion of Packet 3. Packet 3 is 234 bytes in total, 

including the EOP. 

R1P4 is the final packet to be queued up for Router 1, but 

neither the length nor the EOP is indicated because it is not 

relevant for this example. 

C. Stall Condition 

R2P1 will not be delivered due to the disconnect condition 

on Router 2 Port 3. Since R2P1 exceeds the size of Port 3’s 

transmit (Tx) First In First Out memory (FIFO), it will block 

Port 1’s arbiter. The trailing portion of Packet 1 and all of 

Packet 2 will occupy all but 6 bytes of Port 1’s Receive (Rx) 

FIFO. The remaining free space on Router 2’s Port 1 Rx FIFO 

will be filled with the leading 6 bytes of Packet 3. 

D. Timeout Condition 

Router 1 Port 2 has not completed transmitting Packet 3 

within the programmed timeout limit, and disconnects Port 2. 

Pursuant to ECSS error recovery specifications, Router 1 will 

spill the trailing 228 bytes of Packet 3. Router 2 will not 

append an EEP to partial packet 3 because there is no space in 

the receive buffer. 

E. Link Recovery 

Both Router 1 and Router 2 will issue NULL characters in 

an attempt to re-establish the link. Assuming Router 1 Port 2 

Rx FIFO (not shown) has at least 8 bytes free, it will also issue 

one or more Flow Control Token (FCT) characters. Router 2, 

on the other hand, will not issue an FCT because there are no 

bytes free in its Rx FIFO. 

The ECSS standard does not have a remedy for this 

situation. It is assumed that there are no hard link errors, and 

that eventually data will flow through Router 2 Port 3. If the 

failure is not recoverable with an instrument power cycle (if it 

can even be identified by the host system) then the failure will 

persist ad infinitum. 

F. GOES-R Configuration 

On GOES-R, only the first router in the chain is capable of 

disconnect on a transmit timeout, and it is not on a per-port 

basis; the timeout applied to all ports equally. The routers 

downstream (Aeroflex 4-port routers) of that router had no 

transmit timeout capability. The indefinite stall cannot be 

avoided unless all routers have the transmit timeout capability. 

Router 2 does not have port timeoutRouter 1 has port timeout

128x9b
Tx FIFO

128x9b
Rx FIFO Port-3Port-1

R2P2
57B, Port 4EO

P

64x9b
Tx FIFO Port-2 X

R1P3
227BEO

P

EO
P

R1P4 R2P3
6B

R2P1
191B, Port 3

X

 

 
Figure 1 Example Routers and Packets for Transmit Timeout Discussion 
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G. GOES-R Stall Consequences 

The perpetual stall means that all instruments downstream 

of Router 2 Port 1 will be unable to communicate. Instrument 

telemetry will not be acknowledged, and instruments will no 

longer receive commands, time messages or time ticks. Within 

10 seconds instruments fall into Safe Mode. All GOES-R 

GRDDP transmit channels to those instruments close and 

numerous error events result. Unless the condition was present 

during the power-on process, there is no way of knowing 

which port of which router was in disconnect. 

H. GOES-R Recovery Method 

The GOES-R recovery method begins by powering off all 

instruments downstream of Router 1 port 2. A hard reset is then 

required of the routers downstream of Router 1 (there are four 

on GOES-R). Each hard reset clears the FIFOs and all router 

registers are returned to default values. The reset does not 

affect the LUT contents. Next, the registers have to be re-

configured for each router. As each instrument is powered up, 

their router port status is examined. If not in Run State, the 

instrument is swapped to the redundant side. 

I. Recommended Design Solution 

On any network involving one or more nodes, a 

programmable transmit timeout feature on every router port in 

the chain is essential to preventing a perpetual stall somewhere 

in the chain. Of course the timeout must apply to any packet 

that stalls the transmitter, even if the port is in disconnect and 

no part of the packet has been sent. The ECSS standard 

specifies only that a partial packet be spilled when the link 

error is reported (transition to disconnect). 

The transmit timeout feature on all routers will clear the 

stall but as long as the point of origin continues transmitting 

packets to the node in disconnect then the behavior repeats 

indefinitely. Best practice would be to check port status prior to 

and following instrument power-on, as well as periodic 

monitoring. 

There may be considerable packet jitter with this solution, 

caused by the timeout that must expire before a packet is 

spilled. When using GRDDP, the port timeout setting must be 

much less than the shortest re-transmit timeout, since Reset 

packets have priority over all but Ack packets and Reset 

packets will likely be prevalent in this situation. 
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II. RECEIVE BUFFER OVERFLOW PREVENTION  

The next capability to be discussed is a mechanism to 

prevent receive buffer overflow. The ECSS standard does not 

limit the length of data packets, but practical applications 

should limit the size of packets, as does the GRDDP protocol. 

On GOES-R, each instrument also had constraints on the size 

of packets that were to be transmitted or received, which were 

equal to or less than what the protocol allowed. 

The ECSS standard assumes that FCT messaging will 

prevent receive buffer overflow (section 8.3). In reality, receive 

FIFO overflow is prevented, but not necessarily receive 

buffers. Rx FIFOs are the domain of hardware and credit 

counts and FCT transmit is the purview of that lower level of 

the system. The practical problem is that the receive front end 

may have no idea of the size of the buffer in system memory. 

FCTs are issued when there is room in the FIFO, without 

consideration for the size of the host system buffer allocated 

for data transfer from the FIFO. 

A. Packet Overflow 

Receive buffers on link end points have high and low 

memory limits, whether that memory is statically or 

dynamically allocated, and whether a linked list is contiguous 

or scattered in physical memory. Receive buffer overflow is 

very damaging, so a high-availability system should seek to 

avoid that situation with a hardware mechanism of some sort. 

The host system may be removed from the receive front end by 

several layers complicating the connection between receive 

FIFO and receive buffer. The complexity of the chain may be 

inadequate to prevent receive buffer overflow or to avoid an 

intricate recovery.  

B. GOES-R Spacecraft Receive Buffer Chain 

The BAE SpaceWire ASIC is used in the GOES-R 

spacecraft to interface to the instruments, and Figure 2 

illustrates the Application Specific Integrated Circuit (ASIC) 

cores involved in transferring incoming telemetry to system 

Static Random Access Memory (SRAM).  

The Rx FIFO is connected to a Receive Interface (RIF), 

which controls a Direct Memory Access (DMA) engine to 

transfer data through the On-Chip Bus (OCB), to a Memory 

Controller (MEMCTL) which ultimately writes the packet into 

system SRAM.  

Working from left to right in the Figure 2 example, there 

are 5 equally sized memory regions, MR1 through MR5, in 

SRAM. Each region has been sized to accommodate the 

maximum packet expected to be received. In this example, the 

memory is contiguous for two of the regions but is otherwise 

scattered. Incoming packets will be written first to MR1, then 

MR2 and so on, with MR5 linking back to MR1. 

In typical producer-consumer fashion, each region would 

not be overwritten until consumed by the host system. Simple 

linked-list buffers should not be employed if there’s any 

possibility of overwriting a buffer until it has been completely 

consumed. A non-linked list of descriptors, albeit with host 

software intervention, can be fashioned into a scatter-gather 

controller. 

On the BAE SpaceWire ASIC, a receive descriptor is 

constructed by the host software to point to the target buffer in 

SRAM, by address and by length. The address of that 

descriptor is written to a RIF register and the RIF starts the 

process, which terminates when either the specified buffer 

length is reached or an end-of-packet marker is received. This 

SRAM

Rx FIFORIF

O
C

B

MR1
MR2

MR3

MR4
MR5

DMAMEM
CTL

 

 

 

Figure 2 Example Receive Buffer Chain 
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effectively prevents the designated receive buffer from 

overflow but does not terminate or spill the packet. Remaining 

packet data will consume additional buffers until an end of 

packet marker is received, complicating recovery. 

C. Programmable Per-Port Maximum Packet Length 

On GOES-R, the GSFC-designed router core embedded 

within the BAE SpaceWire ASIC includes an additional 

feature to prevent overflow on receive, and to prevent a stall 

due to blabbering transmit; a maximum packet length feature. 

This feature, if enabled, will disconnect the link and append an 

Error End of Packet (EEP) to any packet that exceeds the 

programmable maximum length. This will of course also spill 

the remainder of the errant packet. With the BAE SpaceWire 

ASIC, the limit applies to all ports, but ideally each port would 

have separate limits. The other router used on GOES-R, the 

Aeroflex 4-port router, has no such feature. 

III. RECEIVE BUFFER DEPTH & ROUTER DEFECT 

Receive FIFO depth of a router may be configurable within 

a soft core for an FPGA. During development, pipeline side-

effects should be taken into consideration to avoid potential 

stalls and data dropout. Router defects may exist which may 

cause a stall which will only clear when the receive buffer 

depth is adequate to compensate for the defect. 

A. Logic Value vs. On-The-Wire Value 

The value of a transmitter’s credit count may be different in 

the logic of a transmit block then the value on the wire due to 

pipeline delays, synchronization delays and logic delays. A 

receive FIFO configured to a depth of only 16 bytes, and with a 

one byte pipeline delay, may initially transmit 2 FCT’s, but not 

issue a successive FCT until 9 bytes are transmitted to it, and 

remain one byte delayed thereafter. 

The transmitter may also have logic delays that cause its 

internal credit count to fall behind the value on-the-wire. 

B. Router Transmit Block Defect 

The Aeroflex 4-port router designed into GOES-R had a 

latent defect that was not exposed until integration testing with 

an instrument that had configured a receive FIFO depth of only 

16 bytes. When the router’s internal credit count transitioned to 

zero on the same cycle that an FCT was received, the router 

would stall due to the defect. The router would resume 

transmission when another FCT was received. 

C. Indefinite Stall Condition 

Although the router could break the stall when yet another 

FCT was received, the instrument configuration prevented 

further FCT transmit due to the shallow receive buffer depth, 

combined with the receive pipeline delay, causing the stall to 

last indefinitely. 

D. GOES-R Stall Resolution 

To avoid a reconfiguration of the instrument’s FPGA, the 

transmit speed through the router was slowed to avoid the stall 

condition, which occurred only when the internal credit count 

transitioned to zero on the same clock as when an FCT was 

received. By slowing the transmit clock, the router’s internal 

logic no longer lagged behind the on-the-wire value. 

Subsequent builds of the instrument did incorporate a deeper 

buffer to further mitigate the problem. 

 

IV. PIPELINING PITFALLS 

Pipeline stages were in part responsible for the problem 

described above, and is the main culprit in another issue 

encountered with GOES-R. 

To avoid buffer overrun a producer-consumer buffering 

model was employed by the GOES-R spacecraft. Unlike 

linked-list operation, there is a time gap (latency) from DMA 

completion until the RIF is programmed with the next receive 

buffer. The bug, described below, was never observed when in 

linked-list mode. 

A. Problem Description 

 Under nominal telemetry conditions a receive buffer was 

made available via the RIF (see Figure 2 above) prior to filling 

the Rx FIFO. Telemetry bursts, however, would exhaust the 

supply of receive buffers in SRAM until the downlink 

(consumer) could catch up. On occasion, the Rx FIFO and a 4-

byte pipleline stage (not shown) would fill before a newly-

freed buffer could be assigned to accept the packet via the RIF. 

Data did not overflow from the Rx FIFO because credit count 

depletion would stall the packet. There was a bug, however, in 

the pipeline stage that could drop those leading 4 bytes from 

the incoming packet. The GRDDP CRC would match, but half 

of the GRDDP header would be missing from the receive 

buffer. Several methods were utilized to address the bug. 

B. GRDDP Transmit Retry 

The GRDDP retry mechanism, for normal data packets, 

assures that those cropped packets will be retried, since header 

checks fail and the packets would not be acknowledged. 

Network traffic is increased, however, and dropouts of urgent 

message packets are possible since they are not retried.  

C. Buffer Utilization 

There wasn’t enough physical memory to allow linked-list 

operation, but all remaining SRAM was dedicated for receive 

buffers, which helped quite a bit, but was not enough. Another 

technique considered was to dynamically utilize the allocated 

receive buffer space vs. a ring of fixed-size buffers. With this 

method, the start address for the next packet would depend on 

the size of the current packet, rounded up per DMA constraints. 

Pending on downlink transfer completion could be reduced or 

eliminated given the increase in number of buffers. While a 

sound idea, it was more complex, and would lead to additional 

processing latency. 

D. Processing Delay Reduction 

The assignment of a buffer freed by the downlink to the 

RIF had been a function of the main processing loop. By 

moving that function to an ISR context the mechanism behaved 

more like a linked-list. The addition of this latency reduction 

proved a sufficient workaround. 
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CONCLUSION 

Real-world systems may be vulnerable to serious faults that 

can result even when there is no apparent violation of the 

ECSS standard. Additional capabilities are required of routers 

and nodes to avoid these pitfalls. All components in a system 

must be thoroughly researched, including the experience 

gained with those components by others. 
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Abstract— Direct Current (DC) line balanced SpaceWire is 
attractive for a number of reasons.  Firstly, a DC line balanced 
interface provides the ability to isolate the physical layer with 
either a transformer or capacitor to achieve higher common mode 
voltage rejection and/or the complete galvanic isolation in the case 
of a transformer.  Secondly, it provides the possibility to reduce 
the number of conductors and transceivers in the classical 
SpaceWire interface by half by eliminating the Strobe line.  
Depending on the modulator scheme – the clock data recovery 
frequency requirements may be only twice that of the transmit 
clock, or even match the transmit clock: depending on a Field 
Programmable Gate Array (FPGA) decoder design. 
   In this paper, several different implementation scenarios will be 
discussed.  Two of these scenarios are backward compatible with 
the existing SpaceWire hardware standards except for changes at 
the character level.  Three other scenarios, while decreasing by 
half the standard SpaceWire hardware components, will require 
changes at both the character and signal levels and work with fixed 
rates.  Other scenarios with variable data rates will require an 
additional SpaceWire interface handshake initialization sequence. 
 
  Index Terms— SpaceWire, DC balance, Line encoding, PRS 

I. INTRODUCTION 

 DC balanced data lines (also referred as AC coupled lines), 
where “0” and “1” ratio is 1 (or very close to 1) over a certain 
time stretch, allows data to go over capacitive or transformer 
barriers, thus creating better isolation for communication 
modules at different common ground potentials.  Currently, 
these potentials difference depends on receiver common mode 
voltage rejection: for Low Voltage Differential Signaling 
(LVDS) receivers it is +5/‒4V at best.  Originally, the 
SpaceWire hardware protocol was designed for an easy clock 
extraction and was not designed with DC balance in mind [1].  
Over the recent years there have been several attempts to create 
a DC balanced SpaceWire hardware protocol, but all of them 
either failed to create DC balanced Data and Strobe by an easy 
means [2], or rejected the Strobe line, thus forcing user to extract 
clock from Data using special FPGA based decoders [3].    

Authors will try to review some new methods, both with and 
without the Strobe line. 

II. METHODS WITH DATA AND STROBE LINES  

II.A. DUAL COMPLEMENTARY BYTES  

    One of the simplest methods will be converting each Data 
byte in to 2 bytes, where 1st byte is itself, along with Data 

Control Flag (DCF) and Parity (P), while 2nd byte is 1st byte 
inversion, including DCF and Parity, as seen in Fig. 1 below:  

Fig. 1.  Original Byte Split 
 

    From a first glance it is obvious that Data line will be 
balanced for the full 20-bit sequence, but will it be true too for 
a Strobe?  Likely, it can be easily shown that for any number of 
complementary bits divisible by 4, a Strobe will also be 
balanced: because 01 or 10 clock sequences always place its 
“0” or “1” under the same complementary data positions of both 
bytes and the resulted Exclusive OR (XOR) Strobe bits will 
complement each other too: see Fig. 2 below with the encircled 
same color columns as an examples. 
   Simulation shows that both Data and Strobe lines will be 
balanced for any bits combinations.  It is also important to note 
that the parity bit is not its classical SpaceWire implementation 
– it is a parity of the 9 previous bits including DCF and data 
byte, and it is irrelevant for this method whether parity bit is 
Even or Odd. 

Fig. 2. Data and Strobe DC Balancing Example 
 
   Control characters and Time codes can be used the same old 
way, but will be also converted in to 2 complementary entities. 
   This method will also allow a simple error correction, where 
the user can select between 1st or 2nd received bytes: the one 
with a valid parity bit.  A maximum stretch of the same bits 
sequence will be 18.  If someone wants to reduce this stretch – 
they can try to play games of grouping bits and their 
complements between 2 bytes: like interleaving 2 adjacent bits 
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with their complements will shrink the maximum stretch to 6, 
but the error correction feature will be gone.  
       The major weakness of this scheme is its 100% overhead. 

II.B. PSEUDO RANDOM SEQUENCE (PRS) MODULATION  

    Another method partially described in [2] is using PRS 
mixed with original data.  It is easy to prove mathematically 
that every meaningful data stream mixed on a bit-by-bit basis 
with a random data stream becomes random itself.  
Furthermore, every further XOR operation with this newly 
minted random data will also produce random data.  The PRS 
(organized on Linear Feedback Shift Registers, or LFSR [5]) is 
a close approximation for truly random data, and therefore, can 
be counted as such, especially for longer generated sequences.  
As a result, Data and Strobe created according to this might also 
be considered random and thus DC balanced.   
    Note: all LFSR sequences do not contain combination when 
all registers are equal to “0”.  This creates a slight misbalance 
in “0/1” ratio, because there can be a combination when all 
registers are “1”.   To solve this authors recommend to define 
an LFSR state when it is 1 clock away from being all “1” and 
then skip the all “1” state to the next consecutive state. 
   Control characters and Time codes everywhere, except the 
initial handshaking protocol, can be used “as is” because they 
are now part of PRS domain.  However, during the handshake 
protocol, there is a possibility that a Null character, while being 
itself DC balanced and its Strobe image is not, will be 
transmitted by an Originator for a long time when Responder’s 
receiver is not ready, will create the Strobe line bias drift and 
push the LVDS receiver input beyond its common mode 
voltage tolerances.  To fix this problem – substitute the original 
Null character 01110100 with 10011100; as a result, Strobe will 
be changed from 00100001 to a DC balanced 11001001; FCT 
character will be changed to 1100 and its Strobe to a DC 
balanced 1001.  As soon as the handshake phase is over – the 
system can revert back to its original Control characters.       
    And yes, there can be unique situations as it was noted in [2] 
when original Data or Clock may be mixed with matched or 
inversed PRS generator patterns, thus creating longer identical 

bits sequences.  However, their probability is very low and their 
duration is short, plus any resulting bias drift of hardware lines 
can be mitigated by selecting LVDS receivers with wider 
common mode voltage input tolerances, such as Texas 
Instruments product: SN55LVDS33‒SP [4].    
    Initialization handshake is shown on Fig. 3 below.  There 
initialization Null and FCT characters should be selected by the 
previously described DC balance criteria; afterwards a user can 
revert back to using original control characters.  It is worth to 
note that while being disabled during initialization – the 
LFSR’s bit which is XOR mixed with data stream is preferred 
to be “0”: for not to invert Null and FCT. The LFSR is enabled 
after 1st cargo “0” DCF is detected. 

III. METHODS WITH DATA LINE ONLY 

    Removing the Strobe line is potentially a good idea: it will 
increase wire bundle flexibility and reduce harness weight and 
complexity as well as on-board electronic hardware.  But it also 
removes from the original SpaceWire its easy clock extraction, 
Nulls has always to fill gaps between data bursts to reduce bias 
drift, and instantaneous communication data rate switching has 
to be mitigated.  However, using modern FPGA’s will take care 
of these problems (see paper [3] References).   

    III.A.  DUAL NIBBLES WITH 4B/6B CODING 

   Use 4b/6b [6] coding to substitute two of the original Data 
byte nibbles with two 6-bit symbols.  Each symbol will contain 
an equal count of “0” and “1”: 3.  Number of permutations for 
3 “1” bits in 6-bit symbol for 64 symbols group is 20, which 
means that each of 16 nibble’s combinations will be assigned 
to its own DC balanced symbol, plus 4 extra symbols can be 
used as 4 SpaceWire original Control characters.   
   No DCF bit is needed: Data and Control characters symbols 
are now unique.  And also no Parity bit: data integrity will be 
checked by 3 “1” per symbol, or 6 “1” per dual symbols.   
   This method will probably be the simplest Data only DC 
balancing scheme, with only 20% of data bandwidth overhead.  
   Strobe can’t be used because it will not be DC balanced.      
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III.B.   FIXED RATE WITH DUAL NIBBLES, BYTES OR PRS  

    The fixed rate with Dual Bytes or PRS schemes are selected 
because they don’t require clock frequency switching.  Clock is 
extracted from an incoming Data stream using various FPGA 
techniques (see paper [3] References).  Otherwise, these 
methods are basically the same as Data and Strobe PRS 
Modulation coding discussed in the above Section II.B. 

III.C.   VARIABLE RATES WITH DUAL NIBBLES, BYTES OR PRS  

   This method is also a derivative of the previous ones. Initial 
handshake at low rate will be done first and in a following cargo 
data Originator or Responder will notify each other about their 
desire to change data rate. After that Originator shall break the 
existing link, wait for at least 6.4us (during which time both 
sides adjust and stabilize their clock generators) and repeat their 
handshake at a new rate as shown in Fig. 4 below. 

 
Fig. 4.  Dual Handshake Sequence for Variable Rate PRS 

IV. SUMMARY 

This paper presented an incremental design approach option 
to improve SpaceWire, yet leverages most of the existing FPGA 
based SpaceWire designs for moderate data rate applications 
that require or may benefit from electrical isolation.  It also 
describes an additional way to further reduce the mass and 
flexibility of the SpaceWire cables for applications that are tight 
on space.  Additionally, it provides a means to specify a common 
physical layer and one which could work with any protocol that 
uses DC balanced line codes.   

Table I below shows what are in author’s opinion brief 
characteristics of the above methods and also some not covered 
additional ones.  They might be a little biased, but nevertheless 
will provide a design engineer with possible guidelines. 

Table I.  Methods Comparison Chart 
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Overhead 
vs. SpW

DC 
Balance

DC 
Quality

FPGA 
Implementation

1 Standard SpaceWire 0% No Terrible Existing

2 Dual bytes (DB) encoding 100% Yes Very good Easy

3 8b/20b [2] 100% Yes Good Moderate-Complex

4 16b/30b [2] 50% Yes Good Moderate-Complex

5 2 lines PRS modulation 0% Yes Good Moderate

6 Fixed DB or PRS modulation Yes Good Moderate

7 Variable DB or PRS modulation Yes Good Moderate

8 8b/10b or dual 4b/5b [7] 0% Yes Very good Moderate-Complex

9 Dual nibble 4b/6b [6] 20% Yes Very good Easy-Moderate

10 Manchester modulation 100% Yes Excellent Easy-Moderate

Data 
and 

Strobe  
(D&S)

XOR-ed 
from       
D&S

Variable:     
as in original 
SpaceWire

Same as in 
above D&S  

Data 
only

4-phase 
sampling, 
or others

Fixed:       
rate change 

requires dual 
handshaking
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Abstract—We developed a rewritable field programmable gate 

array (FPGA) using NanoBridge® that exploits atom switch 

technology. NanoBridge® is newly developed copper wiring 

technology with dynamic connection capability. Programmable 

circuitry with SpaceWire interface is realized without 

configuration memory cells for storing circuit connection 

information. It prevents single event effect caused by radiation 

and provides remarkably low power consumption. The first 

demonstration of the NanoBridge® FPGA on orbit by JAXA’s 

program is planned in 2018. 

Index Terms— SpaceWire, Field Programmable Gate Array 

(FPGA), Atom Switch, Non Volatile, Rewritable, High Level 

Synthesis, Dynamically Reconfigurable Architecture 

I. INTRODUCTION 

SpaceWire standard realizes compact and well organized 

interfaces for machine to machine (M2M) onboard information 

transmission. Since the hardware implementation of SpaceWire 

provides sufficient capability for intra-onboard communication 

of satellites, SpaceWire interface and application circuitry can 

be integrated into one field programmable gate array (FPGA). 

We developed a rewritable FPGA with NanoBridge®. It is 

newly developed copper wiring technology with dynamic 

connection capability using atom switches. The atom switch 

provides programmable capability without configuration 

memory cells for storing circuit connection information, and it 

can incorporate SpaceWire interface.  

The connection of the atom switch can be controlled by 

practical voltage swing such as +/- 3.3V. The primitives of 

circuitry are connected with cupper ions through solid-

electrolyte between ruthenium and cupper electrodes of the 

atom switches. 1,000 times of connection/disconnection are 

verified through thermal cycling test between -65 degree C and 

+150 degree C, which show sufficient programmability for 

onboard applications. 

Conventional non-rewritable FPGA as well as application-

specific integrated circuit (ASIC) is used for the hardware 

implementation of SpaceWire interface in order to provide low 

power consumption and reasonable radiation tolerance. The 

FPGA using NanoBridge® can provide equivalent low power 

consumption and radiation tolerance as non-rewritable FPGA 

and ASIC. 

Some FPGAs are rewritable, whereas their power 

consumption and radiation tolerance are increased, because 

circuit connection information is stored in configuration 

memories like electrically erasable programmable read-only 

memories (EEPROMs) or static random access memories 

(SRAMs). Single event upset (SEU) on the memories is a 

major concern especially for SRAM. Thus memory patrol 

and/or memory scrubbing are mandatory, that requires 

additional resources outside those FPGAs. Atom switches used 

in NanoBridge® FPGA are SEU free, because they do not have 

configuration memories while maintaining programming 

capability of circuitry connection information. Irradiation tests 

of NanoBridge® FPGA have been done with some radiation 

sources without showing any SEUs in wiring layers. Therefore 

additional resource is not required in order to keep radiation 

tolerance. 

The first demonstration of the NanoBridge® FPGA on orbit 

by JAXA’s program is planned in 2018. 

II. NANOBRIDGE® 

The basic configuration of NanoBridge® FPGA is 

composed of complementary atom switches (CAS) [1, 2, 3, 4] 

as shown in Fig. 1 (a). The CAS consists of two copper atom 

switches with the polymer solid electrolyte (PSE) sandwiched 
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Keeps ON 

until –V is 

applied

Keeps OFF 

until +V is 

applied

 
(b) 

 

 

(a) 

 

(b) 

between two metals (Cu and Ru) as shown in Fig. 1 (b). The 

switch turns on or off when a nanometer-scale metallic bridge 

either appears or disappears inside a PSE film by biasing 

voltages. When a positive voltage like +3.3V is applied to a Cu 

electrode described in Fig. 1 (b), the Cu+ ions are supplied 

from the Cu electrode to PSE. The Cu+ ions are neutralized 

and precipitated at the Ru electrode. Subsequently, the 

precipitated Cu forms conducting bridges between the two 

electrodes, thus changing the conductance to an ON state. 

Conversely, by applying a negative voltage like -3.3V to the 

Cu electrode, the Cu bridge is ionized and disappears, resulting 

in an OFF state. On and off state are kept during an operational 

power supply voltage from around 1V to 2V is applied. Each 

state is nonvolatile and the switching between the two states is 

repeatable.  
 

Fig. 1.  Switching behavior of NanoBridge® 

A Cu bridge in an atom switch can hardly be seen as shown 

in Fig. 2. Therefore the reverse engineering of NanoBridge® 

FPGA is difficult, and high level tamper-resistance is provided. 

The atom switch layer is formed on an ordinary CMOS 

substrate with fabricated circuitries and wiring layers as shown 

in Fig. 3. There is no restriction for selecting CMOS substrates 

for NanoBridge® FPGA, therefore any kinds of CMOS 

substrates are applicable. Large scale integration (LSI) using 

NanoBridge® is fabricated with high reliability configuration. 

A series of switch of NanoBridge® are implemented in lookup 

tables in a FPGA, and thus high off state impedance is 

maintained. 

Fig. 2.  Cu bridge formulation in NanoBridge® 

 

Fig. 3.  Programmable FPGA with NanoBridge®, (a) Cross-sectional FIB-

SIM/TEM image, (b) Evaluated device with a plastic package. 

III. SEE MITIGATION DESIGN FRAMEWORK 

SEE mitigation is a major concern for satellite onboard 

equipment. Two types of memories are used in onboard 

components. One type is a program memory used in the central 

processing unit (CPU), and the other type is a configuration 

memory when a re-writable FPGA is used. We have to provide 

SEE mitigation design framework for both types of memories. 
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As for the latter case, NanoBridge® FPGA provides SEE 

free characteristics while maintaining re-writable functions. It 

provides programmable capability for circuitries without a 

configuration memory, therefore SEE originated from volatile 

memories are eliminated. 

We use behavioral synthesize technology for providing 

sufficient radiation hardness against the former case using 

NanoBridge® FPGA. Application programs written in high 

level programming language like ANSI-C language are 

synthesized into register transfer level (RTL) like VHDL 

(VHSIC (Very High Speed Integrated Circuit) Hardware 

Description Language) or Verilog source code by using a high 

level synthesis tool as CyberWorkBench (CWB) [5, 6, 7]. 

CWB is a well matured high level synthesis tool using 

behavioral synthesis technology. When we make application 

programs using CWB, the overhead in layout size is only a few 

percent larger than the design written in direct hand coded RTL. 

The application program is implemented on NanoBridge® 

FPGA directly. Program memories are eliminated, because 

CPU is no longer necessary for interface module using 

SpaceWire. 

The two types of large volume memories as program 

memories for CPUs and configuration memories for re-

writable FPGAs are eliminated by using CWB and 

NanoBridge® FPGA, and SEE mitigation is realized as shown 

in Fig. 4. 

 

Fig. 4.  SEE mitigation framework 

We established a new design framework for applying CWB 

and NanoBridge® FPGA for system level SEE mitigation. The 

requirement of the reliability design flow is shown in Table 1. 

The design scheme is quoted from the dependable architecture 

described in [8, 9]. The robust fabric with traditional design 

method is incorporated in I/O primitives in the bottom layer for 

high reliability. Specifically, radiation hardened primitives like 

flip-flops are considered and implemented at circuit design 

level or semiconductor fabrication process design level in this 

layer. The radiation hardened primitives can be exploited as 

primitives for high reliability logic design. 

The robust fabric design scheme is also useful for high 

reliability design of the fine grained layer. High reliability 

circuit implementations such as Triple Modular Redundancy 

(TMR), etc. are adopted on susceptible function blocks. If such 

kind of redundancy is adopted all over the chip, the high 

implementation density cannot be expected. The selective 

redundancy scheme described in [8, 9] is adopted in the design 

process, and the excessive resource overhead of power 

consumption, layout area, processing speed caused by 

redundancy is avoided. 

As for course grained layer, a redundancy scheme for each 

function block is selected from the system FDIR design point 

of view. The use of TMR and/or CRAFTSYSTEM described 

in [10, 11] can be selected for gaining high reliability 

effectively in accordance with the reliability estimation results 

for a certain system FDIR design. 

Proven communication network protocol is applicable on 

the topmost layer, which is the switch layer, in order to realize 

high reliability. The routing mechanism specified in the 

SpaceWire standard [12] is applied for implementing high 

reliability, because many off-the-shelf devices for space 

applications are available. It is another advantage that the 

system design can be performed in the scope of the open 

international standard. 

TABLE I.  THE REQUIREMENT SPECIFICATION OF  RELIABILITY DESIGN 

SCHEME 

Layer Implementation Remarks 

Switch 
Routing by SpaceWire 

regulations [12] 

Implementation by 

system FDIR design 

Coarse 

grained 

Comparison decision using 

TMR [8, 9], and/or 

CRAFTSYSTEM [10, 11], 
etc. 

Implementation by 

system FDIR design 

Fine 
grained 

Triple Modular redundancy 
with a voter (TMR), etc. 

Implementation by 

system FDIR design, and 
the framework of robust 

fabric [8, 9] 

I/O 

(Random 
Logic) 

Radiation hardened libraries, 

etc. 

The framework of robust 

fabric [8, 9] 

 

We also established a design flow for the framework. The 

following six steps compose a design flow for mitigating SEE. 

[Step 1]: Describe a system in high-level programming 

language as C language. The language should be used for 

application software development as well. 

[Step 2]: Define coarse grained function blocks. The 

function blocks can be implemented as optimized hard macros 

using ASIC design tools. Typical dedicated functions as image 

compression, image recognition, and signal processing like 

FFT are implemented in addition to basic arithmetic operations. 

It is required on behavioral synthesis tools that the operations 

provided by coarse grained function blocks are used as 

mnemonics in program source codes. CWB realized this 

feature as functionalization. 

[Step 3]: Generate source codes written in hardware 

description language (HDL) through behavioral synthesis. The 

hard macros defined in the step 2 should be exploited for 
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generating circuitry. This requirement specification is applied 

for the optimization of CWB during our study. 

[Step 4]: This is a logic synthesis step, and this step is the 

same as conventional LSI and FPGA logic synthesis design 

process. 

[Step 5]: This is a layout design step, and this is the same as 

conventional LSI and FPGA layout design process. 

[Step 6]: The verification and validation step include delay 

analysis of layout design and back annotation based on the 

result of delay analysis. 

Iterations are considered over step 5 and step 6. The back 

annotation going back to step 3 is also anticipated.  Since the 

back annotation should be able to be handled in high level 

language, step 1 is also considered in back annotations. 

In order to evaluate the design framework, we implemented 

signal processing functions of the infrared image sensor of 

AKATSUKI [13] onto one NanoBridge® FPGA. The signal 

processor of AKATSUKI consists of one CPU board with 

JAXA authorized 64bit microprocessor HR5000 and one 

FPGA board with two ACTEL RTSX72SU FPGAs. The 

dedicated operations as superposition, mean, and median with 

normalized functions are successfully implemented in one chip 

using the design framework. The nominal power consumption 

of the original signal processor is estimated as 4.9W. The 

measured power consumption of our one-chip processor 

element implementation on a NanoBridge® FPGA chip is 

18mW. The reduction in circuitry also comes from the fact that 

whole processor functions are implemented in one chip, and 

interface circuits over devices are eliminated. 

IV. CONCLUSION 

Programmable SpaceWire interface with atom switch is 

realized using NanoBridge® technology. High level 

programming language usability is also maintained with newly 

established design framework. Single event effect of memories 

caused by onboard environment in orbit is avoided, because 

program memories in CPU and configuration memories for re-

writable FPGAs are eliminated. Significant power reduction is 

also realized, which enables embedding a device computing 

function into each sensor detector. 
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Abstract—The GR740 is a quad-core space-grade processor 
that includes a SpaceWire router with eight external ports. The 
validation results are presented to show effects of the integration 
of a SpaceWire router in a microprocessor system and the 
validation methodology is described to show one way of 
characterize timing performances SpaceWire links during 
production tests. 

Index Terms—SpaceWire, router, space-grade processor, 
timing characterization, production test 

I. INTRODUCTION 
The GR740 is a multi-core microprocessor ASIC device 

based on the LEON4FT processor core [1] and the European 
Next Generation Microprocessor (NGMP) architecture [2], 
designed and developed by Cobham Gaisler. The GR740 ASIC 
is implemented on STMicroelectronics' C65SPACE 
technology platform [3] and is available in a hermetically 
sealed LGA625 package. The development of the GR740 is the 
outcome of the European Space Agency's initiative to develop 
the NGMP, and delivers a significant performance increase 
compared to earlier generations of European space processors. 

Engineering models have been manufactured in 2015 and 
functionally validated during 2016.  

The GR740 integrates a SpaceWire router with four 
internal ports, which are connected to the on-chip AMBA bus 
system, and eight external ports with on-chip LVDS. 

The validation effort for the GR740 covers several aspects 
of the SpaceWire router implementation. User cases and 
performance measurements demonstrate capabilities of 
interfaces to the on-chip microprocessor system to create a 
high-throughput inter-processor link. The timing 
characterization methodology shows how testing of timing 
parameters can be performed as part of production tests. 

II. BACKGROUND 
The LEON project was started by the European Space 

Agency in late 1997 to study and develop a high-performance 
processor to be used in European space projects. The objectives 
for the project were to provide an open, portable and non-
proprietary processor design, capable to meet future 
requirements for performance, software compatibility and low 
system cost. Another objective was to be able to manufacture 
in a Single Event Upset (SEU) sensitive semiconductor 
process. To maintain correct operation in the presence of 
SEUs, extensive error detection and error handling functions 
were needed. The goals have been to detect and tolerate one 
error in any register without software intervention, and to 
suppress effects from Single Event Transient (SET) errors in 
combinational logic. 

The LEON IP-core family includes the first LEON1 
VHSIC Hardware Description Language (VHDL) design that 
was used in the LEONExpress test chip developed in 0.35 µm 
technology to prove the fault tolerance concept. The second 
LEON2 VHDL design was used in the processor device 
AT697 from Atmel (F) and various system-on-chip devices. 
These two LEON IP- core implementations were developed by 
ESA. Gaisler Research, now Cobham Gaisler, developed the 
third (LEON3) and fourth (LEON4) designs that are used in a 
number of avionics systems and also in the commercial sector. 

Following the development of the TSC695 (ERC32) and 
AT697 processor components in 0.5 and 0.18 µm technology 
respectively, ESA has initiated the NGMP activity targeting a 
European Deep Sub-Micron (DSM) technology in order to 
meet increasing requirements on performance and to ensure the 
supply of European space processors. Cobham Gaisler, at the 
time Aeroflex Gaisler, was selected to develop the NGMP 
system that is centered around the new LEON4FT processor. 

After extensive FPGA prototyping, a functional prototype 
was developed on commercial technology (eASIC Nextreme2) 
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for early SW development and user evaluation. Throughout 
2014 / 2015, the design was ported to and manufactured in the 
C65SPACE platform from STMicroelectronics [3]. Besides the 
chip development, the existing SPARC software development 
environment has been extended for multi-core with updates to 
compiler, simulator, debug monitor and profiling tools, an 
SMP version of the RTEMS operating system and hypervisor 
development. 

III. GR740 SYSTEM ARCHITECTURE 
The four LEON4FT processors are connected to a shared 

bus, which connects to a 2 MiB Error Detection And 
Correction (EDAC) protected Level-2 cache before reaching 
external EDAC protected SDRAM. Each LEON4FT processor 
has a dedicated pipelined IEEE- 754 floating-point unit. The 
design makes use of extensive clock gating and the processors 
can be put into a sleep mode to conserve power when some or 
all processor cores are unused. 

The main communication interfaces of the device include 
eight external SpaceWire ports connected to an on-chip 
SpaceWire router, two 10/100/1000 Mbit Ethernet ports, MIL-
STD-1553B and 32-bit PCI. Two serial ports and two CAN-
bus ports are also available. 

 

 
Fig. 1 GR740 Block diagram 

The four parallel CPU / FPU cores, each running on 
dedicated separate instruction and data L1 caches (Harvard 
architecture), at 250 MHz clock frequency, can theoretically 
provide up to 1 Gflop/s in single or double precision. 

The NGMP architecture has already been evaluated in a 
practical exercise where the GAIA Video Processing Unit 
(VPU) application, a real space payload application, was 
adapted to take advantage of a multi- core system and then 
benchmarked on an NGMP prototype system [4]. The 
conclusion from this exercise was that the GR740 would be 
fast enough to run the GAIA VPU application, likely at a 
significantly lower power budget than the flight computer that 
was used in the satellite. 

The SpaceWire router in the GR740 has four internal ports, 
which are connected to the on-chip AMBA bus system, and 
eight external ports with on-chip LVDS. The external ports 
support cold-spare functionality. 

The device can be configured via bootstrap signals so that 
the router is either clock gated off or enabled after power-on 
and reset. The Remote Memory Access Protocol (RMAP) 

targets are enabled if the router is enabled after reset, which 
means that SpaceWire can be used to remote boot the device 
by having an external host connect to the GR740 to upload 
software and then enable one or several processor cores. In 
case external RMAP traffic, or any type of direct memory 
access from the SpaceWire router, is unwanted then the 
systems IO memory management unit (IOMMU) can be used 
for address protection and address translation between the 
router’s on-chip bus interfaces and the on-chip memory space. 

The list below summarizes the key building blocks of the 
GR740 system architecture: 
128-bit Processor AHB bus: 

• 4x LEON4FT 
o 16 + 16 KiB write-through cache with LRU 

replacement. 
o SPARC Reference MMU. Physical 

snooping. 
o 32-bit MUL/DIV. 
o GRFPU floating-point unit 

• 2 MiB Shared L2 write-back cache with memory 
access protection (fence registers), cache-way locking 
and partitioning. 

128-bit Memory AHB bus: 
• 1x 64-bit data SDRAM PC100 memory inter- face 

with Reed-Solomon ECC (with 16 or 32 check bits) 
• 1x Memory scrubber 

32-bit Master I/O AHB bus: 
• SpaceWire router with eight external ports and four 

AMBA ports, with RMAP @ 300 Mbit/s 
• 2x 10/100/1000 Mbit Ethernet interface with 

MII/GMII PHY interface 
• 1x 32-bit PCI target interface @ 33 MHz 
• MIL-STD-1553B interface 

32-bit Slave I/O AHB buses: 
• 1x 32-bit PCI master interface @ 33 MHz with DMA 

controller mapped to the Master I/O bus 
• 1x 8/16-bit PROM/IO controller with BCH ECC 
• 2x 32-bit AHB to APB bridge connecting: 
• 5x General purpose timer unit 
• 2x General purpose I/O port 
• 2x 8-bit UART interface 
• 1x Multiprocessor interrupt controller 
• 2x AHB status register 
• 1x Clock gating control unit 
• 1x LEON4 statistical unit (perf. counters) 
• 1x SPI master/slave controller 
• PLL and pad control units 
• 1x Temperature sensor 
• SpaceWire Time Distribution Protocol controller 

32-bit Debug AHB Bus 
• 1x Debug support unit 
• 1x JTAG debug link 
• 1x SpaceWire RMAP target 
• 1x AHB trace buffer, tracing Master I/O bus 
• 1x PCI trace buffer: 
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IV. RADIATION TOLERANCE FEATURES 
The GR740 is implemented on STMicroelectronics 65nm 

bulk CMOS process using the C65SPACE cell libraries 
developed and characterized by ST within the KIPSAT 
initiative [3]. The cell libraries contain standard cells (both 
radiation-hardened and standard variants), SRAM blocks, PLL 
and IO buffers. The cells used are specified for a temperature 
range of -40 to +125 degrees C and up to 20 years of aging 
effects. 

Layout and back-end part of the design realization has been 
performed by ST using specific design rules and layout 
techniques developed for the C65SPACE platform. 

All of the on-chip memories in the design, with the 
exception of memories used only for debugging, are used with 
single-bit error tolerance (of varying kind) to handle memory 
SEUs (Single Event Upsets). The memory blocks have been 
built with sufficiently high bit multiplexing factor to avoid 
multi-bit upsets on the same address due to a single event. 

The level-1 cache memories inside the processor core use 
parity protection with transparent re-fetch from level-2 cache in 
case of detected error. Since the LEON4FT employs write-
through caching, bad L1 cache lines can be invalidated and re-
fetched without ever losing any written data. For the shared 
level-2 cache data memories, which employ a write-back 
policy and therefore may contain data not yet in memory, 
single-error correcting, double-error detecting (SECDED) 
protection using Bose-Chaudhuri- Hocquenghem (BCH) error 
correcting codes is used together with programmable periodic 
scrubbing to prevent build-up of multiple SEU:s over time. 
Other memories in the design, used for instance as buffers for 
data in transit to and from I/O interfaces, use error correction 
based on either duplication with parity or triplication and 
majority voting of the data on each memory address, 
depending on which one is more efficient. 

The baseline approach chosen for implementing the register 
transfer level (RTL) logic inside the device has been to use 
radiation-hardened flip-flops and hardened clock tree elements 
but standard combinatorial logic cells. This is a trade-off 
between hardness level and functional performance. Other 
options were considered and a trial layout was made where 
TMR was used for the entire design, however this was 
abandoned due to performance and power impact. 

For the CPU integer and floating-point register files built 
out of flip-flops, a different hardening approach based on 
triplication on block level, with bit-by-bit voting on the register 
read data outputs, has been implemented. This approach 
provides hardness at the same level as a raw flip-flop level 
TMR but without the same performance overhead. Inside each 
instance, standard flip-flops are used in order to save area and 
power. The layout has been checked in the implementation 
process to ensure that the flip-flops holding identical data in the 
three copies had adequate spacing between them, and fixed up 
where needed, to avoid sensitivity to potential uncorrectable 
multi-bit upsets. The register file is not automatically scrubbed 
so all registers need to be written at regular intervals, which 
normally gets done anyway in applications as part of task 
switching. For very simple applications where there is a risk of 

keeping register values for a long time, a periodic re-write of 
the registers (copying the register back to itself) could be, for 
example, done in the timer interrupt handler. 

Three radiation-hardened PLLs are used for clock 
generation in the design [5]. Each PLL may be individually 
bypassed, and the lock status can be monitored directly through 
output pins. The GR740 can be configured to either trigger a 
reset of the processors, or to keep going, in the event of losing 
lock. A dedicated PLL watchdog function clocked on the input 
clock has also been added. This provides the ability to detect 
the unlikely scenario where a PLL would fail and stop 
delivering a system clock to the processors and the rest of the 
system. 

A dedicated PLL reprogramming unit has been designed to 
allow re-programming the PLL configurations from the 
software boot-loader. A lock-down function is implemented 
that blocks further reprogramming by application software 
until a full system reset is done, to prevent accidental 
reprogramming after boot-up. The PLL configuration unit has 
been implemented with both hardened flip-flops and TMR to 
get maximum protection against upsets in the PLL 
configuration. 

V. PRODUCTION TEST APPROACH 
The production tests an industrial and complete test 

solution at wafer level and post-assembly. Each sample is 
tested at all supply level ranges within the specified 
temperature ranges.  

The tests include 
• DC tests: IO levels, leakages, consumption 
• IDDQ tests 
• Scan 
• Memory BIST 
• Transition fault 
• PLL tests 
• Cold spare tests 
• AC parameters 

Wafer probing of the GR740 device is performed by 
STMicroelectronics. The test equipment used is a Automatic 
Test Equipment (ATE) tester together with a probe card that 
has been custom designed for the GR740. The main purpose of 
wafer probing is to detect and separate faulty dies before 
packaging and also statistics collection. The SpaceWire router 
implementation is covered by wafer probing test patterns but 
no specific SpaceWire tests are performed during wafer 
probing. The functionality of the SpaceWire router is tested by 
means of test patterns generated according to industry standard 
flows. Timing performance of the external SpaceWire ports 
depend on the IOs and characteristics of the SpaceWire clock 
generated by an on-chip PLL. 

The implemented production tests that monitor timing 
performances of the external SpaceWire ports are divided into 
two parts: SpaceWire interface TX skew test and SpaceWire 
interface RX skew test. 

The SpaceWire interface TX skew test verifies timing skew 
between outputs transmit data (TXD[x]) and transmit strobe 
(TXS[x]) is with specification for all eight links x=1..8. To do 
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this, the test pattern start and stops the SpaceWire links. The 
time measurement capability of the ATE tester is used to 
calculate the time from a known quiet time while the link is 
off, until the first rise/fall transition on TXD and TXS 
corresponding to the SpaceWire handshake when the link is 
turned on. The times measured for the two pins are then 
subtracted, and offset with the known waveform pattern, to 
obtain the skew, The measurement is done individually for 
each link and for each rise/fall edge combination, each 
combination tested 10 times and taking the worst value 
(8*4*10 iterations total). 

The SpaceWire interface RX skew test verifies the 
minimum RXD/RXS period that can be detected by the 
SpaceWire receiver. This is done by testing at what minimum 
period a SpaceWire packet can be successfully received from 
the ATE tester. 

The difference between the measured limit and the ideal 
limit of two times the router’s receive clock (2x due to DDR 
sampling of incoming signals) determines the effective receive 
skew. The receive data and strobe signals are DDR sampled 
with a clock generated by the on-chip SpaceWire PLL. In this 
test, the reference clock for the SpaceWire PLL is fed with a 
free-running clock from the ATE relative to the received 
SpaceWire data, which then means that the phase of the 
sampling clock used by the SpaceWire codec will be varying 
randomly relative to the receive data and strobe signals during 
the test. 

In order to monitor the received data, the test equipment 
interfaces with the GR740 system through a JTAG debug link 
that, through the use of a JTAG/AMBA AHB bridge can 
perform memory accesses on the on-chip bus. This allows 
complete control of the SpaceWire router. The Level-2 cache is 
configured to be used as on-chip memory to store the received 
SpaceWire data where the full packet contents can then be 
verified from the outside world. 

VI. FUNCTIONAL VALIDATION OVERVIEW 
The functional validation tests are run at room temperature 

in a lab environment. Tests are typically controlled via an 
external debug monitor (Cobham Gaisler’s GRMON2 
software) and for the SpaceWire router the tests utilize the on-
chip processors as well as an external system with SpaceWire 
interfaces to generate and validate traffic. 

The functional validation effort for the GR740 builds on 
previous validation efforts on FPGA prototypes of the NGMP 
architecture and validation of the NGMP functional prototype, 
the LEON4-N2X device [6]. The existing prototype SpaceWire 
router tests focused on exercising the router's AMBA ports. For 
the GR740 validation effort, router testing was expanded to 
include traffic on SpaceWire links. The router's redundant link 
capability, multicast capability and priority capability was also 
tested. 

All tests described below were performed with the internal 
SpaceWire fabric running at 400 MHz and the AMBA system 
running att 200 MHz. All SpaceWire links were configured to 
operate at a bitrate of 200 Mbit/s. The development board used 
was the GR-CPCI-GR740 board [7]. It can be noted that the 

tests do not require the on-chip SpaceWire fabric to run at 400 
MHz. The setting was kept as it is the default configuration 
attained without reconfiguring the design’s clock generation 
circuitry. 

 
Fig. 2 GR-CPCI-GR740 Development board 

VII. FUNCTIONAL VALIDATION: ALL SPACEWIRE PORTS 
To validate that all the SpaceWire ports of the SpaceWire 

router can handle both receive and transmit at a rate of 200 
Mbit/s, each SpaceWire port was connected to another 
SpaceWire port. 4 MiB packets were then sent from an AMBA 
port, routed out onto a SpaceWire port, received at another 
SpaceWire port, and then routed to an AMBA port were the 
data was validated. This test was repeated so that all 
SpaceWire ports were utilized, and both path addresses and 
logical addresses were used for the packets. 

VIII. FUNCTIONAL VALIDATION: GROUP ADAPTIVE ROUTING  
The SpaceWire router supports group adaptive routing for 

all path addresses and logical addresses. Group adaptive 
routing means that packets can be routed through the network 
over different paths depending on which of the router's ports 
that are available when the packet arrives. For example, a 
packet with address 0x40 arrives at SpaceWire port 1 of the 
router, and address 0x40 is configured with group adaptive 
routing to SpaceWire port 2 and 3. The router will then route 
the packet to either port 2 or port 3 depending on which port 
becomes available first. If both ports are available, the router 
will send the packet on the port with the lowest port number.  

The group adaptive routing mechanism was validated by 
connecting four SpaceWire ports together and then sending 
packets from an AMBA port where the address byte of the 
packets were configured with group adaptive routing to two of 
the four ports. When the packets arrived at the router again 
they were routed to another AMBA port. It was then verified 
that the packets arrived correctly as long as one of the two 
SpaceWire used as output ports were connected to another 
port. If none of the two SpaceWire ports used as output ports 
were connected then the packet was not received at the AMBA 
port used as destination. Group adaptive routing was also 
verified further in the packet distribution validation. 
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IX. FUNCTIONAL VALIDATION: PACKET DISTRIBUTION 
Packet distribution - which means that data arriving at a 

input port is sent to multiple ports simultaneously - is 
supported by the SpaceWire router for both path addresses and 
logical addresses. This feature was validated by connecting 
four SpaceWire ports to each other and then sending a packet 
with two address bytes from an AMBA port. The first address 
byte was configured with header deletion and packet 
distribution out on the four SpaceWire ports, and the second 
address byte was configured with group adaptive routing to 
AMBA ports 0-3. When the packet was sent from the AMBA 
source port the first address byte was removed by the use of 
header deletion, and the packet was routed out onto the four 
SpaceWire ports. It was then verified that the four packets, 
arriving at one SpaceWire port each, was routed to one AMBA 
port each (because group adaptive routing was used for the 
second address byte). This test also adds additional validation 
of group adaptive routing since the test validates that group 
adaptive routing works when the destination ports are busy 
with transmitting data. The validation of group adaptive 
routing described above only validated the case when the 
destination links were not running. 

X. FUNCTIONAL VALIDATION: PRIORITY ROUTING 
When packets are to be routed, each destination port is 

arbitrated individually using a two level priority. The priority is 
based on the first address byte of the incoming packet, and all 
path addresses and logical addresses can be assigned either a 
high or low priority. Round-robin is used when one or more 
packets with the same priority competes about the same 
destination port. The validation of the priority routing 
mechanism was done by enqueueing four different packets, 
each one from a different AMBA port, where all packets were 
to be routed out on the same SpaceWire port. Three of the 
packets contained an address that had been assigned a low 
priority, while the fourth packet contained an address with high 
priority. The SpaceWire port that the packets would be routed 
out onto was connected to another SpaceWire port of the 
router, and the second address byte in all packets was the path 
address of one of the AMBA ports (same for all packets so that 
the order could be observed). The three low priority packets 
were sent slightly before the high priority packet, and it was 
then validated at the destination AMBA port that the first 
packet received was the first low priority packet, followed by 
the high priority packet, and then followed by the two 
remaining low priority packets. It was also validated that if the 
high priority packet was instead changed to low priority it was 
received last of the four packets. 

XI. FUNCTIONAL VALIDATION: NEW FEATURES 
The SpaceWire router implementation in the GR740 has 

several new features compared to previous prototype 
implementations of the NGMP architecture. The new features 
include support for 64 interrupt codes and time code 
propagation. Validation of these new features has been 
performed by reusing test developed for the GR718B 18x 
SpaceWire router device [8] and by reuse of existing tests 

available for the RTEMS operating system to test time code 
transmission. 

XII. FUNCTIONAL VALIDATION: USER CASE AND 
PERFORMANCE VALIDATION 

To demonstrate a user case and performance figures. An 
example was developed using an available Remote Memory 
Access Protocol (RMAP) stack and SpaceWire drivers for 
RTEMS. Using the example, which performance RMAP read 
and write accesses to a generic RMAP target. The data rates 
achieved between two GR740 systems with default 
configuration is around 20 Mbytes/s using one SpaceWire 
DMA channel (out of four) of one SpaceWire AMBA port (out 
of four) and one SpaceWire link (out of eight). During the test, 
one data array was transferred both ways (read and write) and 
the traffic was controlled by the LEON4FT in one of the 
systems. 

The data rates achieved were measured at a high level, 
which means that they also consider the software overhead of 
performing the transmissions. This overhead can be further 
reduced optimizing the code for instance using a zero-copy 
driver. This was not done for two reasons; one to keep the 
example code to understand and to be able to provide the test 
case as an example for users of the device, and two to avoid a 
high optimization level that may not be practical to perform 
considering constraints of real world development efforts. 

XIII. RADIATION TESTS OF SPACEWIRE ROUTER 
The GR740 has undergone a radiation test campaign to 

verify its radiation performance against single event effects. 
Single-event testing with both heavy ions has been performed 
at the time of writing and tests with with protons is planned for 
to take place in the last quarter of 2016. 

The single-event testing focuses both on raw upset rates of 
the various building blocks of the design and the error cross-
section of the whole design in functional scenarios. The heavy-
ion SEU test setup is based on the GR740 evaluation board [7] 
with the device wire-bonded to an unsealed ceramic LGA 
package, that is then mounted on the circuit board through a 
socket. 

The ASIC has several test functions included to aid the 
radiation testing. The L1 and L2 caches have counters for 
corrected errors that can be monitored on the fly by test 
software. For the triplicated register files, flags have been 
added that are set when a voting mismatch has been detected to 
allow counting errors during test. For TID testing, a ring 
oscillator built out of standard cells is implemented on chip. 

The test software is based on the “SEU32” test suite 
developed originally for LEON3FT. This software has been 
modified and expanded to handle the new architectural features 
of the GR740, such as the addition of level-2 cache. The 
software can be run from the flash memory of the evaluation 
board and communicates with a standard PC on the outside of 
the irradiation area through the GR740s serial ports. 

The SEU32 was extended with a test specific for the on-
chip SpaceWire router. The test consists of software that runs 
on one or several of the LEON4FT processors and sends 
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packets with an unique data over different ports that are assume 
to be connected to a loopback connector (or equivalent) so that 
the data that goes out comes in through the same port. The test 
checks that the transmission and the data arrived without 
errors. If errors are detected, a report is produced. Normal 
memory errors (status bits and counters for processor register 
file, Level-1 and Level-2 caches) are also monitored and 
reported. 

The test initializes the SpaceWire router and its AMBA 
ports, creates and initializes transmitter and receiver descriptors 
for the packets and the data on it that contains a sequence of 
sequential numbers. The packets use path addressing that goes 
to each tested port and then back to the AMBA port. Since the 
loopback transmission takes some time, the CPU waits using a 
loop of NOP instructions that consumes always a fixed amount 
of time (adjusted to give time to the SpaceWire traffic) so that 
the test does not depend on timers or the SpaceWire cores 
themselves. 

XIV. CONCLUSION 
The GR740 validation effort has validated and 

characterized a SpaceWire router implemented as part of a 
space-grade microprocessor device. As part of the GR740 
validation, production tests have been developed that allow 
characterization of the external SpaceWire links during 
production tests (wafer probing and post-packaging tests). 

The GR740 device has been manufactured and is being 
validated in an activity funded and initiated by the European 
Space Agency. A technical note covering the functional 
validation results will be published online during the end of 
2016. The results of the radiation test effort will also be 
published in a report once the radiation test campaign has been 
completed and the resulting report has been reviewed and 
approved by the agency. 
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Abstract—SOISOC3 is our new space-grade system-on-chip 

processor which is currently being developed by MHI in 

partnership with JAXA. The chip is implemented on a 200 nm 

radiation hardened process based on the commercial SOI (Silicon 

On Insulator), so that can apply to the Space missions. This is the 

next generation system-on-chip processor upgraded from the 

currentSOISOC2 chip already used for ASTRO-H, ERG 

satellites, etc. 

 SOISOC3 has a high-reliability SpaceWire engine, which MHI 

has developed, supporting for incoming SpaceWire standards for 

deterministic data delivery (SpaceWire-D), reliable data transfer 

service (SpaceWire-R), as well as high performance Remote 

Memory Access Protocol (RMAP) with Direct Memory Access 

(DMA) engine through a SpaceWire router. The SpaceWire 

engine is capable of acting as an RMAP initiator, target, or as a 

general purpose packet transmitter and receiver. Our developed 

SpaceWire-D and SpaceWire-R engine is mainly performed on 

hardware, and can achieve high accuracy scheduling and high 

performance, with less CPU load.   

We’ll introduce the outline and current status of our 

development with an prototype evaluation board exhibited at 

MHI booth. 

Index Terms—SpaceWire, SpaceWire-D, SpaceWire-R, 

processor, system-on-chip, High-Reliability. 

I. OVERVIEW 

Mitsubishi Heavy Industries (MHI) developed a space-

grade system-on-chip processor, SOISOC2. SOISOC2 has a 

high performance CPU core and a basic SpaceWire engine 

which supports RMAP protocol. The chip is implemented on a 

200 nm radiation hardened process based on the commercial 

Silicon On Insulator (SOI), so that can apply to the Space 

missions [1,2]. Fig.1 shows flight records of SOISOC2. 

SOISOC2 has been inside of a large number of satellites. 

SOISOC2 is also used in a commercial product, a radiation 

monitor as dual-use. 

And then SOISOC3 is our new space-grade system-on-chip 

processor which is currently being developed by MHI in 

partnership with JAXA. This is the next generation system-on-

chip processor upgraded from the current SOISOC2 chip. 
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Fig. 1.  Flight records of SOISOC2 

 

II. SPECIFICATION 

SOISOC3 maximizes the design property of SOISOC2 for 

steady development. TABLE I shows the specification of 

SOISOC3. Fig.2 shows the block diagram of SOISOC3. 

SOISOC3 is same semiconductor process, CPU core, and 

memory interface as SOISOC2. The architecture of the CPU 

core is used in many high-reliability products. (e.g. Automotive 

products)  

The SpaceWire engine is upgraded from SOISOC2. 

SOISOC3 has a high-reliability SpaceWire engine, which MHI 

has developed, supporting for incoming SpaceWire standards 

for deterministic data delivery (SpaceWire-D), reliable data 

transfer service (SpaceWire-R), as well as high performance 

Remote Memory Access Protocol (RMAP) with Direct 

Memory Access (DMA) engine [3,4,5].  

TABLE I.  SPECIFICATION OF SOISOC3 

Item Specification Remark 

Semiconductor 

Processes 

200nm SOI Same Specification  

as SOISOC2 

CPU Core 32bit RISC Processor 

Max. 100MIPS 

Same Specification  

as SOISOC2 

Memory Interface SDRAM I/F and  

SRAM/EEPROM I/F 

Same Specification  

as SOISOC2 

SpaceWire engine - - 

 Link Frequency Max. 120MHz Upgrade from  

SOISOC2 (~100MHz) 

External Port 4ch Upgrade from  

SOISOC2 (3ch) 

Support 

Protocol 

RMAP 

Raw 

SpaceWire-D 

SpaceWire-R 

Upgrade from 

SOISOC2 

(RMAP only) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Block diagram of SOISOC3 

III. DETAIL OF SPACEWIRE ENGINE 

Our developed SpaceWire engine is mainly performed on 

hardware, and can achieve high accuracy scheduling and high 

performance, with less CPU load. Details of hardware support 

functions are below. 

A. SpaceWire-D Hardware support 

 RMAP Write 

When the SpaceWire engine receives a write 

command from a Initiator, the SpaceWire engine 

checks the header format (Key, Logical Address, 

Header CRC etc.) and writes the data to the internal 

register or external memory (SDRAM or SRAM or 

EEPROM) directly by using DMA engine with no 

CPU load.  

If requested in the write command, a write reply is 

sent by the SpaceWire engine back to the initiator of 

the write command or to some other node as defined 

by the header (Reply Address field). 

 

 RMAP Read 

When the SpaceWire engine receives a read 

command from a Initiator, the SpaceWire engine 

checks the header format, reads the data from the 

internal register or external memory directly and sends 

a read reply to the initiator of the read command or to 

some other node. 

 

 Timing Cotrol 

The SpaceWire engine compares time-slot numbers 

with send requests that is generated by SpaceWire-D 

Initiator (middleware) at each time-slot and controls 

timing of sending a read/write command to achieve 

high accuracy scheduling. 

Fig.3 shows one example, the flow chart of a 

transaction on a SpaceWire-D static bus service. 
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Fig. 3.  Transaction on a static bus service (Ref. [1] pp. 71) 

 

 Time-Code Watchdog 

The SpaceWire engine has hardware time-code 

watchdog timer. The SpaceWire engine checks for 

arrival of a time-code. In the event of an early or late 

time-code, the SpaceWire engine sets an error flag and 

an interrupt signal. 

 

B. SpaceWire-R Hardware support 

 Segmentation 

At a sending end, the SpaceWire engine breaks a 

service data unit (SDU) into smaller pieces by 

hardware so that each piece can be transmitted in a 

SpaceWire-R packet. At a receiving end, the 

SpaceWire engine reconstructs the original SDU from 

a series of received SpaceWire-R packets with no CPU 

load.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Data Ack Reply 

Data ack packets are used to acknowledge receipt of 

Data. When the SpaceWire engine receives data 

packets, the SpaceWire engine checks data packets and 

replies data ack packets immediately.  

 

IV. SOFTWARE INTERFACE 

A real-time operating system called “TOPPERS HRP2 

Kernel” and a board support package (BSP) which is included 

a SpaceWire middleware is available for SOISOC3 [6]. 

“TOPPERS” is based on the technical development result 

applied “ITRON”. “TOPPERS” is used in many embedded 

devices.  

Fig.4 shows protocol stack of SOISOC3. SOISOC3 

middleware and hardware supports four types of protocols, 

RMAP, SpaceWire-D, SpaceWire-R, and Raw. The Raw 

protocol is consisted of the destination address field and the 

cargo field. A user application can set an original header and 

data as the cargo field. All protocols can select enable/disable 

of time slot scheduling. There also can be multiple plotocols on 

a same SpaceWire subnetwork by using time slot scheduling. 

(e.g. TS-6=SpW-R, TS-7=Raw, TS-8=SpW-D etc.)  

 SOISOC3 users can handle SpaceWire protocpls easily by 

using these software interface. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SpaceWire-D Initiator (middleware) checks 

load static requests from the initiator 

application and generates a send requests to 

the SpaceWire engine. 

The SpaceWire engine (Hardware) 

compares the time-slot numbers with send 

requests and decides send commands. 
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V. PERFORMANCE OF SPACEWIRE ENGINE 

Fig.5 shows a picture of a evaluation board of SOISOC3. 

The evaluation board consists of FPGA and peripheral ICs. 

(LVDS transmitter, SDRAM, SRAM, EEPROM, regulator 

etc.) All hardware functions of SOISOC3 are included in 

FPGA. 

For performance test of the SpaceWire Engine, one of the 

evaluation board is the initiator and the other is the target. A 

dummy application for performance test operates on 

middleware. A processing time of middleware and hardware is 

measured by SpW-link analyzer and logic analyzer. 

TABLE II shows the test parameter. In the performance test 

of RMAP write/read, it issued 1000 RMAP write/read 

commands. Total data size is 1Mbyte. From the start of the first 

command transmission to the last command transmission, it 

takes 252 milliseconds, thus the result is 32.5 Mbps. (= 

1Mbyte*8bit / 252 milliseconds) 

In the performance test of SpaceWire-R, it issued 8 SDUs. 

Total data size is 8Mbyte. When segmentation size is 256byte, 

it takes 850 milliseconds, thus the result is 78.9 Mbps. In case 

of 512Byte, the result is 90.7 Mbps. In case of 1kByte, the 

result is 93.3 Mbps. For the SpaceWire-R hardware support, 

the result is good agreement with the value that had been 

obtained by theoretical calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Evaluation board of SOISOC3 

TABLE II.  TEST PARAMETER 

Parameter Value Remark 

SpaceWire Link Rate 120MHz Theoretical speed  

is 96Mbps.(=120*8/10) 

Data Size of RMAP 1kByte*1000transaction  

Data Size of SpW-D 1Mbyte*8packets  

Segmentation Size of 

SpW-D 

256/512/1kByte  

VI. DEVELOPMENT STATUS 

TABLE III shows the development status of SOISOC3. 

ASIC#1 design and manufacturing are ongoing. SOISOC3 is 

scheduled to be ready by the end of March 2018. 

 

VII. CONCLUSION 

We introduced the overview and development status of 

SOISOC3. SOISOC3 is the new ASIC for space products 

which has the high-reliability and the high performance 

SpaceWire engine. We consider that the chip will provide an 

efficient and cost-effective way to develop new satellites and 

space crafts. 
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TABLE III.  DEVEMOPMENT STATUS OF SOISOC3 

Item Status Remark 

Preliminary/Critical Design of 

Hardware Logic and Middleware 

Complete  

Evaluation test by using FPGA Complete The evaluation board is 
exhibited at MHI booth. 

ASIC#1 Design and 

Manufacturing 

Ongoing  

Evaluation test of ASIC#1 ~March 

2017 

 

ASIC#2 Design and 

Manufacturing 

~September 

2017 

Bug Fix of ASIC#1 

Evaluation test of ASIC#2 ~March 

2018 

 

 

 

 

 

 

Evaluation Board 

SpW LinkAnalyzer 

FPGA 
(FPGA  

includes all  
SOI - SOC3  
Function.) 
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Abstract— SOI-SOC3 is a radiation hardened space-grade 

SOC implementing reliable SpaceWire protocol such as 

SpaceWire-R and SpaceWire-D. SOI-SOC3 realizes high 

performance in SpaceWire link speed, reliable communication 

technology such as data division, retransmission control, and 

real-time communication using time synchronization and 

scheduling system. These technologies are based on SOI-SOC2 

technology that realized high throughput, radiation hardened, 

and low power consumption using commercial SOI process 

technology. Since such reliable SpaceWire communications are 

realized by various middleware, users can use reliable SpaceWire 

protocols just by calling specific APIs. Due to its reliability, SOI-

SOC3 is applicable to not only space-grade products but also 

wide range of fields requiring high reliability and environment 

resistance such as power plants and medical devices. We have 

been planning to port cFE/cFS (Core Flight Executive/Core 

Flight System) to SOI-SOC3. Before manufacturing ASIC, we 

have evaluated basic function of SpaceWire on SOI-SOC3 

implemented on FPGA. In this paper we describe the evaluation 

results of SpaceWire function of SOI-SOC3 evaluation board and 

its software including middleware. 

Index Terms— SpaceWire, SpaceWire-D, SpaceWire-R, SOI-

SOC 

I. INTRODUCTION 

JAXA and MHI have been developing radiation hardened 

semiconductor process for components in severe radiation 

environments. This technology achieved Single Event Latch-up 

free and very low probability of Single Event Upset because 

this technology is based on the commercial SOI (Silicon On 

Insulator).  MHI has developed radiation hardened space-grade 

system-on-chip called “SOI-SOC2” using this process. This 

chip is mounted on a large number of satellite components. In 

addition to the previous SOI-SOC chip, JAXA and MHI have 

been developing the next generation space-grade radiation-

hardened processor named “SOI-SOC3”. SOI-SOC3 inherits 

the radiation-hard technology from SOI-SOC2. In addition to 

SOI-SOC2 function, SOI-SOC3 has the high-reliability 

SpaceWire system such as SpaceWire-D [1], and SpaceWire-R 

[2]. This technology makes it possible to use SOI-SOC3 in 

both of bus components that needs real-time communication in 

transfer of command and telemetry, and mission components 

that needs large-volume data communication in sensor data 

transfer. We have been developing not only processor, but also 

middleware and application platform using Core Flight 

Executive and Core Flight System (cFE/cFS) [3] created by 

NASA/Goddard Space Flight Center. This paper describes the 

outline of SOI-SOC3 and its evaluation test of SpaceWire 

communication function. 

II. SOI-SOC3 

SOI-SOC3 improved its function in both of hardware and 

software to implement the high-reliability SpaceWire system. 

In this chapter we describe the characteristics of hardware, 

software and middleware. 
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A. Hardware 

To achieve short-term and steady development we 

employed existing technology of SOI-SOC2 such as process 

rule and CPU core. In addition, SOI-SOC3 has high 

functionality to achieve some new function below: 

 Improvement in SpaceWire link rate 

 Real-time communication by using time 

synchronization and scheduling 

 High-reliability communication by data division and 

retransmission control 

Although SOI-SOC2 can handle only RMAP as SpaceWire 

protocol, SOI-SOC3 can handle SpaceWire-D and SpaceWire-

R as well. SpaceWire-D realizes time synchronization and 

scheduling function. Since control commands and sensor data 

are sent according to the schedule at the time of system design, 

SOI-SOC3 ensures real-time communication. In addition, 

precise scheduling and load reduction of software are realized 

because transmission is controlled by hardware. 

SOI-SOC3 also handles SpaceWire-R protocol to realize 

data division and retransmission control, so reliable data 

transmission is allowed. Furthermore, in SpaceWire-R a 

specific component cannot occupy the communication because 

Large-sized data are divided into a fixed-sized segments. 

As these high-reliability SpaceWire protocols implemented 

in SOI-SOC3 handle scheduling and generating headers in 

hardware, high throughput is achieved. 

B. Middleware 

To improve reusability and reduce verification scale and 

used application development, we constructed Application 

Programming Interface (API). SOI-SOC3 users are able to use 

SpaceWire functions easily and develop software applications 

using various SpaceWire protocols by calling this API. 

On the other hand, SOI-SOC3 has to handle more 

information to use SpaceWire because SpaceWire-R and 

SpaceWire-D protocols are implemented. This configuration 

information is different between applications, so It is difficult 

to write all set points by users for each application. Therefore 

we constructed the middleware to describe each set points in 

static API for SpaceWire middleware that is one of the 

characteristics of OS (TOPPERS) used in SOI-SOC3. 

Middleware configurator checks the static API and constraint 

settings for set points, and generates necessary source code for 

SpaceWire communication. 

C. Software 

SOI-SOC3 users can use SpaceWire functions easily by 

calling specific API described above. We also examine porting 

cFE/cFS as SOI-SOC3 software platform to support necessary 

protocol services for user applications. Since cFE does not 

have interface to use SpaceWire, we are looking into adding a 

new service interface for SpaceWire transaction. 

Figure 1 shows protocol stack of SpaceWire transaction in 

SOI-SOC3. SpaceWire physical layer is at the bottom, then 

hardware and software provide various SpaceWire functions as 

middleware. Users can develop software applications using 

these APIs. 

III. FUNCTIONAL EVALUATION 

In this chapter we describe the evaluation tests of 

SpaceWire functions in SOI-SOC3. In this evaluation tests we 

evaluate basic SpaceWire function (SpaceWire-Raw).  

A. Evaluation Board 

Figure 2 shows the SOI-SOC3 evaluation board. All 

functions of SOI-SOC3 is implemented in FPGA on this 

evaluation board. The board has four SpaceWire ports and also 

has a router. In addition, one SpaceWire engine is implemented 

inside. This engine can send and receive simultaneously. 

 
 

Fig. 1. Protocol stack of SOI-SOC3 [4] 
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B. Test Environment 

1) SpaceWire-Raw 

Figure 3 illustrates the setup of the evaluation tests of the 

basic SpaceWire protocols, SpaceWire-Raw. As shown in the 

Fig. 3, two boards are connected via SpaceWire Link Analyzer. 

We measured the time to process data transaction to calculate 

throughput. The size of trasmit data are 1Mbyte x 8 packet and 

link rate is 120Mbps.  

We are planning to evaluate SpaceWire-D and SpaceWire-

R functions using the test environments described below. 

2) SpaceWire-D 

Figure 4 illustrates the setup of the evaluation tests of 

SpaceWire-D. In this test SOI-SOC3 #1 sends time-critical 

command to SOI-SOC3 #3 while SOI-SOC3 #2 sends large 

data which is not time-critical. The command packet can be 

sent as scheduled when SpaceWire-D is used. 

3) SpaceWire-R 

Figure 5 illustrates the setup of the evaluation tests of 

SpaceWire-R. In this test SOI-SOC3 #1 and #4 sends large 

amount of data each other via SOI-SOC #2 and #3. At the same 

time SOI-SOC #2 sends some packets to SOI-SOC #3. Since 

large data transaction shares SpaceWire path with small data 

transaction, large data block a small packet until its transaction 

ends when basic SpaceWire protocol is used. In SpaceWire-R 

large data are divided into some segments, therefore small 

packet can be sent during transaction of large data. 

C. Evaluation Results 

Table 1 shows the evaluation test results of SpaceWire-

Raw. H/W process time means the time between the beginning 

of data transmission and the end of data receiving in hardware. 

Total process time means the time between the transmission 

requirement in software and the end of receiving process in 

software. In SpaceWire-Raw Protocol, effective throughput 

achieves theoretical value (96Mbps = 120MHz x 8/10 bit) . 

SpaceWire-D and SpaceWire-R evaluation tests will be carried 

out.  

TABLE I.  SPW-RAW EVALUATION RESULTS 

Protocol 
Process time [us] Throughput [Mbps] 

H/W Total H/W Total 

SpW-Raw 699077 734116 95.996 91.415 

IV. CONCLUSION 

We introduced next generation radiation hardened space-

grade processor, which we call “SOI-SOC3”. We implemented 

reliable SpaceWire protocol such as SpaceWire-D and 

SpaceWire-R to realize high performance in SpaceWire 

function. We developed not only processor but also 

middleware to improve usability. SOI-SOC3 users can easily 

use various SpaceWire protocols including SpaceWire-D and 

SpaceWire-R by calling specific APIs. We evaluated basic 

functions of SpaceWire using SOI-SOC3 evaluation board and 

confirmed that sufficient throughput was achieved. SpaceWire-

D and SpaceWire-R function evaluation tests will be carried 

out in near future to evaluate reliable and complicated 

functions. 
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Fig. 2. SOI-SOC3 evaluation board 
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Fig. 3. Test environment for SpW-Raw 
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Fig. 4. Test environment for SpW-D 

 

SpW 

Engine

SpW

Router

SpW 

Engine

SpW

Router

SpW 

Engine

SpW

Router

SOI-SOC3 #2

SOI-SOC3 #3

SOI-SOC3 #1

SpW 

Engine

SpW

Router

SOI-SOC3 #4

Large dataSmall data
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Abstract—This paper summarizes the need for galvanic 
isolation in SpaceWire networks and reviews the limitations of 
current isolation solutions; the paper also proposes a new 
Isolated SpaceWire Receiver device based on radiation-hardened 
Silicon-on-Sapphire (SoS) technology and demonstrates the 
benefits of primarily isolating only the receiver lines of an SpW 
port. As a stepping-stone to the proposed device, a discrete 
galvanic isolation receiver module will be demonstrated using 
Silanna's core isolator chip along with commercial off-the-shelf 
(COTS) LVDS transmitters, LVDS receivers, and an isolated 
DC-DC converter to power all circuitry across the isolation 
barrier. To ease testing & evaluation, the SpW isolator module 
can be simply implemented by cascading inline to an existing 
SpW port, or by replacing the SpW pigtail connector, or even by 
replacing the LVDS transmitter & receiver stages. The proposed 
integrated solution is expected to have on-chip isolated power 
and operate up to 400 Mbps, handling a common-mode of 100 V-
RMS, and a galvanic isolation of 1 kV-RMS. 

Index Terms— SpaceWire, SpW, isolation, fault propagation, 
LVDS, common mode voltage, galvanic, component, spacecraft 
electronics. 

I. INTRODUCTION 

SpaceWire (SpW) as defined in the standard [1] uses the 
Low Voltage Differential Signaling (LVDS) electrical interface 
which has the advantage of reducing the power required for a 
high speed data link; however, the existing LVDS buffers and 
ASIC devices have 2 principal drawbacks for implementing 
high reliability systems: 

 
• limited common mode voltage tolerance 
• fault propagation paths 
 

The common mode tolerance is +/-1V; if this voltage is 
exceeded then the link data may be corrupted. In the worst case 
the transmitter/receiver devices may either be stressed or 
permanently damaged. Stressing of the LVDS buffer may not 
be evident but often results in a reduced reliability leading to 
premature failure later. Within a spacecraft, it is practical to 
control the common mode voltages within the specified limits 
and thus once launched problems would not be anticipated. 
Control of the common mode voltages during ground testing of 
spacecraft with remote Electrical Ground Support Equipment 
(EGSE) that use long cables becomes more problematic; 

drivers and receivers have failed in test configurations either 
due to incorrect test setups, poor grounding setups, or the 
effects of EMC testing. Clearly it is important to implement an 
effective grounding scheme and ensure that methods for 
monitoring the common mode voltages are in place rather than 
wait for failures to occur or assume acceptable conditions are 
met.  

Fault propagation paths exist between LVDS link ends due 
to the direct silicon to silicon connection between the devices 
at the two ends of a link [2]. As shown in Figure 1, a power 
supply failure in one piece of equipment could propagate to 
another equipment by injecting out of specification voltages at 
the LVDS buffer terminals [3]. Due to the constraints of high 
speed signaling, it is not practical to use series protection 
resistors in the signal lines to reduce potential fault currents to 
an acceptable level; thus, it is necessary to add protection to the 
internal supply rails of each equipment. 

 

 
Fig. 1.  Common mode voltages and fault propagation 

The mitigation methods for both the common mode and 
fault propagation issues are time consuming to analyze for 
failure mode effects and they typically result in an increased 
complexity of the flight equipment. 

It is thus highly desirable to incorporate galvanic isolation 
in the link paths; this will permit the legacy Mil-Std-1553B 
command and control links to be replaced with the more 
capable SpW bus and to eliminate failures in test environments 
with EGSE. [4] 

II. LIMITATIONS OF CURRENT ISOLATION SOLUTIONS 

The Data and Strobe lines of SpaceWire are non-DC-
balanced signal streams with data rates up to 400 Mb/s. [1] 
Since the signal streams are not DC-balanced, typical 
capacitive or inductive (transformer) AC coupling methods for 
isolation are not viable; in comparison, by design, high speed 
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digital isolators are capable of handling non-DC-balanced 
signal streams. However, almost all high speed digital isolators 
available today have maximum data rates of less than 200 
Mb/s; although there are some digital isolators capable of data 
rates greater than 200 Mb/s, they are not built on a space-
proven, radiation-hardened process such as Silicon-on-
Sapphire (SOS). Silanna has already demonstrated the digital 
isolation of signal streams greater than 500 Mb/s using a 0.5μm 
SOS process. [5] 

III. LIMITATIONS OF PREVIOUSLY PROPOSED SPACEWIRE 

LINK ISOLATOR 

The initial proposal for SpW isolation was a SpaceWire 
link isolator that fully isolated both the transmitter pair (Data 
and Strobe) and the receiver pair of LVDS interfaces. [4] 
While this approach had successfully provided isolation to 
SpW links operating up to 400 Mb/s, there were some issues 
when both ends of a SpW connection had link isolators; with 
the component sides of both links establishing their own 
separate ground references, the fully isolated cable resulted in a 
"floating" ground reference for the signal levels within the 
cable. This represented a potential problem of exceeding the 
isolation voltage range of one or both SpW link isolators. 

Although the floating cable ground problem could be 
mitigated by ensuring only one end of a SpW connection is 
fully isolated, this complicates the SpW network design of a 
system.  

IV. PROPOSED ISOLATED SPACEWIRE RECEIVER 

To prevent the potential problems of having both ends of a 
SpW connection fully isolated, the proposed Isolated SpW 
Receiver would have two high-speed data channels to handle 
Data and Strobe of the receive signaling only; with LVDS 
levels on the cable-side and LVDS & LVTTL levels supported 
on the module-side of the isolation barrier, both discrete and 
integrated SpW ports could have isolated receivers with a 
nearly drop-in isolation solution. To further simplify the 
adoption of the Isolated SpW Receiver, the device would also 
include the integration of a DC-DC isolator to optionally 
provide power to the cable-side of the receiver from the 
module-side without the need for additional active components 
(see Fig. 2). 

 
 

 
Fig. 2.  Silanna Isolated SpW Receiver 

A summary of the target features are: 
• 2 high speed (400 Mbps) channels 
• Cable-side: LVDS Inputs 
• Module-side: LVTTL or LVDS Outputs 

o LVTTL: Receiver Mode 
o LVDS: Repeater Mode 

• LVDS failsafe per SpW standard 
• Cold sparing for redundant backup 
• Isolation voltage: 1 kVrms 
• Working voltage: 100 V (common mode 

voltage) 
• Integrated DC-to-DC isolator to power cable-

side from module-side 
• Cable-side receiver lines align well w/ SpW 

cable receiver connections 
• Ground-based device in 12-pin plastic package  
• Space grade device in 12-pin ceramic package 
• Silicon-on-Sapphire (SOS) technology 
• Target Radiation Tolerance > 100 krad(Si) TID 

(for Space grade) 

V. BENEFITS OF RECEIVER-ONLY SPW ISOLATION 

In addition to being smaller, lighter, and consuming less 
power compared to a fully isolated SpW port, the Isolated SpW 
Receiver allows greater flexibility in configuring a SpW 
network and localizing isolation to the ports, nodes, and 
modules that are required to handle higher common-mode 
voltages. The floating ground within the SpW cable is avoided 
since the signaling is referenced to the transmitter grounds on 
either end of the cable. 

VI. DEMONSTRATION MODULE 

To demonstrate the high speed digital isolation capabilities 
in a SpW application, a demonstration (demo) module for the 
Isolated SpW Receiver was designed around the Silanna 
SIL1020L 2-channel high-speed digital isolator device (Fig. 3). 
A dual channel LVDS receiver (LV028 type) is used on the 
cable-side of the isolator while a dual channel LVDS 
transmitter (LV027 type) is used to interface with the module-
side. An isolated DC-DC converter is also included as an 
option to power the isolated side of the module. Prototypes of 
the module demonstrated the wide common mode range of the 
isolated interface and the capability to handle the non-DC-
balanced pseudo-random data streams up to 400 Mbps.  

 

 
Fig. 3.  Isolated SpW Receiver Demo Module 
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With the appropriate SpW connectors on both ends of the 
demo module, a SpW port’s receiver can be easily isolated and 
tested by simply installing the demo module between the SpW 
cable & the SpW connector and supplying power (3.3V) from 
the target system. Optionally, SpW connector pigtail wires can 
be used on the powered-side of the module to replace a 
standard pigtail connector for testing. There are also 
connection points between the SIL1020L high-speed digital 
isolator and the LVDS transmitters (LV027) to allow 
replacement of the existing LVDS drivers & receivers where 
applicable. 

Testing of the Isolated SpW Receiver demo module will 
continue with tests in SpW environments that include both AC 
and DC common mode voltages. 

VII. CONCLUSIONS 

The isolation of the receivers in a SpW port addresses the 
limited common mode voltage range of standard SpW 
connections. With an Isolated SpW Receiver both ends of a 
SpW connection, there will not be a direct connection of the 
devices at the two ends of the link; this severs the fault 
propagation path between the two devices that could occur in 
the event of a power supply failure. 

Additional testing at Silanna and within the SpaceWire 
community is needed to confirm the effectiveness of isolating 
only the receivers of a SpW port. 

. 
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 Abstract  — Тhe article  presents  12.5 Gbit/s Physical Media
Attachment (PMA) units, TX and RX, fabricated in 90 nm bulk
CMOS  process.  The  PMA  are  designed  for  use  in
SpaceFibre/GigaSpaceWire  (SpaceWire-RUS)  systems for  the
space radars. The units comprise SERDES and clock and data
recovery (CDR).  Supported set  of  data rates  includes those of
1.25,  2.5,  6.25 and 12.5 Gbit/s,  but  intermediate  rates  are  also
available.

Index  Terms  —  SoC,  space  components,  SERDES,  PMA,
SpaceFibre, GigaSpaceWire.

I. INTRODUCTION

The  data  transmission  systems  become  more  and  more
demanding in terms of throughput. Driving applications of the
high-speed links include uncompressed video transmission and
wideband radio applications, including radars. SpaceFibre and
GigaSpaceWire networks are attractive solutions due to their
elaborate networking capabilities, though their throughput yet
can  be  a  bottleneck  for  certain  applications.  This  work
describes the integrated solution to achieve channel rates of up
to 12.5 Gbit/s per link using 90 nm bulk CMOS process.

II. MOTIVATION

As the bandwidth processed by the interface SoC increases,
datarate grows proportionally.  This requires either more pins,
or more bandwidth per pin. Since the pin count increase is not
always possible or desirable for space and parasitics reasons,
one is seeking for higher throughput per pin. SpaceFibre is a
good  choice  for  several  reasons.  Unlike  protocols  like
Jesd204b,  it  can  be  used  both  for  bulk  data  transfer  and
configuration, an also has extensive networking capabilities.

III. ARHITECTURE

The original application of the work is the SoC for phased
array radars. GigaSpaceWire was selected as the data interface
due  to  its  ability  to  support  both  system  configuration  and
monitoring and high-speed bulk data transmission. Also, the
protocol is relatively lightweight in terms of silicon area.

The SoC can process radio data in the bandwidth as wide as
600 MHz. Signal received is digitized by the 12-bit quadrature

ADC. Sample rate after filtering and decimation is 700 MSa/s,
giving the total  I/Q  payload  data  rate  of   16.8 Gbit/s.  After
8b10b expansion this becomes 21 Gbit/s, not counting service
traffic.  If  the  data  is  formatted  as  16 bit  words  instead  of
12 bits, the total rate required increases to 28 Gbit/s.

To  alleviate  this  bandwidth  requirements,  several
techniques were used. Among them bit packing, block-floating
point representation, signal bandwidth limiting.

Nonetheless,  at  least  one  12.5 Gbit/s  link  is  required  to
transmit  useful  amount  of  data,  while  2x  is  needed for  full
bandwidth.

There are four GigaSpaceWire physical interfaces per SoC,
that can be configured as 4*1x, 2*2x or 1*4x.

Despite this high data rate,  the distance requirements are
not very high in this application. Since the data are processed
collectively  by  units,  only  the  links  to  the  neighbors  are
required. Typically, there are few centimeters of PCB.

To address the speed requirements, the corresponding TX
and RX PMA units  were  designed.  The link speed is  up to
12.5 Gbit/s. From the internal side, data is fed over 4*10 bit
bus at the clock rate of up to 312.5 MHz.

The TX unit performs data serialization. Internally, data are
fed  by  the  40-bit  parallel  interface,  4  symbols  per  clock.
Reference clock may by any from 200 MHz to  600 MHz in
50 MHz  increments.  For  12.5 Gbits/s  the  minimum  clock
frequency is 350 MHz.

The output  provides  typical  400 mV p-p differential  into
100 ohm load. It  also provides high frequency pre-emphasis 
 [1].

The RX unit  performs  clock-and-data  recovery  and  data
deserialization,  based  mostly on  [2].  It  also  has  40-bit  data
interface and similar  clock specification.  The data alignment
and error detection are performed in the digital domain.

The unit does not perform adaptive equalization.

IV. PROOF ON SILICON

To test  end  evaluate  the  PMA modules,  test  chips  were
fabricated. The process is TSMC bulk CMOS 90 nm, 7 metal
layers.
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To feed the TX unit with the 12.5 Gbit/s data over external
CMOS IO  pins,  one  would  need  100 of  them at  125 MHz
clock, and the same number for RX. This would require 200+
pins  package.  Such  package  would  have  considerable  size,
hence, parasitics, and cost. 

To keep the pin count low, we placed essential data pattern
generation and checking logic on-chip, accessible over serial
interface. This allowed us to fit the chip, containing also other
test structures, into a compact 64-pin QFN package.

The logic provides the following features and functionality:
 configuring TX and RX units for various bit rates and

reference clock frequencies;
 sending either pre-defined or user-programmable 40-

bit patterns;
 sending pseudo-random legal 8b10b sequence;
 capturing 40-bit words received;
 counting of total words received;
 counting of bit errors when transmitting static 40-bit

pattern into Bit Error Counter (BEC);
 counting bit errors when transmitting pseudo-random

sequence into BEC;
 automatic  capturing  the  first  word,  containing  bit

error.
The test fixture is interfaced with PC over USB.
The PC control and monitor software allows easily perform

operations like atomically setting and clearing individual bits in
the  pattern  transmitted,  automatic  and  manual  alignment,
pattern shifting, real-time BER display, RX data rate,  etc.

In the first mode of operation, one can send arbitrary static
pattern and observe the one received, (fig. 2).

 Fig. 2.  Static pattern testing.

In  this  mode,  bit  errors  are  counted  as  number  of  bit
difference  between  successive  two  words  received.  For
instance, flipping any bit in TX pattern would increment BEC
by one. This approach would underestimate BER when some
bit  is  received  erroneously  several  times  in  sequence.
Nevertheless,  on  the  first  occurrence,  the  error  would  be
counted,  and  the  word  containing  it  would  be  captured  for
analysis.

If the pattern transmitted contains COMMA, the RX would
align automatically once. It can then be reset for realignment, if
necessary.

In  the  second  mode,  the  TX  initially  sends  starting
sequence,  containing  COMMA in  every  4-th  symbol.  RX
aligns to that sequence and goes to the “READY” state. When
the  TX then  eventually  switches  to  sending  pseudo-random
sequence, RX notices the pattern change and starts to compare
the sequence  received  with that  of  the local  pseudo-random
generator. Thus, every bit error can be counted in BEC and the
true BER measured (see fig. 3).

Fig. 3.  Random sequence testing.

Two  types  of  PC-boards  were  fabricated,  one  for  local
loopback (see Figure 1), and another for wired board-to-board

Fig. 1.   PC board with local loopback.
or wired loopback configuration.  In  the latter  case,  a  SATA
cable with appropriate connectors was used.

V. RESULTS.

Test  chips  were  tested  for  speeds  1.25 Gbit/s,  2.5 Gbit/s,
6.25 Gbit/s and 12.5 Gbit/s.

Samples  show reliable  communication  at  rates  1.25  and
2.5 Gbit/s over local loopback and board-to-board over 30 cm
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cable showing BER<10-13 (no bit errors detected during 3 hour
testing).

For the two higher rates results are varying. Local loopback
shows BER of about 10-11at 6.25 Gbps and 10-9 at 12.5 Gbps.

Over 10 cm cable BER is 10-10 at  6.25 Gbps and 10-5 at
12.5 Gbps.  With  30 cm  cable  BER  is  still  below  10-7 at
6.25 Gbps, but at  12.5 Gbps the communication is unreliable.

VI. CONCLUSION

The implemented and tested PMA subsystem supports link
rates  of  up  to  12.5 Gbit/s  per  link.  Test  structures  were
fabricated in 90 mn bulk CMOS process and tested.

The  units  are  suitable  for  chip-to-chip  communication
within PCB at speeds up to 12.5 Gbps.

For use over longer cable lines, RX equalization would be
required.
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Abstract— The Japan Aerospace Exploration Agency (JAXA) 

launched new research aiming at realizing low resource and 

frequent space science mission. We report the development 

activity for realizing miniaturization of onboard equipment using 

SpaceWire. The technology development target is the 

miniaturization of onboard units, which are small enough for 

deploying interplanetary mission with small rockets as Epsilon 

Launch Vehicles. Since SpaceWire interface consists of full 

digital circuitries and its communication protocol enables 

hardware implementation, Large Scale Integration (LSI) 

technology, surface mounting technology (SMT), and ceramic 

ball grid array (CBGA) packages are exploited for the 

miniaturization of onboard equipment with communication 

interfaces. The preliminary result shows that one half and/or one 

third in scale and mass can be realized. 

Index Terms— SpaceWire, Surface Mounting Technology 

(SMT), Interplanetary Mission, Miniaturization. 

I. INTRODUCTION 

JAXA launched new research aiming at realizing low 

resource and frequent space science mission. The technology 

development target is the miniaturization of onboard 

equipment, which is small enough for deploying interplanetary 

mission with small rockets as Epsilon Launch Vehicles. Since 

SpaceWire interface consists of full digital circuitries and its 

communication protocol enables hardware implementation, it 

plays an important role for the miniaturization of onboard 

equipment with communication interfaces. We report the 

preliminary result of our development activity, in which one 

half and/or one third in scale and mass of onboard equipment 

can be realized with SpaceWire interfaces. 

The key technologies are miniaturization using Large Scale 

Integration (LSI), surface mounting technology (SMT), and 

ceramic ball grid array (CBGA) packages. LSI technology is 

the straight forward method for downsizing, and a fully 

SpaceWire based satellite has been successfully demonstrated 

on orbit by HISAKI [1, 2], the extreme ultraviolet spectroscope 

for Exospheric Dynamics, launched in 2013 and is working in 

stable condition. All onboard bus equipment of HISAKI 

employs SpaceWire interfaces, and scaling law with LSI 

technology is observed. CMOS (complementary metal-oxide 

semiconductor) LSI scaling law is also inherited for the 

downsizing of onboard equipment. SpaceWire interface plays 

an important role on HISAKI, which realizes scaling law of 

miniaturization for straight forward adoption of LSI technology. 

We also report the evaluation result of environment tests of 

miniaturization technology such as surface mounting 

technology using versatile CBGA packages. These items are 

applicable for various LSI dies. 

The miniaturization of SpaceWire based onboard 

equipment enlightens downsizing of other subsystems such as 

thermal control, structure, power unit, etc. These improvements 

are expected to accelerate the downsizing of whole satellite 

system. 

II. MINIATURIZATION DEMOSTRATED BY HISAKI 

Spectroscopic Planet Observatory for Recognition of 

Interaction of Atmosphere "HISAKI" (SPRINT-A) is the 

world's first space telescope for remote observation of the 

planets such as Venus, Mars, and Jupiter from the orbit around 

the earth. Every bus equipment of HISAKI employs SpaceWire 

for communication interfaces. Its attitude and orbit control 
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(a) 

 

(b) 

 

(c) 

subsystem (AOCS) has standby redundancy, whereas the mass 

is only 348kg and the bus size is small as shown in Fig. 1 with 

the payload of Extreme-ultraviolet (EUV) imaging 

spectrometer. 

©JAXA 

Fig. 1.  HISAKI (SPRINT-A) with a system test crew member 

Miniaturization of HISAKI has been achieved by LSIs with 

SpaceWire interfaces. All communication LSIs incorporate 

SpaceWire interfaces as shown in Fig. 2, and they contributed 

the reduction of size and mass of bus equipment of HISAKI. 

NSR14 is a SpaceWire router with 20 ports, on which 14 

physical ports and 6 virtual ports are implemented. It is shown 

in Fig. 1 (a). It is fabricated on JAXA authorized 0.15 μm 

Silicon-on-Insulator (SOI) cell-based application-specific 

integrated circuit (ASIC). Two 28-port SpaceWire routers are 

used in HISAKI, and one SpaceWire router accommodates 2 

NSR14 LSIs. 

Multi-mode Intelligent Terminal (MIT) shown in Fig. 2 (b) 

is an input/output processor (I/O processor) with an 20-port 

SpaceWire router and 2 communication micro-controller units 

(MCUs), which is also fabricated on JAXA authorized 0.15 μ
m SOI cell-based ASIC. One MIT is used in Space Cube2 

onboard computer in order to implement SpaceWire-D [3] for 

guaranteeing determinism [4, 5]. 

Network Interface Controller (NIC) is a terminal function 

controller LSI with the target function of Remote Memory 

Access Protocol (RMAP) [6]. The first version of NIC is 

NIC07, which is shown in Fig. 2 (c), and it is fabricated JAXA 

authorized 0.35 μm CMOS cell-based LSI. The circuitry 

implemented in NIC07 is prepared as an Intellectual Property 

(IP) in order to accommodate its functions in Field 

Programmable Gate Arrays (FPGAs) for the interface modules 

of sensors, actuators, power control subsystem equipment, 

heater control electronics units, and telecommunication 

equipment. 

All of the design was described in high level language as 

ANSI-C language using ELEGANT framework [7] in the 

preliminary design phase, in consequence the verification time 

scale was shorter than the design process using Register-

Transfer Level (RTL) like Verilog or VHDL (VHSIC (Very 

High Speed Integrated Circuit) Hardware Description 

Language). Therefore, these SpaceWire communication LSIs 

were intended to contribute the miniaturization of onboard 

equipment rather than aiming at developing a standard 

SpaceWire communication LSI. 

© JAXA 

Fig. 2.  SpaceWire communication LSIs (a) NSR14: 20-port SpaceWire router, 

(b) MIT: Multi mode Intelligent Terminal with an 8-port SpaceWire 

router and two communication micro-controller units, (c) NIC07: 
Network Interface Controller with SpaceWire/RMAP terminal functions. 
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III. SURFACE MOUNTING TECHNOLOGY FOR MINIATURIATION 

Since the miniaturization development with LSIs with 

SpaceWire interfaces were successfully demonstrated by 

HISAKI, JAXA has started the next step of miniaturization. 

Major technology development activities are SMT and 

providing versatile CBGA packages. 

A. Surface mounting technology (SMT) 

SMT is the most prospective technology for the 

miniaturization of protocol bridges between SpaceWire and 

legacy interfaces. When we incorporate legacy interface 

devices used for sensors and actuators, we should integrate 

mixed signal LSIs, analog Integrated Circuit (IC) as well as 

logic ICs and LSIs. Hybrid IC (HIC) and multi-chip module 

(MCM) are candidates for integrating those mixed signal 

devices in one package, whereas the packages of HIC/MCM 

are obstacles for achieving substantial miniaturization. We aim 

at miniaturized units without HIC/MCM packages instead. 

The miniaturization development activity is in concept 

design phase, in that we have collaboration between overseas 

partners in order to realize smart sensors and smart actuators 

for integrated onboard networks with SpaceWire. We selected 

an interface module with a SpaceWire interface for converting 

the legacy interfaces of sensors like GAS (Geomagnetic aspect 

sensor), CSAS (Coarse sun aspect sensor), and SPSH (Sun 

Presence Sensor Head) as the motif of the first step, because it 

has typical mixed signal interfaces. 

The result of Europe and Japan collaboration 

Fig. 3.  A mockup of miniaturized SpaceWire bridge 

Figure 3 shows the mockup of concept design derived 

through the collaboration between European and Japanese 

members. Figure 3 (a) shows the design concept of the 

SpaceWire bridge for a legacy interface, and Fig. 3 (b) shows a 

mock up using real size components with the same functions as 

flight devices. Two A5 size modules are expected to be shrunk 

into the size of a connector back-shell. What we found is that 

the smaller the module is, the less numbers of passive 

electronic components and mechanical parts are required. 

B. Versatile Ceramic Ball Grid Array (CBGA) package 

BGA packages are indispensable components for 

miniaturization. The issue of the package is that a BGA 

package and/or a CGA (Column Grid Array) are provided for 

each device, and each device vendor has to bear non-recurring 

cost for each package. 

© JAXA 

Fig. 4.  JAXA authorized CBGA package, (a) top view, (c) side view 

TABLE I.  CBGA PACKAGE LINEUP 

Item Spaceborn CBGA package lineup 

size, 

pin numbers, 
terminal pitch 

26 x 26 mm, 

572 pin, 

1.0 mm pitch 

21 x 21 mm, 

357 pin, 

1.0 mm pitch 

15 x 15 mm, 

165 pin, 

1.0 mm pitch 

Cavity 4 steps 4 steps 2steps 

Soldering 
High melting point dimple solders 

SnPb soldering for terminals 

 

Figure 4 shows the top view (a) and side view (b) of the 

JAXA authorized CBGA 572 pin package. Three types of the 

CBGA packages are to be provided as shown in Table 1. These 

packages are provided with JAXA authorized assembly criteria 

document, and various kinds of chips of devices can be 

mounted inside the CBGA package. The environmental 

evaluation based on JAXA authorized test condition is 

successfully carried out. 
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IV. ELECTRICAL DESIGN EVALUATION 

Electrical design evaluation follows the consideration of 

assembly technology reported in the preceding section. The 

issue of the evaluation is to find out how assembly technology 

contribute to the minimization of electrical design. We selected 

a SpaceWire bridge for RS-422 interface as the second motif, 

which is called Payload Interface Unit (PIU). The typical flight 

model of the bridge unit is used on orbit in order to attach a 

conventional Global Positioning System Receiver (GPSR) to 

an onboard satellite bus within SpaceWire network, and is 

shown in Fig. 5 and Table II.   

PIU: RS-422 to SpaceWire bridge 

Fig. 5.  Payload interface unit (PIU) for GPSR 

TABLE II.  PAYLOAD INTERFACE UNIT (PIU) FOR GPSR 

Supported sensor GPS receiver 

Size (mm) 142 (W) x 150 (D) x 81.4 (H) 

Weight (kg) 1.46 

Power (W) 6.51 (typical) 

 

The original PIU has its own power supply unit (PSU) for 

providing secondary power, and two PWBs for digital function 

circuitry.  

We exclude the PSU for evaluating minimization design in 

order to set up a scope on minimization of digital circuits. The 

electrical functions of the miniaturized module are verified, 

and the module has the same function as the original PIU. We 

found that the miniaturization of a unit is difficult from the 

bottom-up design consideration of minimization through this 

evaluation. The reduction of passive electronics devices and 

interface devices are taken into consideration from the top-

down point of view encouraged by the preceding assembly 

technology evaluation. The verified module with a surface 

mounted FPGA using surface mount technology is shown in 

Fig. 6. Two radiation hardened FPGAs are used in the flight 

model of the PIU. They are ACTEL FPGAs RTAX2000S-

CQ352. The whole functions on two FPGAs are implemented 

on one commercial FPGA with similar system gate size. We 

selected one Spartan-6 XC6SLX25-3FT256 for our evaluation, 

because its capacity is close to the FPGAs for the flight unit as 

shown in Table III. Some flight level FPGAs found to be 

suitable for the flight model of this one chip implementation, 

because the elimination of interface circuit between two 

FPGAs is noticeable for the reduction of system gate size. 

TABLE III.  EVALUATION MODEL FPGA 

Item Flight Model Electrical evaluation model 

FPGA RTAX2000S-CQ352 Spartan-6 XC6SLX25-3FT256 

Flip-Flops 10,752 x 2 54,576 

Memories 288 kbits x 2 2,088 kbits 

I/Os 198 pins 186 pins 

 

The target size of the miniaturized module is expected as 

39 mm x 48 mm x 10 mm at first with the premise that whole 

circuit over the two PWBs can be transposed into one FPGA. 

Once the target size is established, the reduction of the 

numbers of passive electronics devices and interface circuitries 

is taken into account. 

© JAXA 

Fig. 6.  Payload interface unit (PIU) for GPSR 

V. CONCULUSION 

JAXA’s next generation miniaturization technology 

development activity is introduced. The premise of reduction in 

size is based on the evaluation of assembly technology and 
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versatile JAXA authorized CBGA packages. The perspective 

of miniaturization boosts the simplification of electronics 

design. 
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Abstract—The common DPU platform for ESA JUICE mission 

instruments is a hardware and software platform developed by 

Cobham Gaisler for the scientific instrument payloads of the 

European Space Agency Jupiter Icy Moons spacecraft. The 

hardware is based around the GR712RC dual-core LEON3-FT 

processor with GRSPW2 SpaceWire interfaces. To accompany 

the JUICE instrument hardware, a flight quality SpaceWire 

software package has been developed, compliant with ESA ECSS 

standards for Space Software engineering. The software includes 

SpaceWire device drivers and protocol support for the 

SpaceWire CCSDS Packet Transfer Protocol, the Packet 

Utilization Standard and the SpaceWire Time Distribution 

protocol. 

Index Terms—JUICE, Scientific Instrumentation, SpaceWire 

I. INTRODUCTION 

Defining a common hardware and software platform for 

computer systems in a spacecraft is difficult as space missions 

and their instruments are dedicated to perform a specific task 

optimized for weight, power, performance and many other 

parameters. Despite differences, instruments may have many 

commonalities such as operating conditions, radiation 

environment, criticality and on-board network communication 

protocols and more. 

As part of the ESA funded activity "DPU for JUICE 

Instruments" contract 4000113396/15/NL/BW, Cobham 

Gaisler designed a DPU (Digital Processing Unit) hardware 

and software platform to meet the common requirements of ten 

payloads on-board the JUICE satellite [1]. ESA had compiled 

functional and performance requirements and demanded 

components with flight heritage, radiation tolerant up to 

100krad(Si) total dose, configurable in the performance range 

up to 100 MIPS and working memory up to 256MiB. Cobham 

Gaisler proposed adaptations and realized the requirements into 

a platform based on the GR712RC LEON3-FT dual-core 

processor [2] described hereafter. 

During the activity boot and driver software supporting the 

DPU platform was to be developed, unit-tested, validated and 

documented according to project specific tailoring of the 

ECSS-E-ST-40C and ECSS-Q-ST-80C software engineering 

and quality standards [3], [4]. 

The software package consists of a boot loader, Standby 

Mode remote maintenance software and a hardware driver 

library. The boot follows the ESA flight software boot loader 

payload requirements [5] and the driver software was designed 

to provide low-level support for the I/O functionality of the 

GR712RC. 

The project started in February 2015 and completed in June 

2016. 

This paper describes the common DPU platform for ESA 

JUICE mission instruments and then continues with a 

discussion on the protocol software support for SpaceWire in 

use on the platform. It also describes tools and techniques used 

for unit testing and validating SpaceWire-based software in 

simulation and on target hardware. 

II. DPU PROCESSOR SECTION 

In the DPU architecture proposed the GR712RC LEON3-

FT dual-core processor [2] from Cobham Gaisler is a natural 

choice to meet the requirements of CPU processing 

performance, memory architecture and I/O interfaces. It is 

beneficial from a power consumption, complexity and 

performance perspective using the GR712RC in this design 

since it provides all the identified I/O interfaces without the 

need to interface to additional components. With the clock-

gating, I/O pin multiplexing and memory interface options, the 

GR712RC allows a power effective and modular design 

concept that is configurable to each instrument's specific needs. 

The DPU design memory configuration options, I/O interfaces 

and major component selections are summarized below. 

 GR712RC 2 x LEON3-FT, 32KiB cache [2] 

 Boot Memory [6] 

 32KiB PROM (UT28F256LVQLE) 

 2MiB MRAM (UT8MR2M8) 

 Application memory [6] 

 2MiB MRAM (UT8MR2M8) 

 8MiB MRAM (UT8MR8M8) 

 Working memory [6] 

 SRAM  4MiB BCH (UT8R1M39) 
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 SRAM  8MiB BCH (UT8R2M39) 

 SRAM 16MiB BCH (UT8R4M39) 

 SRAM 32MiB BCH (2xUT8R4M39) 

 SDRAM 256MiB RS (UT8SDMQ64M48) 

 4 x SpaceWire (UT54LVDS031LV/E) [6] 

 FPGA interface: 

 32/16- or 8-bit I/O interface (buffered) 

 SpaceWire 

 SPI, 6 x UARTs, GPIOs 

 I2C, CAN, 1553B-MIL, Ethernet (free to use) 

A block diagram of the DPU design is given in Fig. 1. 

Once the DPU is deployed in a final flight design the 

instrument manufacturer typically wants to configure and 

optimize schematics and optimize the layout for the 

instrument's specific needs. The analyses provided with the 

common DPU design may need to be adapted and refined for 

the flight board but serve as a strong starting point for the 

analyses reiteration. 

A prototype system of the DPU design has been 

manufactured and is available in different configurations. The 

DPU prototype is a flight model instantiated on a 100mm x 

100mm PCB carrying components of EM quality for all major 

components and logic. 

The DPU prototype can be installed onto a commercial 

grade motherboard that provides connectors for all the listed 

interfaces, debugging capabilities, FPGA expansion slot, 

GR712RC switch matrix configuration, etc. The motherboard 

features multiple separate voltage rails, individually 

configurable voltage levels and voltage/current measuring 

circuitry which was used during hardware verification to 

characterize the power dissipation and to test the accuracy 

under +/-10% and 0% of the nominal voltage supply levels. 

The photo in Fig. 2. illustrates one of the manufactured 

DPU prototypes. Centered is the GR712RC processor and to 

the right of it is an MRAM type application storage memory. 

Boot memory, working memory and SpaceWire transceivers 

are located on the opposite side. At top and bottom of the photo 

are the connectors for mounting the DPU prototype on its 

motherboard.

 

Fig. 2. DPU EM Prototype (back side) 

III. HARDWARE DRIVER SOFTWARE LIBRARY 

The purpose of the Hardware Driver Software Library 

Fig. 1. DPU block diagram 
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(HDSW) is to provide drivers for operating a subset of the 

peripheral devices available on the GR712RC. Supported 

interfaces include SpaceWire, UART, SPI, GPIO, timers and 

more. This software is provided to the instrument 

manufacturers for incorporating in their instrument specific 

application software. 

The drivers are compatible with RTEMS 4.10 [8]. 

However, all operating system services used by the driver 

library are called via an operating system abstraction layer, 

which in effect makes the driver library OS independent. For 

example, the DPU Boot SW uses the timer and SpaceWire 

drivers from HDSW, but with a custom OS backend adapted to 

the Boot SW run-time. 

A user friendly Application Programming Interface (API) 

has been defined with the instrument application programmer 

in mind. All drivers operate in nonblocking mode with the 

option for the user to install interrupt handlers if required by 

the application. RAM buffers used by the drivers are allocated 

statically either by the user or by the driver.  It is possible to 

operate the drivers without relying on dynamic memory 

allocation. 

IV. DPU BOOT SW 

DPU Boot SW is responsible for taking the DPU from 

system reset state to the execution of scientific instrument 

application software. The software consists of three parts 

which execute in sequence: Processor Module Initialization, 

Standby Mode and Application Loader. The Boot SW 

implementation represents a tailoring of the ESA published 

requirement document Flight Computer Initialization Sequence 

[5]. This software is designed to execute on each of the JUICE 

instruments on startup. 

The Processor Module Initialization sequence is 

responsible for configuring the GR712RC [2] hardware and 

perform self-tests on system resources. Any hardware 

functions which are not required for the operation of Boot SW 

are configured in a disabled mode. As each self-test progress, 

the result is written in a boot report which is later available via 

SpaceWire network service and to the instrument application. 

The early stages of the initialization sequence is implemented 

in SPARC assembly, and later when the RAM resource is 

made available, a C runtime environment is setup and used. 

Standby Mode implements a PUS (Packet Utilization 

Standard) [9] terminal operating over SpaceWire. The PUS 

protocol has been tailored for low implementation complexity, 

high testability and for performance. Remote services are 

provided for managing on-board memory and to perform 

system specific operations such as protecting the MRAM 

resource. The memory service allows for managing the 

application storage memory, for example in-mission remote 

patching of an application image. RMAP is also available for 

low-level system access. 

One SpaceWire interface at a time is used by Standby 

Mode. Dual redundant SpaceWire links are supported by a link 

reconfiguration manager implemented in software which can 

select among two interfaces. A scrubbing service is responsible 

for updating external RAM and caches memories. 

SpaceWire Time Distribution Protocol (TDP) [10] is used 

to synchronize time with the on-board computer and all PUS 

telemetry packets are timestamped with the synchronized time. 

The Application Loader is started when Standby Mode 

terminates. It can be triggered by a PUS TC command or a 

PUS TC timeout condition. Its purpose is to load, verify and 

start executing an instrument specific application software. A 

flexible application image format has been defined which 

allows for dividing the application software into individual 

sections where each section is protected with a CRC16 value. 

This allows for remote partial application patching using the 

PUS memory service. 

V. SOFTWARE DESIGN METHODOLOGY 

A rich set of configuration parameters are available for 

customizing the DPU Boot SW. This includes setting memory 

and SpaceWire properties and also allows for setting mission 

and timing properties. In particular, the full range of supported 

DPU configurations is covered by the software configuration 

parameters. 

DPU Boot SW can be configured to execute on the 

GR712RC development board [11] in case the JUICE DPU 

hardware is not available. 

A set of methodologies are being used to reach a high level 

of software determinism and to ease software testing: 

 Boot SW uses its own custom run-time and thus does 

not depend on an operating system. 

 Boot SW operates without interrupts and HDSW is 

not dependent on it. 

 Boot SW has as default action to restart the system in 

the event of an unexpected trap. 

 No dynamic memory allocation is used by Boot SW 

or the driver library. 

 Third party source code is not used. The C standard 

library is not used. 

 Hardware parameters are not probed by software. 

VI. NETWORK PROTOCOL STACK 

The SpaceWire network stack as used in the JUICE DPU 

Boot SW consists of the following components, from lower to 

higher protocol level: 

 GRSPW2 (SpaceWire hardware interface) 

 SpaceWire packet driver (HDSW) 

 RMAP (GRSPW2) 

 Time Distribution Protocol (Standby Mode) 

 Link Reconfiguration Service (Standby Mode) 

 CCSDS Packet Transfer Protocol (Standby Mode) 

 Packet Utilization Standard (Standby Mode) 

Careful design allows for network data buffers to be 

transferred up and down the stack without involving copying of 

data with the CPU. In general this is achieved by passing 

pointers between the layers after performing the necessary 

encapsulation/decapsulation and header validations. The 

protocol components are described in following sections. 
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VII. DPU SPACEWIRE HARDWARE 

The GR712RC provides up to 6 SpaceWire hardware 

interfaces (GRSPW2) where the first two features a hardware 

implemented RMAP target. GRSPW2 provides an interface 

between the GR712RC system bus and the SpaceWire network 

and provides DMA access to the DPU memories. The DPU 

schematics include the two first SpaceWire interfaces and two 

are optionally free to use. Up to two SpaceWire interfaces are 

used and controlled by the DPU Boot SW. 

VIII. SPACEWIRE PACKET DRIVER 

The SpaceWire driver is part of the HDSW driver library. It 

provides a packet-based zero-copy interface, a link 

configuration interface and time-code interface. Memory 

footprint for the SpaceWire driver is less than 4 KiB, excluding 

packet buffers. 

The driver link interface provides software control of how 

the GRSPW2 interfaces to the SpaceWire link. It allows for 

configuring SpaceWire clock frequency, node addresses, link 

state and receiving Time-codes. Status monitoring such as link 

state is also supported. 

RMAP functionality is controlled by the link interface but 

the actual RMAP protocol is implemented in hardware. 

The purpose of the driver packet interface is to provide a 

software API to the GRSPW2 DMA channels. Each 

SpaceWire packets is associated with a software structure 

describing the packet. These software structures can be linked 

together for the user to perform driver operations on multiple 

packets in one go. 

Manipulation of GRSPW2 DMA descriptor tables is the 

main responsibility of the packet interface: when the driver is 

supplied with a list of packets, the descriptor table is updated 

accordingly with the new packets. One key point is that the 

driver never copies or interprets the packet payload data (zero-

copy). It also means that the processor time consumed by the 

driver does not depend on payload sizes. 

The main descriptor table manipulation operations 

available to the user are: 

 grspw_dma_tx_send(): Schedule a list of packets for 

transmission. 

 grspw_dma_tx_reclaim(): Reclaim packets which 

have previously been scheduled for transmission with 

grspw_dma_tx_send(). 

 grspw_dma_rx_prepare(): Provide driver with RX 

packet buffers for future DMA reception. 

 grspw_dma_rx_recv(): Get received RX packet 

buffers back from the driver. 

IX. LINK RECONFIGURATION SERVICE 

Two separate SpaceWire interfaces in redundant 

configuration are available on the DPU. A link reconfiguration 

service is designed based on ESA requirements for the on-

board network for the purpose of mitigating against sporadic 

and long-term network errors.  The service runs periodically in 

Standby Mode operation to determine which of the two 

SpaceWire interfaces shall be selected as the primary interface. 

A link quality algorithm qualifies the nominal and 

redundant interface by monitoring them for link state changes 

and for link errors. The qualification outcome is used to 

determine which of the SpaceWire interfaces to select as the 

primary interface to operate on. In Standby Mode operation, the 

primary interface is used for sending TM reports. Valid TC 

commands are always processed, independent on which 

interface they arrive on. The primary interface is also used for 

the SpaceWire Time Distribution Protocol (TDP). 

Link reconfiguration is optional as the DPU can be 

configured with only one SpaceWire interface (dual-redundant 

DPU configuration). 

X. CCSDS PACKET TRANSFER PROTOCOL 

CCSDS packet transfer protocol [12] is a protocol for 

transferring CCSDS packets across a SpaceWire network. The 

protocol does not guarantee packet delivery or packet order, 

and there is no transfer confirmation and no quality-of-service 

provided. A simple encapsulation / decapsulation scheme is 

defined [12], with two main services: 

 A transmission service is called from the PUS layer 

and encapsulates a CCSDS packet into a SpaceWire 

packet for processing by the SpaceWire packet driver. 

 A reception service gets a SpaceWire packet from the 

SpaceWire packet driver layer. It decapsulates it and 

eventually passes a CCSDS Space Packet up to the 

PUS layer. Target logical address and protocol 

identifier fields are checked according to 

configuration parameters. 

Since the protocol CCSDS Packet Transfer Protocol field 

length is known and fixed, the Standby Mode implementation 

does not perform any copying in this layer. After validation, 

the data buffer is forwarded with an adjusted pointer value. 

XI. PACKET UTILIZATION STANDARD 

The Packet Utilization Standard (PUS) [9] is used for end-

to-end transport of telemetry and telecommand data between 

user applications on the ground and application processes on-

board the DPU. Specifically, PUS defines application-level 

interfaces between ground and space. 

PUS relies to a large degree on mission tailoring, both with 

regard to the set of supported services and with regard to  

packet structure layouts. In the case of DPU Boot SW, the 

services tailoring is defined by the Flight Computer 

Initialization Sequence [5] while packet structure tailoring was 

set by ESA and Cobham Gaisler as part of the project 

specification. Driving factors for the tailoring has been to 

reduce implementation complexity and achieve high testability 

and run-time performance. 

Supported services include: 

 Telecommand verification (PUS service 1) 

 Housekeeping (PUS service 3) 

 Event reporting (PUS service 5) 

 Memory management (PUS service 6) 

 Function management (PUS service 8) 

 Connection test (PUS service 17) 
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XII. SPACEWIRE TIME DISTRIBUTION PROTOCOL 

The DPU implements a SpaceWire Time Distribution 

Protocol (TDP) [10] client for synchronizing its local time with 

the on-board time from an on-board TDP master. 

Time information is transferred by an RMAP write 

command carrying a CCSDS Time Code. The synchronization 

event is signaled by means of transferring a SpaceWire time 

control code (Time-Code) which activates the corresponding 

CCSDS Time Code. 

Both RMAP and SpaceWire time control codes are 

supported in hardware by the GR712RC. However, the TDP 

protocol itself is not directly supported. The solution was to 

make use of the hardware support and implement the time 

synchronization/activation in software. When a SpaceWire 

time control code arrives, software compares it with the last 

CCSDS Time Code received over RMAP to qualify it. To 

calculate time-offsets for the local time, the software 

implementation uses an event time-stamping functionality 

available in the processor. 

One time synchronization per second is accepted by the 

Standby Mode as demanded by the mission requirements. Each 

PUS telemetry packet sent by the DPU contains the local time. 

XIII. UNIT TESTING 

The SpaceWire software unit test effort aims to provide 

confidence that the various software components comply with 

their specification on a per-function level. These tests are 

designed to execute on both the target prototype hardware and 

in the TSIM2 SPARC/LEON3 simulator [13]. A unit test 

framework has been developed which allows script-based 

execution and logging of the tests. 

Software units are tested in isolation by using mock 

routines at the borders of the tested unit. A custom assert-like 

function library is implemented in the unit test framework and 

used to describe and verify the expected unit behavior and 

invariants. 

Execution times for the SpaceWire driver are recorded by 

the unit tests when running on prototype hardware. This is 

achieved by the test framework sampling a timer. Measuring 

time samples recorded while executing the functions under test 

with various function parameters are used to provide realistic 

bounds on execution time. 

TSIM2 [13] is integrated into the test framework to 

automatically extract code coverage reports. Instruction level 

code coverage for the JUICE SpaceWire software is 98 %. For 

software branches not covered by unit tests, the code has been 

manually analyzed and put into context with corresponding 

validation test cases to provide evidence of full coverage. 

XIV. VALIDATION 

A validation framework for the DPU software has also been 

developed. It is used to validate the software requirements and 

exercise the full DPU software, including the SpaceWire 

network stack. 

In the validation setup, DPU Boot SW runs on the DPU 

prototype board connected with two SpaceWire interfaces to a  

GRESB SpaceWire/Ethernet bridge [14]. The GRESB is 

connected to a workstation PC. The PC executes a validation 

test suite which sends PUS telecommands over the SpaceWire 

network via the GRESB to the DPU (PUS terminal). Side-

effects of the telecommands are verified by investigating PUS 

TM reports. The side-effects can also be timeouts, restarts, link 

reconfigurations or expected TM omissions. The validation test 

setup is illustrated in Fig. 3. 

 

Fig. 3. DPU validation setup 

At the heart of the validation framework is a Tcl [15] 

library developed for communicating with the GRESB and 

simplifying common operations such as matching TM 

responses, performing multiple TC uploads and system restart. 

This gives a streamlined path from specification of validation 

test cases, to test implementation and execution. 

A large part of the validation framework consists of the 

PUS TC generator and TM validator. Functionality is also 

available for generating TDP traffic, injecting erroneous 

packets on different network layers, and for controlling the 

SpaceWire link state. Link state control is used to validate 

operation of the Boot SW link reconfiguration service. 

A set of sample application software images have been 

prepared to validate the system state at handover to application 

software. 

To facilitate visibility of temporal software behavior, the 

DPU Boot SW has a built-in execution time monitoring per 

task which can be used to bound effective execution time. 

Time measurements are reported via a housekeeping report 

service monitored by the validation framework running on the 

PC. 

A separate driver validation software, running on RTEMS 

4.10 [8], is also available. It exercises all the different HDSW 

drivers in parallel on the DPU prototype hardware. 
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XV. COMPLIANCE TO SOFTWARE ENGINEERING STANDARDS 

One of the baseline requirements for the project was to 

develop the DPU Boot SW and Hardware Driver Software 

Library in accordance with ESA software engineering and 

product assurance standards [3], [4]. A set of deliverables, 

document and source code, was agreed upon and the software 

criticality was set to category B. 

A specification phase was carried out which included 

preparation of software requirement specifications, interface 

control documents, unit test plans and validation test plans, 

including test case specifications and expected use-cases. This 

phase also included development of software design 

documents. 

The software implementation phase followed in 

combination with development of the unit test framework and 

implementation of unit tests. Hardware and system simulators 

were integrated in the unit test loop as well as functionality for 

performing automated code coverage analysis (simulation) and 

execution time measurements (hardware). 

As the software implementations matured, the DPU 

validation framework was developed. The previously specified 

validation test cases were implemented using the validation 

framework and the corresponding equipment such as the 

GRESB SpaceWire/Ethernet bridge [14]. 

The software validation phase was matched with arrival of 

the prototype boards which allowed for running the software 

on a representative hardware platform. 

When work with the specifications, implementations, 

testing, validation and documentation was completed, the 

project was closed after a successful review with ESA. 

XVI. CONCLUSION 

A flight quality SpaceWire driver, together with a 

SpaceWire network protocol stack has been implemented and 

is available for the GR712RC LEON3-FT [2]. 

It includes software support for raw SpaceWire packets, 

Time Distribution Protocol (TDP), a link reconfiguration 

service, the CCSDS Packet Transfer Protocol and Packet 

Utilization Standard (PUS). The software is compliant with 

ESA ECSS standards for Space software engineering [3], [4]. 

In addition, the DPU platform provides support for RMAP, 

SpaceWire time-control codes and the SpaceWire data link 

layer protocol. 

By using the presented SpaceWire software, a common set 

of services can be implemented by maintaining only one piece 

of software. Using already validated boot, low-level driver 

software and the automated test framework reduces the effort 

of the instrument software development and demonstrates a 

viable approach of software design and testing accepted by the 

agency. 

The software is available as a standard software to the 

JUICE instrument manufacturers for use in the JUICE mission. 

Cobham Gaisler can also license the software to customers for 

use in other missions. 

The DPU flight hardware platform design is delivered as 

design files (schematics, layout, BOM). It comes with a set of 

quality documents, for example a Failure Mode and Effects 

Analysis (FMEA) and a Radiation Analysis. 

Prototype DPU boards have been manufactured. These 

systems have been used for verification of the design and for 

development of the DPU software. 

Although the instruments in the ESA JUICE mission 

demands a wide range of memory configurations, 

performances, interface peripherals and software support, the 

DPU developed within the activity can house all major 

configurations at performance. Thus it provides the possibility 

to use it as a common DPU platform the among instruments. 

The gain of using a common DPU hardware and software 

platform is not only to the user's but is also an advantage for 

ESA and the satellite prime contractor as the overall satellite 

design is harmonized. The instrument development process can 

be shortened by using an already defined DPU and software 

package. As the DPU is modular is can be reused in future 

missions with similar or less demanding environmental 

constraints. 
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Abstract— A number of evolutions of the SpaceWire standard 
[1] and usage recommendations have been developed over the 
past decade. As a result, the original standard is slowly evolving 
towards a so-called SpaceWire-2 (SpW-2) standard family, 
covering legacy SpaceWire, SpW-Rev1 and SpaceFibre [2],[3]. 

Besides other use cases that are mainly covered through on-
going actions structured through the SAVOIR-UNION working 
group [4], the requirements of the future on-board network 
systems should also cover the needs of space robotics which is a 
rapidly evolving engineering discipline and one of the potential 
space applications of SpaceWire-2. 

This paper presents a number of robotics-specific needs that 
should be taken in consideration for the definition of SpW-2, and 
investigates the capabilities provided by the SpaceWire standard 
and evolutions (SpW rev1 and mainly SpaceFibre). 

Index Terms—SpaceWire, SpaceFibre, real-time networks, 
SAVOIR, robotic systems control, GNC, vision based navigation, 
on-board data processing, on-board software, space exploration, 
planetary exploration, in-orbit servicing, orbital systems, robotic 
arm, planetary rovers. 

I. INTRODUCTION 
A number of evolutions of the SpaceWire standard [1], 

usage recommendations or communication protocols have been 
developed over the past decade, including for instance the 
SpW-R [5][6], SpW-D [7][8], SpW-RT [9], SpW-NDCP[10], 
or N-MaSS [11][12]. A SpaceWire standard revision is also 
expected to be released soon [13] and the SpaceFibre standard 
is currently being drafted [2] to provide higher performance 
and quality of service [14]. As a result, the original SpaceWire 
standard is evolving towards a so-called “SpaceWire-2” (SpW-
2) standard family, which will cover an integrated solution to 
all the issues addressed by the evolutions mentioned above [3]. 

At the 6th International SpaceWire Conference in 2014, it 
was proposed that the requirements baseline for SpaceWire-2 
should be assessed first by gathering the needs from various 
heterogeneous space applications, then by identifying key 
properties and creating an evaluation system (TABLE I.) to be 
used by the community that defines the standard [15]. 

TABLE I.  PROPOSED EVALUATION SYSTEM IN [15] 

 
1. Value: Typical value or range for the considered property w.r.t. the considered application domain 
2. Relevance: Property relevance for a given mission (3: High, 2: Medium, 1: Low, 0: N/A) 

Such work has not been formally done following this 
methodology in a cooperative mode as proposed. However, the 
common European vision of the future satellite platform and 
payload data handling architecture has been structured through 
the SAVOIR initiative which has improved visibility on 
common needs [16]. Quite recently, the work focusing on 
future user needs in on-board network has been finally 
launched with the SAVOIR-UNION working group [17]. 

All these actions however do not specifically focus on 
future space robotics which is a rapidly evolving engineering 
discipline and one of the potential space applications of 
SpaceWire-2. In fact, Airbus Defence and Space is currently 
investigating the use of SpaceWire in a number of planetary 
exploration robotics and orbital robotics applications: specific 
requirements and issues with the current version of the 
standard are being identified within a number of past and on-
going studies and demonstrators. 

 

 

Properties Units Value1 Relevance2 Value1 Relevance2 Value1 Relevance2

Network consumption mWatt/device 50 2 < 50 3 100 1

ElectroMagnetic High/Medium/Low Medium 3 Medium 3 High 3

Bus Error rate Typical value 1,E-12 3 1,E-12 2 1,E-14 3

Media Copper/Fibre/Both Both 1 Both 2 Copper 3

Clock transmission Yes/No Yes 2 No 1 Yes 3

Architecture P2P/Bus/Network/Ring Network 2 Network 2
Bus or 

Network 2

Connectors type fixed/few variants/free Fixed 1 Fixed 1 Few V. 2

Connectors weight g 10 2 10 3 10 1

Connector Vibration resilience Low/Medium/High Medium 2 Medium 2 High 3

T ooling for mating Yes/No Yes 2 Yes 2 Yes 2

Harness Mass g/m < 80 2 < 80 3 80 1

Gross data rate Gigabit per second 1 - 5 1 1 - 10 1 0,1 - 1 1

Minimum Net data rate MegaByte per second > 100 3 > 1000 3 > 20 3

Retry Yes/No/Optionnal No 2 Yes 1 No 3

Time-distribut ion Yes/No/Optionnal Yes 3 Optionnal 2 Yes 3

Flow Control Yes/No/Optionnal Yes 2 Yes 3 Yes 3

High Priority message Yes/No/Optionnal Opt ionnal 2 Optionnal 2 Yes 3

Error detect ion Yes/No Yes 3 Yes 2 Yes 3

Master IP size Eq ASIC Gate, KiloBytes 20 1 20 1 20 1

Slave IP size Eq ASIC Gate, KiloBytes 10 3 10 3 5 3

Stand Alone component Yes/No Yes 3 Yes 3 Yes 3

Bridge to other buses 1553/Can/Other 1553/Can 1 SpW 3 1553 2

Link length m 10 2 10 2 60 2

Failsafe Yes/No Yes 2 Yes 1 Yes 3

Redundancy management Yes/No Yes 2 Yes 2 Yes 2

Robustness against babbling idiot Yes/No Yes 3 Yes 3 Yes 3

EVALUATION

Type of applications:

Science missions 
PayloadsUse cases: 

Ariane-5
Avionique-XDomain

Inputs projects (for lessons learned) 
or studies (on future missions):

Data handling, Spacecraft  
AOCS, FDIR

Payload Data handling and 
processing, inst ruments cont rol

Guidance, navigation and 
control / Flight  t elemet ry

MISSION, SpW-D, AOCS 
SpW, N-Mass,... 

Bepi Columbo, Solo,
N-Mass

System features

METRICS

Implementation 
Constraints 

Funct ional

Mechanical

Elect rical

Satelites  Platforms Launchers
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A number of robotics-specific needs should be taken in 
consideration for the definition of SpW-2, covering aspects 
such as mechanical design of cables and connectors, data 
handling architecture, FDIR and network management. In front 
of this requirements envelope, an analysis of the capabilities 
provided by the current state of the SpaceWire standard system 
(SpaceWire, SpW rev1 and SpaceFibre) identifies potential 
remaining gaps that the future SpaceWire-2 should fulfil to fit 
the future robotics missions’ needs. 

II. FUTURE ROBOTICS MISSIONS AND USE CASES 
We can easily support the vision that the growing share of 

automation in many complex ground applications (as human 
assistants first and then in full autonomy) shall logically be 
derived in space sooner or later. Currently, the extremely fast 
development of robotics applications on ground together with 
the progress in sensors and effectors critical technologies, 
mechatronics, microelectronics, data processing and software 
enables the development of innovative concepts that will 
increase science return with in-situ robotics. Compared with 
the past decades, we can expect a drastic increase of the use of 
robotics systems in future space mission. This applies 
especially for planetary exploration and in-orbit operations. 

PLANETARY OBSERVATION 
Future planetary exploration missions planned by ESA 

following ExoMars 2020 are for instance: 
• Phobos Sample Return (PHOOTPRINT): a sample-

return mission to the Mars moon Phobos proposed for 
launch in 2024. This mission will require a robotic arm 
equipped with sampling tools (Fig. 1) 

• Mars Sample Return (MSR) will include a robotic arm 
dealing with the return of the sample cache from a 
mobile platform (Fig. 2) 

Several concepts are being investigated to return samples 
from asteroids (e.g. ESA Asteroid sample return, ESA Marco-
Polo), or planetary moons such as the Moon or Phobos (e.g. 
ESA PhootPrint, Phobos Sample Return). All these concepts 
involve a single lander platform with a robotic manipulator 
tasked to retrieve a sample from the surface. A variety of 
robotics tools will have to be connected to, and used by, the 
robots involved in the mission. The low gravity, vacuum and 
dust environment will be critical in the design of such end-
effectors and their interfaces. 

 
Fig. 1 - Phobos Sample Return Lander Concept with the sampling arm 

extended 

Rovers and robotic arms/manipulators are used in most of 
the missions being considered. A robotic manipulator can be 
used to facilitate the placement of payload heads onto the 
surface (e.g. Raman/LIBS spectrometer, microscope) or to 
deploy specific payload elements (e.g. seismometer). When 
numerous operations need to be performed by a single 
manipulator, a tool exchange system can be used to swap end-
effector to carry out various tasks such as trenching, drilling or 
in-situ imaging and analysis.  

In terms of rovers, the current MSR concept relies on a 
main lander element that includes a Mars Ascent Vehicle 
(MAV) for the return of the sample, a Sample Fetching Rover 
(SFR) and a sample cache, deposited earlier on the surface of 
Mars by a caching mission. The SFR is deployed from the 
MSR lander or a secondary platform and is tasked to recover a 
passive sample cache by means of a robotic manipulator. The 
rover then returns to the MSR lander and the sample cache is 
transferred to the MAV (by the rover manipulator or a separate 
lander arm). 

Tool exchange as well as the variety and complexity of the 
various vehicles mission modes poses several issues on the 
data handling system as in particular the scalability and the 
capability to partly, dynamically and autonomously reconfigure 
communication networks with change of functional interfaces. 

 
Fig. 2 - Mars Sample Return Lander Concept with the arm dealing with 

the return of the sample cache from a mobile platform 

IN-ORBIT OPERATIONS 
Closer to Earth, the need for robotics systems for 

autonomous manoeuvres and manipulation will increase. 
Future missions put a particular focus on debris removal but 
also on in-orbit spacecraft servicing (Fig. 3). 

Missions in preparation are for instance: 
• e-Deorbit, for making rendezvous and docking with 

the old and large ENVISAT spacecraft target and 
steering down for a controlled burn-up in the 
atmosphere (Fig. 4, [18][19]); 

• more generally the whole Clean Space initiative of 
ESA for improving technologies enabling to clean the 
thousands of accumulated space debris in GEO and 
LEO orbits [20]; 

• the Airbus Defence & Space Space-Tug concept [21], 
containing fuel and powered by electrical propulsion, 
staying in a parking orbit for servicing spacecraft for 
various types of missions such as spacecraft tugging 
from Low Earth Orbit to GTO or cis-lunar orbit, in-
orbit spacecraft repair, upgrade, refuel or reboost, 
debris tugging to controlled re-entry etc… 
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Fig. 3 – DEOS concept for In-orbit satellite servicing [22] 

 
Fig. 4 - e-Deorbit concept for ENVISAT capture ([19]) 

In all these missions, the capabilities to navigate 
autonomously as well as in-situ manipulations are necessary. 
This will require robotic arms with an adapted variety of tools, 
visual and other local sensors and a real-time on-board 
processing capability. So the identified critical technologies 
that need to be further developed or improved are Vision Based 
Navigation (VBN) and on-board high performance processing 
for in-situ images analysis and autonomous real-time control. 
In all these systems, sensors and control data will require to be 
transported from various points through datalinks that will 
induce specific requirements for real-time performance and 
reliability. 

In other words, to achieve future robotics missions, 
spacecraft bodies will require better brains and be completed 
by eyes, articulated arms, hands with agile fingers possibly 
capable of touch feeling, and few other sensors and tools. Of 
course, a network of nerves (data links) will be needed to carry 
data between all these. 

 
Fig. 5 – Spacecraft gripping demonstration, source DLR [23] 

III. PHYSICAL LAYER 
Mechanical constraints may apply to robotics systems. An 

analysis of these constraints w.r.t. to the current SpaceWire 
standard is provided below with some recommendations as 
input to SpaceWire-2 definition. 

CABLES 
The SpaceWire cable consists of four 100 Ohm differential 

twisted pairs for each link, each with a shield and jacket; these 
are encased around a central filler and enclosed with an overall 
shield and protective jacket. This configuration as shown 
below (Fig. 6) presents a very robust cable assembly with good 
EM shielding and high signal performance. However, the 
robustness of this solution is paid in terms of non-negligible 
harness mass and cost brought to the data-handling hardware. 

The standard SpaceWire cable has a dynamic bend radius 
of 60 mm, which is suitable to most of satellite applications but 
can easily become a limiting factor with robotics, which are 
usually made of modular and movable parts. In fact, in a recent 
feasibility study made by Airbus Defence and Space in UK 
about the implementation of a full SpaceWire-based control 
system for the LARAD arm, it was found that the standard 
SpaceWire cable would impair the degrees of freedom of the 
arm. Detailed analysis revealed that a maximum bending radius 
of 15 mm must be met in order to preserve the mobility of the 
parts. Several non-standard cable products are available for 
instance from Axon that bring better bending characteristics 
with less weight (TABLE II.). 

 
Fig. 6 – Standard SpaceWire cable [1]  

CONNECTORS 
Miniaturization is extremely important for many robotic 

applications, especially in space exploration missions for which 
every gram, cm3 and Watt counts. The standard Sub-D 
connector is not really miniaturized. SpaceWire specifies the 
use of 9 pin micro-D connectors: despite of being quite smaller 
than the Sub-D connector, these still require a large amount of 
both space on the board for the socket, as well as room behind 
the connector to properly terminate all the shields into the 
connector. The size of the micro-D is 7.57 x 19.69 x 10.57 mm. 
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Axon proposes a new alternative, the nano-D (size: 3.18 x 9.53 
x 5.33 mm) (Fig. 7), which may bring benefits to robotics. Such 
a miniaturized connector should be proposed at least as an 
option in SpW-2.0. 

Aging and damage with repetitive mating and un-mating is 
generally not a problem is satellites but may be a problem with 
robotics (e.g. connection/disconnection of robotic modules, 
robotic arms with exchangeable end-effector). Connectors shall 
also be preferably designed to resist to many mate/un-mate 
cycles. 

Dust is not a problem for orbital applications but it is a 
problem for planetary exploration. Mars, for instance, has dust 
and strong winds, hence exposed connectors have to be 
designed to operate under these hostile conditions. Industrial 
solutions have been proposed (e.g. dust-tolerant connectors by 
honeybee, Fig. 8) which may be taken in consideration. 
Unfortunately, these solutions are far from being miniaturised! 

TABLE II.  CABLE OPTIONS MAIN CHARACTERISTICS  
SOURCE:www.axon-cable.com [25] 

 

 
Fig. 7 – AXON Nano-D connectors 

SOURCE: www.axon-cable.com [26] 

 
Fig. 8 – Honeybee robotics dust tolerant connector. The red membranes 

cover the electrical contacts before mating 
SOURCE: www.honeybeerobotics.com [27] 

IV. DATA HANDLING SYSTEM ARCHITECTURE 
There are two main drivers that are viewed as specific to 

robotics needs in terms of data network architecture. 
On the one hand, to carry on the analogy with human 

bodies above in this paper, a data-link network shall be the 
nerves linking the brain with eyes, arms, hands, fingers and all 
other potential sensors. Many peripheral systems inducing 
various network topologies shall be reliably linked together and 
with the brain (on-board processing device); this all depends on 
the type of specialized action the robot is made for, and it also 
may be moving and/or disconnected and reconnected w.r.t. 
each other. Flexibility of the network topology, modularity and 
easy in-flight re-configurability shall therefore be driving 
requirements for SpaceWire-2 within the picture of a full 
spacecraft data network in which a SpW/SpF based backbone 
may connect to a diversity of other sensor-buses such as CAN, 
SPI, I2C, MIL-STD-1553, PowerLink, etc… 

On the other hand, beside the flexible topology issue, the 
autonomy is the other main issue in space robotics applications. 
This means autonomous real time control for critical operations 
which cannot be tele-operated by humans due to the space 
situation: recognizing targets, navigating for rendezvous, 
gripping, latching, clamping, screwing, etc… Indeed, except 
for manned flight that, in few cases, may allow for direct and 
interactive robot-human operations as, for instance, on the 
International Space Station, the signal delay itself between an 
Earth-based control center and the spacecraft is too long to 
allow for remote operations. Typical robotic systems 
applications imply hard-real-time closed loops with frequencies 
in the range of 100 Hz, which is sensibly above the classical 
spacecraft Attitude and Orbit Control requirements (typically 
10 to 20 Hz). Finally, emergency action in case of failure or 
hazardous situation is also to be done autonomously: this is 
treated below in the section V on FDIR and network 
management). 

TOPOLOGY 
Within a robotic system, the topology of the data network, 

linking the controlling brain to all sensors and actuators, is 
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highly dependent on the application. For example, the 
Lightweight Advanced Robotic Arm Demonstrator (LARAD) 
robotic arm (Fig. 9) will have a Daisy Chain shape for the data 
network while a rover vehicle for planetary exploration like the 
Bridget demonstrator (Fig. 10) will have Tree like network, i.e. 
with multiple branches. Moreover, robotic arms may be 
mounted on larger robots with or without use of a single or 
several independent networks. Each project needs therefore to 
explore the space of architectural solutions, this being made 
easier thanks to networks modeling and analysis tools such as 
MOST [32], in particular to pre-check real time performance 
provided by the possible topologies. 

In the case of the Lightweight Advanced Robotic Arm 
Demonstrator (LARAD), several topology options have been 
explored in the frame of the development of a control system 
architecture fully based on the SpaceWire [28]. The classical 
star topology, the bus chain and several variants of ring 
topologies have been traded-off to link the LARAD On-board 
Computer (OBC) with the Joint Electronics (JE) units and the 
End Effector (EE). The “Ring with Interleaved Connections 
topology (Fig. 11) is finally the preferred option with respect to 
harness mass, reliability and estimated performance of the 
network. Complementary analysis has also been performed on 
these topologies to determine the network data latencies typical 
and worst cases for the nominal case and with a disconnected 
link (Fig. 12). This analysis confirms this topology as the best 
option (detailed results are presented during this SpaceWire 
conference [29]). 

 
Fig. 11 – LARAD SpaceWire Network, Ring Topology with Interleaved 

Connections [28] 

 
Fig. 12 – Worst-case SpaceWire latencies for the telecommand (a) and 
telemetry (b) data flows in the interleaved ring network topologies with 

failures at 10Mbps [29] 

V. FDIR AND NETWORK MANAGEMENT 
The on-board network topology of robotic systems often 

changes during operation due to connection/disconnection to 
other robots or spacecraft and, in case of arms, due to end-
effectors exchange. Moreover, a common driver for most 
robotic missions is that the effect of faults may result in 
physical damages of part of the system thus potentially 
jeopardizing the mission. And when human beings (e.g. 
astronauts) or human vital assets (e.g. inhabited space vehicle) 
are involved in the operations, it becomes safety critical. In this 
context, a first level FDIR function that is reactive, 
autonomous and integrated within the network management 
function may be extremely beneficial. 

The SpW-FDIR protocol ([11],[12]), later to be integrated 
into a wider Network Management Service Suite (N-MaSS), 
provides a solution for simplifying network management and 
autonomous network level fault detection, isolation and 
recovery. It has been defined for SpaceWire networks and 
provides additional functions that could be standardized to be 
included in SpaceWire-2, i.e. SpaceWire/SpaceFibre networks. 
SpW-FDIR manages network topology and configuration, 
node identity and configurations. It autonomously maintains 
the connectivity and performance of data handling networks in 
the presence of failures. 

The SpW-FDIR components as part of the N-MaSS 
architecture are illustrated below (Fig. 13). Main features are: 

• SpW-FDIR is scalable and can be applied for networks 
up to 256 nodes; 

• SpW-FDIR is designed for extremely fast response 
• Protocol overhead is minimal 
• SpW-FDIR requires a FDIR Handler function within 

each node and switch 
SpW-FDIR sit in the Network Layer of SpaceWire. At this 

level, it is well-positioned to interact with ‘Device Discovery’ 
and ‘Resources Management’ functions (Fig. 14); this is highly 
beneficial for systems that have reconfigurable topologies (i.e. 
modular, reconfigurable robots). 

 
Fig. 13 – SpW-FDIR components as part of N-MaSS architecture [12] 

 
Fig. 9 – LARAD robotic arm 

 
Fig. 10 – Bridget on the Mars 

yard in Stevenage 
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Fig. 14 – Context and N-MaSS position in the SpaceWire protocol stack 

 

VI. SPACEWIRE / SPACEFIBRE FUNCTIONAL PROPERTIES 
The current SpaceWire ECSS standard [1] and SpaceFibre 

draft specification [2] should basically allow to efficiently 
implementing most of the space robotics data links. However, a 
few weaknesses w.r.t. high level user needs such as, for 
instance, some physical layer properties as discussed in section 
III above, may require improvements. This could either be 
introduced as standard evolutions (e.g. the addition of a 
SpaceWire/SpaceFibre networks management protocol), 
through options in the future SpaceWire-2, or treated at project 
level by classical waivers mechanism. Some typical functional 
features for the future SpaceWire/SpaceFibre networks are now 
discussed in more details below and commented with some 
specific robotic application standpoint. 

DATA RATE PERFORMANCE 
With a typical range [100-200 Mbps] for SpaceWire and a 

demonstrated 2.5 Gbps line rate with current flight technology, 
6.25 Gbps line rate planned, and a demonstrated Multilaning x 
4 up to 10 Gbps with the SUNRISE project shown at DASIA 
2016 [30][31], the SpaceWire/SpaceFibre system completely 
covers the robotics applications needs for e.g. controlling a 
robotic arm while carrying visual or radar sensor data. 

TRAFFIC POLICY  
There are noticeable improvements in the SpaceFibre from 

the current SpaceWire standard such as the split of packets into 
frames of limited size with three associated levels of integrated 
Quality of Service (QoS) based on Priorities, Bandwidth Credit 
Precedence and Scheduled traffic. Also, both at Node and 
Routing Switch ports level, the definition of Virtual Channels 
allows creating segregated routes within the same wire so that a 
SpaceWire packet flowing through one Virtual Channel does 
not block another packet flowing through another Virtual 
Channel. 

SCALABILITY 
The 32 Virtual Channels (VCs) per switch or node allowed 

by the SpaceFibre specification is probably enough for simple 
robotic applications (e.g. robotic arm). It will be a limitation in 
larger systems with many effectors, potentially interconnected 
and implementing a strong scheduling policy for time 
criticality purpose. Workaround in robotics systems will be a 
physical split in several networks which may increase the 
complexity of the architecture and system control software. 
This limitation also becomes a problem when using Time and 
Space Partitioning (TSP) execution platform as expected for 
most critical applications in the future (see below in this 
paper). 

DETERMINISM 
Bounded Latency and Jitter properties are inherited from 

SpW, i.e. variable based on topology, data volume and speed 
of links, estimated ≤10 µs in most cases. Network real-time 
analysis will be required for most use cases which should be 
eased through efficient tools for representative network 
modelling and simulation. Analysis of the network topology 
and configurability will allow performing network calculus to 
mathematically compute the maximum latency and jitters in 
nominal cases. But worst case computation of latency/jitter so 
that to avoid overflow is tricky: indeed, it becomes extremely 
challenging to verify/guarantee that the system is schedulable 
when QoS features such as automatic retries are taken into 
account. Tools based on schedulability theories can help here. 
There is currently no network calculus model or tool suite as 
commercially available product. SpaceWire and SpaceFibre 
modelling is possible to a certain extend with MOST [32] 
based on the OPNET® network simulation system which could 
be a basis for further development. 

SYNCHRONISATION AND TIME MANAGEMENT  
In the current SpaceFibre specification, time stamping, 

clock synchronization and global time Distribution keeps the 
same approach thus the same limitations than for SpaceWire: 
time codes not clearly defined in current version of the 
specification but interpreted as covered through the existence 
of short high priority broadcast frames. Routing of those 
frames at switch level is neither described nor specified and the 
message broadcasting is still to be defined. Covering such 
functions in a standard way for SpaceWire-2 would be useful 
to robotic systems as well as for many other real-time and 
autonomous space applications concerned about 
synchronization of distant units such as sensors, actuators, 
effectors and computers. 

FAULT CONTAINMENT 
There is no fault containment at VC level in a SpaceFibre 

node: a failure detection at node level leads to reset the whole 
faulty link which becomes silent if no auto-start is configured.  

There are also no bus guardian features described that could 
avoid fault propagation if implemented at switch level (e.g. 
such as with SpW-FDIR). However, some fault propagation 
may be prevented through the check that VC is properly 
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configured in the switch or node when routing from the input 
port to the output port. There is also no standard traffic policy 
provided based on bandwidth allocation per VC for instance. 

BABBLING IDIOT AVOIDANCE 
With SpaceFibre, several mechanisms exist allowing the 

detection and preventing the propagation of errors with 
babbling idiots: 

• erroneous application behavior can be detected through 
VC buffers allocations and QoS; 

• failure of a node, End-System (E/S) or switch, may be 
detected through sequence number monitoring for 
instance in case of repeated emission of the same 
frame or emission of a spurious frame; 

• failure of QoS management may be detected at the E/S 
node level only (no verification at switch level). 

NETWORK MANAGEMENT  
SpaceFibre specification lacks the definition of standard 

configuration tables, process and usage domain. Configuration 
data of the End-Systems can be specified as part of the 
Management Information Base but configuration of Routing 
Switches without traffic policy are deemed to be static 
(generated offline) equivalent to SpaceWire configuration. This 
does not help for defining dynamic routing, network discovery 
or autonomous FDIR which could be useful in some robotics 
systems. The specification of a standard network management 
also covering network FDIR such as the N-MaSS as described 
in section V above would be required for SpaceWire-2. 

COMPATIBILITY WITH TIME AND SPACE PARTITIONING  
Future execution platforms for on-board critical systems 

will feature Time and Space Partitioning (TSP) allowing 
functions with different levels of criticality to securely share 
the same computing and network resources [33]. This will also 
be beneficial to robotic systems. SpaceWire and SpaceFibre are 
not exactly designed to be TSP friendly – as for instance AFDX 
is [34]. Virtual Channels and QoS policies introduced at data 
link layer for SpaceFibre are useful but some design limitations 
and implementation choices deserve some specific attention as 
they can jeopardize TSP compliance. 

The limitation to a maximum number of 32 Virtual 
Channels (Clause 5.7.2.b, page 130 in [2]) is probably too 
restrictive for Time and Space Partitioned systems. Indeed the 
Virtual Channel concept implies a usage domain where at most 
(VC number-1) equipment can be configured to send messages 
to the same equipment without compromising the QoS 
guarantees between them. Similarly the VCs allocation applied 
to a TSP system would limit the number of partitions per 
equipment to the number of available Virtual Channels for a 
given link and increase the combinatory expansion of VCs 
allocations. The necessity to reserve point-to-point VCs for 
preserving partitioning properties with Peer to Peer 
connections comes from the packet switching inherited from 
SpaceWire: for a given port, a given VC remains occupied as 
long as the current packet transmission is not completely 
transmitted. SpaceWire packet being of potentially infinite 

length, sharing a VC at switch port level is then not compliant 
with the partitioning concept. 

The number of Virtual Channels necessary to achieve such 
point to point partitioned connections between nodes (switch 
ports), can be expressed as  

 F(n) = 2log2(n−1)+1 − 1  for n > 1 (1) 

This is plotted in Fig. 15 and illustrated with 5 equipment units 
on Fig. 16 using a SUNRISE router [30][31] offering 4 VCs. 
We can only allow defining strong QoS policies between 4 
non-TSP equipment units, and adding a fifth equipment unit 
would require 7 VCs. 

The frame sequence numbering is not segregated per 
Virtual Channels but is managed at lane/link level, impacting 
all messages. Loss of one message is a source of timing 
interference for all packets/frames. 

The routing at switch level is based on packet routing: 
sharing of a Virtual Channel between two switches’ input ports 
is not recommended as there is no control on packet length and 
no input port round robin as long as a packet is still in progress 
for the given Virtual Channel. 

The routing switch configuration policy and parameters are 
not defined yet, assuming that routing is performed through 
legacy SpaceWire addressing (logical or physical). Routing 
interference is under the sole control of each application at 
packet building time with no guardian or traffic policing at 
switch level. This breaks a little bit the benefits of partitioning. 

 
Fig. 15 – Minimum number of Virtual Channels to guarantee the existence of 

QoS controlled connections between all nodes 

 
Fig. 16 – SpaceFibre Virtual Channels configuration vs. partitioning 
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VII. WAY FORWARD AND CONCLUSION 
The future space exploration and in-orbit operation projects 

foresee a more intensive use of robotics systems featuring more 
autonomous and accurate skills. As this happens more and 
more with ground applications, also human in-orbit operations 
and exploration toward the Moon or Mars will benefit from the 
assistance of smarter robots. One of the main stakes in the near 
future is the near-Earth active debris removal addressed in the 
Clean Space initiative of ESA [35]. 

To face this challenge, technology evolution is necessary as 
classical and reliable datalinks such as the MIL-STD-1553 or 
the CAN bus become clearly limited with bandwidth capacity 
below 1Mbps for carrying images or other data intensive 
sensors, which will require performance in the range of 100 
Mbps or higher. Robotics in ground application typically use 
Ethernet based solutions such as the popular EtherCAT [36], 
an Ethernet based fieldbus standard which provides high 
bandwidth with an excellent real-time response for command 
and control as well as deterministic properties ensuring the 
level of safety required for working in a human environment. 
EtherCAT technology has also been successfully used for a 
robotic arm demonstrator within preparatory studies for the 
Deutsche Orbitale Servicing Mission project (DEOS) [37].  

For space applications, SpaceWire and SpaceFibre have the 
required high bandwidth and low latency capability and could 
be a good candidate for future robotics with the advantage of 
being a standard already used for space payload and platforms 
data handling. However, some aspects of the SpaceWire 
standard and the SpaceFibre draft standard are not directly 
adapted to robotics specific needs such as, for instance 
connectors, cables or error management for FDIR and a few 
functional aspects that could be corrected. There are also 
identified drawbacks that may prevent evolution toward larger 
and more complex systems than just robotic arms, capture 
mechanisms or rovers that may emerge in the future. A 
SpaceWire-2 standard covering an evolution of the current 
SpaceWire and SpaceFibre networks would be beneficial if, in 
addition to the coverage of future platform and payload needs, 
it could take into account the specific needs of space robotics 
including margin for evolutions for the benefit of the future 
development of space exploration and in-orbit operations. 

 
Fig. 17 – Space robotics: One Giant leap for Robots 

SOURCE: www.robotzeitgeist.com [37] 
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Abstract— This paper presents the approach used by the 

BepiColombo data management subsystem and its SpaceWire 

network to handle system resets following major anomalies and 

to ensure availability of communication with the payload and 

platform units. The system autonomy requirements are presented 

with a discussion on how they drive the robust implementation of 

the data management subsystem. Two on-board SpaceWire 

networks are presented accompanied by an overview of the 

SpaceWire links, the link failure scenarios, and a description of 

the functions needed to manage the network. The network 

management functions are mapped to specific nodes in the 

SpaceWire network which enables the data management 

subsystem to initialize the network, detect failures, perform 

recovery actions, ensure network availability for critical nodes; 

and that the data transmission performance is acceptable with 

specific protection against excessive data transfer to the on-board 

computer. The role of each unit in the SpaceWire network and 

their contribution to the overall data management subsystem is 

described. 

Keywords—SpaceWire; data management subsystem; routers; 

networks 

 INTRODUCTION 

BepiColombo [1] is an Interdisciplinary Cornerstone 
Mission to the planet Mercury, in collaboration between ESA 
and ISAS/JAXA of Japan. It consists of two scientific orbiters, 
the Mercury Planetary Orbiter (MPO) and the Mercury 
Magnetospheric Orbiter (MMO), which are dedicated to the 
detailed study of the planet and of its magnetosphere. The 
system baseline envisages the launch of the MPO and MMO 
composite spacecraft on an Ariane 5 vehicle. The nominal 
duration of the Interplanetary Cruise Phase (from launch until 
insertion into the operational Mercury orbit) will be 
approximately 6 years and will involve a combination of a 
number of Earth, Venus and Mercury gravity assists, and Solar 
Electric Propulsion. The nominal MPO operational life will be 
at least 1 Earth year in Mercury orbit. An extended MPO 
operational life will be possible of at least 1 Earth year in 
Mercury orbit beyond the nominal operational life. 

The BepiColombo spacecraft system consists of the 
following modules, as shown in Figure 1: 

 Two science spacecraft: The MPO carrying remote 
sensing, magnetometry and radioscience 
instrumentation, and the MMO, carrying fields and 
particles science instrumentation (including the MMO 
Separation System) 

 An MMO Sunshield and Interface Structure (MOSIF) 

 A Mercury Transfer Module (MTM) 

This paper focuses on the BepiColombo Data Management 
Subsystem (DMS) with its SpaceWire network [2], hosted in 
the MPO spacecraft and the implementation of the mission 
autonomy. 

MISSION AUTONOMY REQUIREMENTS 

The mission has five distinct phases, ranging from Launch 
and Early Orbit, near-Earth commissioning, interplanetary 
cruise, Mercury approach and finally the Mercury Orbit phase. 
Over these phases the composition of the spacecraft changes as 
modules (the MTM, MMO and MOSIF) are separated. The 
autonomy requirements are driven by the demands of each 
mission phase, ground visibility and the solar environment.  

The requirements address the need for continued mission 
production generation (i.e. science), nominal operations 
(platform management), and spacecraft safety when in an 
emergency. The spacecraft shall be able to continue mission 
product generation without the need for Ground contact for a 
period of at least 7 days. The spacecraft shall be able to 
continue nominal operations without the need for Ground 
contact for a period of at least 14 days. The spacecraft shall be 
able to operate in its Safe Mode for the longest expected 
ground outage (14 days in cruise and 7 days in mission orbit); 
in addition there are solar conjunction periods of up to 35 days 
in cruise (with minimal science operations) and up to 10 days 
in mission orbit (with full science operations), where no ground 
support is possible and that the spacecraft shall operate in its 
nominal mode. 
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Fig. 1. BepiColombo spacecraft and module composition 

In addition to the autonomy duration requirement there are 
two further constraints. Firstly the system must have attitude 
control at all times in order to prevent sensitive elements of the 
spacecraft from being exposed to the sun (e.g. radiators,  
payload sensors, electric propulsion, and maintenance of solar 
arrays temperatures within qualification limits). The 
specification calls for the recovery of any system-level 
anomaly to be initiated with an on-board computer (OBC) 
reboot thereby ensuring a clean and consistent system start. A 
system reboot can take several minutes which would cause 
unacceptable attitude degradation so the AOCS and DMS 
together must ensure that attitude control is maintained over 
any reboot. Secondly, in order to ensure spacecraft safety in 
any situation, thruster valve commands must be dispatched 
immediately which means that the data link must guarantee 
that the thruster commands are received instantaneously and in 
a coherent manner. 

The design of the DMS must be sufficiently adaptive and 
robust to cope with these requirements,  must be resilient to 
any single failure and must be able to support the autonomy 
duration requirements. This led to the selection of a SpaceWire 
network approach as the main communication technology in 
the DMS design.  

DATA MANAGEMENT SUBSYSTEM ARCHITECTURE 

At first glance the BepiColombo DMS subsystem is 
typically of many spacecraft. It is responsible for the storage of 
generated data, the retrieval and downlink of on-board data, 
commanding and control over the spacecraft units and 

subsystems, data acquisition from numerous on-board platform 
sensors (e.g. thermistors, relays, sun sensors, Star Trackers, 
IMUs), and the implementation of autonomous functions (e.g. 
mission timeline, control procedures, parameter monitoring). 

The BepiColombo Prime Contractor is Airbus Defence and 
Space GmbH based at Friedrichshafen, Germany. Airbus DS is 
responsible for the DMS subsystem, and they designed a 
subsystem that is functionally split into an architecture for 
normal operations, and a separate architecture which is only 
used to recover from a system failure. The solution 
implemented by Airbus DS is presented in Figure 2 and uses 
two SpaceWire networks and associated nodes: 

 The Payload network connects the Solid State Mass 
Memory (SSMM) to the On-Board Computer (OBC) 
and the nine Payload instruments. 

 The Failure Control Equipment (FCE) network 
connects the FCE to the Remote Interface Units (RIU) 
and the OBC. 

SpaceWire was selected as the common payload data link 
for the command, control and transmission of science data    
because of severe power and mass constraints on the 
spacecraft. There are nine payloads hosted on the network with 
a total mass budget of 60 kg, a total power budget of 140W and 
data rates in the order of 10 Mbit/s. Previous ESA Science 
missions had lower numbers of payloads, less demanding data 
rates with higher total mass and power budgets. BepiColombo 
needed a solution where a common set of interfaces could be 
used across all payloads to ease integration, that was compliant 
to the mass and power budgets, and provided the required data 
rates. SpaceWire was the only candidate option with only the 
AT7910E SpW router and SMCS332SpW driver devices 
available at the time (the avionics design kicked-off in 2007). 

As can been seen from Figure 2, the OBC acts as the hub 
and bridge for the SpaceWire networks. The responsibility for 
command and control of the networks is distributed across the 
OBC, SSMM and to a lesser extent the FCE. It is this 
distribution of responsibility that is the foundation of the 
network’s robustness and adaptiveness. 

The nominal AOCS and TT&C subsystems use a redundant 
MIL-STD-1553B data bus for command and control over the 
remainder of the S/C units (e.g. StarTrackers, Inertial 
Measurement Units, Deep Space Transponder). 
Communication with the MMO is also via MIL-STD-1553B. 

A. Network Redundancy Management 

The DMS uses a nominal and redundant unit management 
approach. The units are either physically separated (e.g. 
separate instruments) or the single unit internally houses a 
nominal and redundant side, examples of the latter are the 
OBC, FCE, SSMM and the two RIUs. Each side of these units 
is then connected to the SpaceWire network as shown in Figure 
2. Unlike other data links such as the MIL-STD-1553B where 
there is a nominal and a redundant bus, the SpaceWire network 
does not have a physically separate redundant network. The 
nominal and redundant interfaces on the network are cross-
strapped which allows for a failed router to be bypassed or for 
access to a redundant unit via an alternative routing path. In 
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Fig. 2. Data Management Subsystem Architecture with SpaceWire 

addition using logical addressing of destinations for SpW 
messages, rather than physical addressing, separates the 
addressing from the physical use of the unit redundancy. This 
means that when commanding or sending telemetry, the 
transmitter does not need to be aware whether the nominal or 
redundant destination is in use. The network via the routers will 
automatically transfer the SpW packets to the correct end 
destination. The BepiColombo DMS networks build upon the 
following two foundations: Group Adaptive Routing and 
project specific extensions to SpaceWire. 

1) Group Adaptive Routing 
Re‐routing a packet out of one of several possible output 

ports in a SpW router switch is known as group adaptive 
routing (GAR). Links that connect to the same destination 
(node or routing switch) are called a group. Any link in a group 
can be used to transfer data to their destination. GAR is a 
means of routing packets to a requested destination over 
different paths through a network and provides a means of 
managing allocation of link bandwidth ensuring optimised use 
of the network resources. 

Group adaptive routing can be implemented relying on the 
configuration registers to hold information about equivalent 
output ports. When a packet is received it can be routed to any 
of the equivalent output ports that are currently free, or to 
whichever port become available first. Assignment of a packet 
to an output port involves also the consideration of any 
arbitration scheme that is implemented within the routing 
switch. 

Adaptive grouping can remove some tasks from the system 
design (e.g. understanding which side of a unit is active and 
actively selecting the target logical address) and it makes the 
system more robust and transparent to failures; but at the cost 
of visibility – the network autonomously decides which 
adaptive branch to take and does not report or record this event 
which could mask a failure in the network. Another drawback 
is that GAR potentially lowers the system determinability 
because different routes are possible which could lead to packet 
collisions and network congestion. 

B. Extensions to SpaceWire Standard 

SpaceWire [2] is a full‐duplex, point‐to‐point, serial high 
speed data link (between 2 Mb/s and 400 Mb/s) for the 
transmission of payload data and control information on-board 
a spacecraft. The SpW standard defines a number of levels:  

Physical level: defines connectors, cables, cable assemblies 
and printed circuit board tracks.  

Signal level: defines signal encoding, voltage levels, noise 
margins, and data signalling rates.  

Character level: defines the data and control characters used 
to manage the flow of data across a link.  

Exchange level: defines the protocol for link initialisation, 
flow control to avoid overflow of the receiving buffers, link 
error detection and link error recovery. 

Packet level: defines the packetisation used for transmitted 
data over a SpaceWire link. The data to be carried across the 
link is called the SpW cargo. The standard [2] does not define a 
protocol to be used for this cargo. In the case of BepiColombo 
there were three cargo protocols adopted as shown in as shown 
in Figure 3. 

 A Packet Utilisation Standard [3] (PUS) compliant 
single Telemetry (TM) or Telecommand (TC) packet 
structure was used with the PUS packet carried as cargo 
in the SpW packet. 

 A collection of PUS Telemetry packets bundled 
together into the cargo field for the OBC-SSMM 
transfer of data. This maximises the utilisation of the 
SpW link. 

 Remote memory access protocol (RMAP) [5] for the 
RIU communications to allow direct read (i.e. data 
acquisition) and write (commanding) access to the RIU 
memory array. 

Network level: defines the  structure of a SpaceWire 
network and the way in which packets are transferred from a 
source node to a destination node across a network, and how to 
handle link and network level errors. 

Two new layers have to be added to those specified in [2]. 
They are the Application Level and the System Level. They 
both reside above the network level. The Application Level is 
hosted at each network node and contains the services for 
supporting the different types of packet level traffic used on 
each network: 

 PUS packets between FCE and OBC. 

 RMAP exchange is used to transmit telecommand and 
telemetry between the RIUs, OBC, and FCE. 

 RMAP to control SpW routers supported by the OBC 
and SSMM. 

 OBC supporting PUS to the payloads and grouped PUS 
packets to the SSMM.  
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Fig. 3. SpaceWire Packet Structure 

The System Level covers the management of the SpW 
networks and the reminder of the spacecraft, e.g. the other 
networks (e.g. 1553), operators, and subsystems. 

C. Impact of SpaceWire on System Determinism 

A SpaceWire network by nature is asynchronous. 
Wormhole routing is used to secure a path via links and routers 
to ensure that a packet maintains its integrity as it is transported 
through the network. As per the standard, when a packet 
arrives at a router it is sent to the allocated output port if that 
output is free. If it is in use, i.e. congested, then the incoming 
packet is stalled waiting for the output to be free. Routers do 
not have extensive memory buffers for storing stalled packets 
which means the packet is stalled from the point in the network 
where the collision has occurred back to the transmitter device. 
This wormhole along the network stalls any other packet that 
needs to access the congested ports. A similar problem occurs 
if the destination node is not ready to receive the packet. The 
packet is stalled on the final link to the destination device and 
blocks the path back to its source. 

This causes a major challenge for providing a deterministic 
communication over a SpW network. Data has to be able to 
flow through the network and when the data arrives the 
application level must process it sufficiently quick enough to 
allow new packets to arrive. Currently the only solution to this 
challenge is to design the network communication to have 
sufficient bandwidth margin to avoid congestion and to ensure 
that the application software can rapidly process incoming 
SpW packets. The application software must take into account 
the asynchronosity to avoid the data bus from pre-empting 
critical system software tasks and upsetting the system’s 
schedulability. 

D. SpaceWire Fault Tolerant Links 

SpaceWire is based on a fairly robust physical layer based on 

a driver/receiver pair and a shielded cable with very good 

EMC properties (BER = 10-12). If a transient error does occur 

then the SpaceWire Codec immediately disconnects the link 

electrically and goes through the re-initialisation process. In 

20 µs the link is up and running again. The packet that was in 

the process of being transferred is truncated and terminated by 

a special Error End of Packet (EEP) character to indicate that 

it was terminated prematurely.  

The System Level is then responsible for managing the EEP to 

resend or request the missing packet. Protocols for providing 

this type of service are thus at system level. 

E. SpaceWire failures 

It is possible to derive a number of failure definitions that 
are generic to a SpaceWire network implementation based on 
the failure modes identified in the SpW standard.  

1) Link Errors 
The SpW standard defines clear cases, such as due to parity 

errors in the transmitted data, when a link should be restarted 
either by the transmitter or the receiver end. The standard 
defines at exchange level the failure detection and recovery 
approach to be followed at device level, i.e. by either the 
AT7910E SpW routers and SMCS332SpW drivers, and when 
the error should be reported to a system level, as shown in 
Figure 4. 

2) Router failure 
If the router fails to work then the symptoms are either 

continued link disconnects on the nodes connected to the 
device, the disappearance of SpW packets from the system 
because the router is losing them, or data corruption with 
invalid packets or timecodes. 

The network level cannot detect a router failure. It is only at 
system level, or spacecraft operator level, that all of the 
symptoms can be detected, consolidated and a correct 
diagnosis made. A router failure can be automatically bypassed 
if Group Adaptive Routing is enabled on the SpW routers. This 
allows all routers connected to the failed router to detect an 
unavailable link and use an alternative routing path to transfer 
packets but without reporting the anomaly. 

3) Node failure 
If the node connected to the network has failed then the 

failure symptoms are continued link disconnects with the 
connected driver or router, or the unit does not send any 
packets on the network. SpaceWire does not have an 
acknowledge protocol for non-RMAP traffic so if a packet has 
been lost on the network, e.g. due to a router failure or a link 
disconnect, then there is no indication at network level that the 
packet is missing. The only indication can be at system level 
when either the commanded behaviour is not observed or 
telemetry is not received from the node. 

A complication arises that a router failure provides similar  
symptoms as a node failure (missing packets) so it is necessary 
when diagnosing a potential failure that the complete SpW path 
is checked. 

4) Missing data 
Missing data can only be detected by missing telemetry 

reports that are sent upon request by a user, or a failure for a 
telecommand to change the on-board state, or by the ground 
operators due to jumps in the telemetry source sequence 
counts. It will be unclear what is the cause of the anomaly. It 
could be any of the failure cases (link errors, router or node 
failures) and the cause of the anomaly can only be determined 
at system level through a process of elimination. 

If the RMAP protocol [5] is used then each communication 
on the network becomes a message exchange. A write 
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Fig. 4. SpaceWire Link Errors management 

 

command results in a the destination node sending a copy of 
the write result back to the transmitter. A read command results 
in the read data being returned. This protocol allows missing 
data to be detected without providing the root cause. 

SPACEWIRE NETWORK FUNCTIONS 

Based on the previously identified network failure cases, it 
is possible to further derive a set of functions that are need by 
the DMS in order to effectively manage the network are 
presented in the following subsections. For BepiColombo these 
functions are distributed across the DMS. A mapping of where 
the network management functions are implemented is 
provided in Table 1.  

F. Network Initialisation 

This function is responsible for ensuring that the network is 
powered in the correct sequence, the node SpW specific self-
tests are performed, and the SpW links are running (i.e. 
exchange of NULL tokens). 

G. Network (re-)configuration 

This system level function is responsible for selecting the 
nominal or the redundant interfaces of the network, which are 
defined in terms of nodes,  routers and links. 

A network reconfiguration shall be a failure recovery 
following an anomaly in either the network’s nominal (or 
redundant) interface or a failure at payload level which 
necessities a reconfiguration in order to access the redundant 
payload. It is possible to have a full reconfiguration which is a 
complete switch the complete set of interfaces, or a partial 
reconfiguration where cross-strapping is used to replace only 
those failed elements of the network with their redundant 
elements. 

H. Router (re-)configuration 

This network level function programmes the router using 
dedicated SpW commands. Routers can be configured at any 
time as long as the router is powered. 

A router reconfiguration shall be needed if a link has failed 
and its port allocation needs to be removed or its behaviour 

needs to be modified.  

I. Router health monitoring 

There is no dedicated health reporting provided by the 
AT7910E router so the system level must contain a function 
which is able to verify the health of the routers and to ensure 
that they are correctly configured.  

J. Link health monitoring and SpaceWire packet error 

detection 

The AT7910E router detects and recovers from link errors 
on each of its ports and sets an error register. This is 
implemented at network level, however there is no convenient 
means to report this to the system level. A dedicated function 
has to be added to the network level to access the router error 
registers in order to flag link errors to the application layer.  

The SMCS332SpW driver will detect and recover from  a 
link error while raising an interrupt to the application layer. 

K. System Traffic volume and data flow protection  

In the SpaceWire standard flow control is implemented at 
exchange level and ensures data is only transmitted when there 
is available space at the receiver buffer.  This is a low level 
implementation and has no knowledge if the receiving 
application, or node, is ready for the data. Sending excessive 
volumes of data to a destination node in a so called ‘babbling 
idiot’ [6], essentially an unintentional Denial of Service attack, 
can lead to network performance degradation and in the worst 
case, a severe impact on the performance of the receiving node. 
In the case of BepiColombo the receiving node is the central 
OBC meaning any degradation in the unit’s performance due to 
excessive incoming SpW packets will endanger the mission 
safety. A system function is needed to implement a network 
level flow control mechanism because it is not supported in the 
SpaceWire standard. 

PAYLOAD NETWORK 

The Payload Network has its external SpW links  
configured to be 10 Mbit/s between the SSMM, OBC and 
payloads, with one exception for a payload-SSMM link which 
is configured to be 100 Mbit/s. The network has several 
purposes: 

 It must transfer commands and TM from the OBC to the 
SSMM for processing and storage.  

 The OBC must receive housekeeping telemetry from 
the SSMM and payloads for monitoring, and it must be 
able to command the nine payload nodes. The SSMM 
must receive both Science data (stored directly in the 
packet stores hosted inside the SSMM) and forward the 
non-Science housekeeping telemetry to the OBC.  

 The OBC distributes the time throughout the network.  

 To enable the downlink of data from the packet stores 
within the SSMM via the Telemetry module built into 
the OBC.  

The SSMM is defined in full detail in [4]. The SSMM is 
supplied by Thales Alenia Space – Italy, Milan and has itself 
an embedded SpaceWire network running at 20 Mbit/s based 
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TABLE I.  SPACEWIRE NETWORK MANAGEMENT FUNCTIONS 

SpaceWire 
Function 

Payload network 

(OBC, SSMM, Payloads) 

FCE network 

(OBC, FCE, 
RIUs) 

Network 

initialisation 

SSMM, OBC, Payloads OBC, FCE, 
RIU. 

Network  

(re-)configuration 

OBC sends commands to SSMM 
which then performs the 
configuration activities on the 
payload interfaces.  

The SSMM is capable of 
automatically configuring its 
output interfaces to the 
Telemetry Frame Generators for 
downlink of data. 

OBC. 

FCE – only its 
inteface to 
router. 

Router 

(re-)configuration 

SSMM. 

All direct configuration activities 
are localised to the SSMM. This 
ensures that only the SSMM 
needs to be aware of the 
different configuration options 
thereby lowering the effort 
needed at system level. 

OBC. 

Router health 
monitoring 

Router health check is only 
during SSMM intialisation. 

OBC. 

Link health 
monitoring and 

SpW packet error 

detection 

SSMM – monitors its own 
routers and reports errors to the 
OBC. 

OBC – monitors its own 
interfaces. Reacts to errors 
reported to it and its own errors. 

Payloads – monitors its own 
interfaces and reports errors to 
the OBC. 

OBC. 

FCE – only its 
link to the 
router. 

System Traffic 

volume and data 

flow protection 

SSMM – caching function to 
smooth out bursts of traffic. 

None. 

Group Adaptive 
Routing 

Used for load balancing traffic 
transferred into the memory 
management controller. 

Used for 
managing link 
errors. 

 

on ten AT7910E SpW routers ASICs connecting three SpW 
nodes (the memory, Supervisor A and Supervisor B) to the 
external nodes (nine instruments, OBC, Telemetry modules, 
and test equipment). The unit provides the command, control 
and time code distribution link between the OBC and the 
payloads. 

As shown in Table 1, the majority of the network functions 
are hosted in the SSMM. This was done to lower the work load 
on the system and ground levels and to centralised all of the 
router configurations. The nominal and redundant Supervisor 
modules each house an ERC32 TSC695F microprocessor that 
run the unit’s application software (ASW) which implements 
all of the allocated network functions. The unit maintains a 
copy of its internal state and configuration in non-volatile 
memory so that following any recoveries from minor 
anomalies the unit can restore itself to its previous setup. Any 
major anomalies will lead the unit to enter its Service mode. In 
this case  the unit management hosted in the OBC will then 
reconfigure the SSMM supervisor to its redundant side if not 
already in use to permit continued operations. 

A. Network Initialisation 

The SSMM initialises the network such that the routers that  
interface with the payloads, and the payloads themselves, have 
the ‘link-start’ configuration meaning that immediately 
following power-on they attempt to start the link. This ensures 
that if the payloads are ready to transmit then the network is 
configured to receive the data. The side of the network not used 
(e.g. the redundant side) is disabled as part of the initialisation 
logic. This prevents any SpW links running on the non-used 
sides which could happen when both the nominal and 
redundant sides of the receiver (e.g. SSMM) and both the 
nominal and redundant sides of the transmitter (e.g. Payloads) 
are cross-strapped and incorrectly configured. 

B. Network Configuration and Health Monitoring 

The OBC is supplied by Thales Alenia Space – Italy, Milan 
and is based on the Leonardo architecture which has heritage 
from other ESA missions such as CRYOSAT and SWARM. 
The OBC uses a ERC-32 based Processor Module architecture 
and supports data exchange via SpW using the SMCS332SpW 
driver to interface to the network. The OBC is the source of all 
commands dispatched into the network and the destination of 
all non-science telemetry generated by the payloads and 
SSMM. The system autonomy and monitoring is implemented 
within the OBC. The SSMM management function is 
implemented in the OBC and is responsible for ensuring the 
availability of the SSMM and the Payload network. The 
SSMM-OBC links are cross-trapped and the OBC selects the 
link and takes care of reconfiguring it in case of failure. 

It is necessary for the SSMM to be fully aware of all 
possible router configurations in order to ensure that the 
network can be reconfigured to ensure the command, control 
and time link between the OBC and the payloads. The unit can 
detect SpW link errors and notify the OBC. The OBC will then 
determine if further correct action is needed (the SSMM will 
automatically restart the SpW link as per the standard) 
otherwise the OBC will record the event for further 
consideration by system level failure management functions 
and spacecraft ground operators. 

If at either system or spacecraft operations level it has been 
decided to reconfigure the network, then commands are sent to 
the SSMM notifying it of the new external interfaces to use and 
also any payload commands are sent to switch over to the 
redundant (or back to nominal) sides. The  OBC does not 
specify which router to select or what the programming is to 
be. It simply commands select Payload Interface Nominal or 
Redundant. The SSMM is aware of the state/health of its 
network and is able to take the necessary steps to reconfigure 
the routers to ensure that the OBC has the requested command, 
control and time link. It is this level of decentralised control at 
SSMM level that reduces the complexity of the DMS 
subsystem, thereby improving its robustness. 

The only approach for the SSMM to verify the health status 
of its routers is to send an RMAP interrogation command 
requesting the status of certain registers. There is not a 
dedicated register reporting the overall health of the router, 
meaning it is not possible to poll a single entry instead several 
entries must be checked and then compared against previous 
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values in order to find an anomaly (frozen or out-of-range 
value). This approach has not been implemented on the 
Payload Network because it would add additional traffic – the 
RMAP protocol is a command-and-response message meaning 
each register check would add two messages for each of the ten 
routers to the overall communication budget. 

 

C. Volume and Data Flow Protection 

The System Traffic volume and data flow protection for 
this network is implemented in the SSMM as a caching 
function. This prevents a babbling instrument from swamping 
the OBC with SpW exchanges. The SSMM has a pre-defined 
number of packets that it can transmit per second and it limits 
the exchange of non-Science telemetry packets to that limit. 
The SSMM can detect an excessive accumulated packet rate 
and will report this to the OBC. The SSMM is not able to read 
the contents of the packets and so is unable to determine the 
culprit(s) for the excessive packet generation rate. 
Implementing such an ability would have required dedicated 
firmware within the unit because the AT7910E router does not 
support such a monitoring. Examining the content of each 
packet would have been detrimental to the overall goal of fast 
SpW operations. It then becomes the responsibility of the 
spacecraft operators to analysis the available data and 
determine the culprit. 

D. Network Design Driver 

The mission critical design driver of the network is to 
ensure reception of the non-Science telemetry from the 
payloads in order to ensure their safety. The on/off power 
commanding of the payloads is via dedicated control lines in 
the Power subsystem and is independent to the SpW link. 
During a spacecraft emergency the instruments need to be 
switched off in a controlled manner. Immediately removing 
power from several of the instruments could lead to damage 
because a power-down cycle is needed before cutting power. In 
addition, an unexpected system failure recovery will involve 
thruster actuation leading to a risk of internal misalignment of 
sensitive surfaces and sensors within several of the instruments, 
therefore these sensitive instruments must enter a safe mode to 
protect themselves. Due to the asynchronous nature of 
SpaceWire there is no guarantee that a ‘enter safe mode’ 
command sent by a system level failure manager to each 
payload notifying them that a system restart is about to be 
triggered will reach the destinations, so a different approach 
was adopted that builds on the SpW timecode mechanism.  

The network uses the one second SpW timecode pulse as 
the heartbeat of the OBC-SSMM-Payload network. The 
timecode is sent by the OBC and is absent during a system 
reconfiguration. Therefore if an instrument does not receive a 
timecode, then it starts to prepare to enter its safe mode. A 
drawback to this approach means a failure at router or link 
level could lead to an unintentional safeing of the instruments. 
To avoid this, a consecutive number of timecodes must have 
been missed before the instruments take action. 

FAILURE CONTROL EQUIPMENT NETWORK 

The FCE network is purely a command and control 
network with no payload involvement. It connects the two 
flight computers, the On-Board Computer and the Failure 
Control Equipment, with the Remote Interface Units. The 
purpose for the FCE network is to ensure that the spacecraft 
attitude knowledge and pointing is preserved at all times, 
including across a system reboot. The FCE network has only 
four nodes: FCE, OBC, MPO RIU and MTM RIU. 

Unlike the Payload network there is no dedicated System 
Traffic volume and data flow protection implementation on the 
FCE network. Instead the SpW standard flow control token 
mechanism is used and the amount of data exchanged between 
nodes is limited at design level. 

A. Network Initialisation 

As shown in Table 1 the OBC is the node responsible for 
the initialisation and configuration of the FCE network and 
routers. The network initialisation involves the OBC 
configuring the routers to support group adaptive routing in 
order to allow RIU communication to automatically be routed 
correctly to the destination without the system needing to know 
the health of the network in terms of failed port/links.  

B. Network Configuration and Health Monitoring 

The OBC monitors the status of its links with the routers. If 
consecutive transmission or reception errors are detected then 
the OBC will reconfigure its interface to the routers to avoid 
using the failed SpW link. There are only two hot redundant 
routers used on the FCE network and so the assumption has 
been made that a router failure will be detected as a 
consecutive series of transmission or reception errors, and so 
can only be considered as a link error. The only recovery 
possible is to avoid using the failed link to the router. The 
adaptive routing and the router addressing table ensures that the 
commands reach the correct destination without needing any  
router re-configurations. The health monitoring of the router is 
performed by the OBC polling router registers via RMAP read 
commands and the values reported in telemetry and available 
in the datapool. Note that this approach is not used on the 
payload network due to the number of routers involved 
(Payload has 10 routers versus 2 with the FCE). Failures could 
then be diagnosed and acted upon at system level or by ground 
operators. 

The FCE is supplied by Thales Alenia Space – Italy, Milan 
and is a derivative of the OBC with an additional module to 
house the routers and access to dedicated sensors. The FCE 
does not configure the router or the network but it does monitor 
the status of its links with the routers. If consecutive 
transmission or reception errors are detected then the FCE will 
reconfigure its interface to the routers to avoid using the failed 
SpW link. The adaptive routing and the router addressing table 
ensures that the commands reach the correct destination 
without needing any  router re-configurations. This routing 
approach provides the adaptiveness needed at network level to 
handle failures and ensure the robustness of the subsystem. 

The RIUs are supplied by Thales Alenia Space – UK Ltd, 
Bristol (formerly the Space division of Systems Engineering 
and Assessment Ltd, UK). The RIUs decouple the discrete 
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interfaces from the OBC and acts as the central interface units 
of the satellite. Each RIU contains a nominal and redundant 
SpW Controller module. Each of these modules (nominal and 
redundant) has a SpW interface. These signals are cross-
strapped to allow both the nominal and redundant SpW 
controller modules access to the main and redundant 
SpaceWire links. The cross-strapped signals are passed via a 
dedicated cross-strap connector which allows the RIU SpW 
controller to be commanded from either FCE router A or B. 

C. Network Design Driver 

Any system level failure will lead to a system reset 
requiring an OBC reboot. The duration of the system restart 
and initialisation is such that any on-going attitude 
perturbations will cause sensitive surfaces to be exposed to the 
sun and damaged. To avoid this the FCE takes over control of 
the RIUs and commands the attitude pointing and platform 
management. When the OBC is ready to resume spacecraft 
control, the FCE returns commanding authority and transfers 
the attitude data to the OBC. Consequently, the key objectives 
for the network are outlined below: 

 Availability of the FCE – OBC link to transfer attitude 
data back to the OBC following a system reset. 

 Availability of the links OBC – RIU and FCE – RIU in 
order to control thruster actuations. 

It is the latter objective that drove the decision to deploy 
SpaceWire on the FCE network. Using a router allows the 
master control of the RIUs to be instantly switched from the 
OBC to the FCE during a system reset. The FCE network is 
implemented with two AT7910E routers operating in hot 
redundancy and hosted with their own dedicated power supply 
as part of the FCE unit. There is no “switch on” or “switch off” 
service for the router equipment because they are permanently 
powered. The network is configured to run at 10 Mbit/s except 
the MTM-RIU link which is at 4 Mbit/s, and all links are 
initially on autostart mode. As shown in Figure 2 each router 
unit is able to communicate with all nodes (both OBC PMs, 
both FCE PMs, both sides of each RIU equipment), but, in the 
case of the RIUs, the actual cross-strapping is ensured by the 
bridge link between both routers (router A can only access RIU 
side A and router B the RIU side B) such that packets have to 
be forwarded between the routers in order to access the other 
RIU side. This forwarding is ensured by the adaptive routing 
mode programmed in both router units. If the direct link to the 
destination is not active, then the incoming packet is forwarded 
to the second link as part of the adaptive routing. The second 
router would then have the active link to the destination node. 

LESSONS LEARNT 

BepiColombo is the first ESA mission to deploy multiple 
SpaceWire networks but it has not been an easy adoption of the 
technology. Fundamental problems have been addressed 
related to a limited hardware selection, missing key features in 
the standard [2] (inability of routers to report link errors, no 
provision of a higher level flow control management where 
packet rate can be specified per port) which forced 
workarounds to be implemented at application and system 
levels. Supporting documentation for the SpaceWire devices 

and applications at first was poor but evolved over the course 
of the project, and there was a corresponding lack of previous 
experience utilising SpaceWire with the spacecraft avionics 
manufacturers and on-board software developers. Instead a 
MIL-STD-1553B viewpoint was often applied to SpaceWire 
which led to inconsistencies between hardware, software and 
system levels. These issues  were discovered and resolved only 
very late in the System AIT programme. This has led to a firm 
realisation that it is impossible to build a classical deterministic 
system in SpaceWire equivalent to a MIL-STD-1553B 
implementations. It also highlighted a need for training to 
improve awareness at system level of the advantages and 
disadvantages of deploying a SpaceWire network on a 
spacecraft 

CONCLUSION 

The BepiColombo data management subsystem needed a 
data link which met stringent mass, power and data rate 
requirements for the links to the payloads, whilst ensuring an 
instantaneous switch of RIU control from the OBC to the FCE. 
A robust data management subsystem has been implemented 
that is able to autonomously adapt to failures and react to 
changes in the spacecraft state during system resets 
incorporating the functions supported by the SpW standard, 
and implemented in the AT7910E SpW and SMCS332SpW 
devices. A new set of system level management functions had 
to be implemented within the OBC and SSMM software in 
order to coordinate the initialisation of the SpW networks, 
monitor the network health and take all necessary recovery 
actions. 

BepiColombo is the first ESA mission deploying on-board 
SpaceWire networks and it has been challenging identifying 
and implementing the management functions. The industrial 
team, Airbus DS and Thales Alenia Space, have overcome 
these challenges and have developed a data management 
subsystem that meets the needs of this Cornerstone Mission to 
Mercury. 
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Abstract— This paper will describe the various modules and 
daughter cards under development. Interconnects between these 
modules will be highlighted with special emphasis on SpaceWire 
ports, routers and backplane routings. Performance of the 
modules and their interconnects will be summarized. SpaceVPX 
Backplanes, cabling and test equipment for bringing up and 
testing these modules will be described highlighting leveraging of 
COTS elements.1 

Index Terms—SpaceWire, Networking, RapidIO, Spacecraft 
Electronics, SpaceVPX, Ethernet, RAD750 SBC, RAD5545 SBC, 
RADSPEED DSP, Virtex V5QV, DDR2, DDR3, XR-DIMM, PCI 

I. INTRODUCTION 
Future spaceborne systems will require additional onboard 

processing and much greater interface connectivity. Many 
efforts worldwide are starting to address these needs. 
SpaceVPX, a recently released ANSI/VITA standard [1] [2] 
[3], was created to provide the structure and definition for 
interoperable modules that will be created to meet these needs. 
It provides a multi-layer set of fabrics using SERDES, LVDS 
and LVCMOS devices to provide interconnects in a scalable 
and fault tolerant way. SpaceWire is setup as both a control 
plane for command and data handling throughout the box as 
well as a medium speed data plane.  

Building on previous SpaceWire network elements, BAE 
Systems is creating a set of silicon application specific standard 
products (ASSP) [4] [5] [6] to provide power efficient general 
purpose building blocks for the creation of scalable SpaceVPX 
modules across these three fabrics. These building blocks are 
key to a new family of SpaceVPX processing and network 
modules being developed for a wide variety of space 
applications. These include a RAD750® Single Board 
Computer [7], a RAD5545™ Single Board Computer, a 
Virtex-5 based Reconfigurable Computer Module, a dual 
RADSPEED™ Digital Signal Processor Module and multiple 
types of standalone function modules focused on memory or 
unique I/O. All of these modules contain at least dual 
redundant SpaceWire ports to be utilized by the System 

1 Approved for Public Release – ES-ISR-082216-0107 

Controller for command and data handling or between modules 
for medium speed data transfers. BAE Systems has also 
defined daughter cards that may plug into some of these 
modules which also include SpaceWire links for extending the 
control, data handling and data transmission. Additionally BAE 
Systems is exploring ways to interact between Ethernet and 
SpaceWire for testing and other ground based activities with 
these modules. 

II. SPACEVPX SYSTEM 
SpaceVPX was approved as an ANSI/VITA standard in 

2015 and is beginning to see usage across spacecraft systems.  
It uses three main interface fabrics, RapidIO [8] (up to 20 Gbps 
per 4 lane port), SpaceWire [9] (up to 400 Mbps per port) and 
I2C (up to 400 Kbps per port) to provide a scalable 
interoperable form factor spanning almost five orders of 
magnitude of performance. 

Figure 1 shows a SpaceVPX system made up entirely of 
SpaceWire links for command and data handling as well as 
medium speed data movement.  The controller module (lower 
left) directs this through a star topology providing a SpaceWire 
link to each module.  SpaceVPX is also important for its fault 
tolerance – full single point failure protection is carried 
throughout the standard.  Thus if a system like Figure 1 has 
redundant modules, the controller would connect to each of 
those as well.  The redundant controller would have an 
equivalent set of SpaceWire links to each primary and 
redundant module. 

Six instruments are postulated in this system – connections 
to those instruments may be direct from the controller module, 
through a remote interface with additional module ports and 
using heritage or other unique I/O.  An internal mass memory 
is also shown and due to its need to collect or transmit data in 
larger quantities, it is shown with twice as many connections.  
This of course could be even higher.  Figure 2 shows a slightly 
expanded system, this time using all three fabrics.  As such, the 
data plane provides significantly more data flow between 
modules, yet each module still retains it SpaceWire interfaces.  
Note the ability to connect to instruments using RapidIO, 
XAUI or other SERDES interfaces and SpaceWire to best 
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match the performance of each instrument.  A data plane 
switch is also added to avoid a large RapidIO connection mesh. 

 

 
 

 
 
BAE Systems has or is developing many of these 

SpaceVPX modules.  This paper will describe the RAD750® 
single board computer (SBC), which may be used as a small 
system controller, a data processor or some other intelligent 

payload.  Other modules to be described are the RAD5545™ 
SBC, which may play similar roles but with up to 10x the 
performance, a RADSPEED DSP module and a 
Reconfigurable Computing module, each which may function 
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Figure 1: SpaceVPX system using SpaceWire for control and data.  Solid horizontal lines represent point to point backplane connections. 
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Figure 2: SpaceVPX system using SpaceWire for control and RapidIO for data 
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as a Data Processor.  The green blocks in each diagram 
highlight developed application specific standard products that 
provide the major interface and or processing element for that 
module.  Other modules under development but not discussed 
in this paper include mass memory, data switch, SpaceUM and 
power supplies.  Taken together, systems of various 
performance and bandwidth can be constructed out of these 
interoperable modules. 

III. RAD750® SBC 
The RAD750 SBC, as shown in Figure 3, is based upon the 

upgrades to BAE Systems’ RAD750 CPU.  It is our first 
SpaceVPX module and utilizes the 6U-220 form factor to 
provide room for 128 MB of radiation-hardened SRAM with 
SECDED and 512 MB of TMR flash.  The RADNET™ SpW-
RB4 [10] provides the system interfaces to a RAD750 V2 or 
V3 processor with 1 MB of L2 cache attached.  Four 320 MHz 

SpaceWire ports connected through an internal nine port router 
provide over a Gbps of external bandwidth.  A 32 bit PCI bus 
interface is also brought to the SpaceVPX P5/J5 backplane 
segment for connection to heritage modules over the expansion 
plane.  A dual redundant MIL-STD-1553B interface is 
implemented and routed on the backplane over user defined 
pins.  A utility FPGA, implemented using the Microsemi 
RTAX2000S device, provides SpaceVPX connections to the 
utility plane, conversion of voltage levels to the SRAM and the 
TMR flash interface.  This module can be used as a SpaceVPX 
controller for systems of up to five modules or with a separate 
control plane switch module, as many as are needed.  It also 
may be used as medium performance data processor where 
processing up to 500 DMIPs are required or as a bridge to 
heritage CompactPCI modules. 

 

 

 
 
 
 

IV. RAD5545™ SBC  
The RAD5545 single board computer (SBC) as shown in 

Figure 4 is based upon the RAD55xx™ Power Architecture® 
system-on-chip (SoC) processor platform component that can 
be configured into multiple personalities including the 
RAD5545 quad-core processor [5].  The 6U-220 format SBC 
with SpaceVPX connectors [1] can be used in either a payload 
or controller slot as defined by the VITA 78 standard 
leveraging the 16-port SpaceWire router integrated into the 
RAD55xx platform as the central hub of the SpaceVPX control 
plane.  Twelve of the sixteen SpaceWire links are connected to 
the SpaceVPX connector, along with three and optionally four 
of the four lane RapidIO ports, two Gb Ethernet SGMII ports, 
and the UARTs through external RS422 drivers and receivers. 

The other key component on the RAD5545 SBC is also a 
Microsemi RTAX2000S FPGA. The FPGA includes logic to 
provide a triple modular redundant (TMR) NAND Flash 
memory interface driven by the single Flash memory interface 

on the RAD5545 processor, the signals required for the 
SpaceVPX utility plane based on I2C interfaces from the 
RAD5545 processor, an interface to the configuration 
EEPROM that is fed into the RAD5545 SRAM/EEPROM port, 
and a 1 pulse-per-second (1 PPS) input/output. 

 
The DDR3 DRAM memory controller of the RAD5545 

processor feeds to a ruggedized dual inline memory module 
(XR DIMM) connector, providing the flexibility to insert RAM 
modules of different sizes and features onto the base 6U-220 
module.  The SBC will accept 2, 4 or 8 GB of DDR3 SDRAM 
with error SECDED correction on a single memory rank using 
standard commercial DRAM components. 

The front side of the card as shown in Figure 5 includes six 
point-of-load (POL) regulators to generate the various low 
voltages required that cannot be viably distributed from a 
centralized power supply.  The power up/down sequence is 
controlled by logic on the back side of the card. 

 

 
Figure 3: RAD750 SBC block diagram 
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The back side of the base module includes the connector 

for a daughter card 5.22” in length and 3.88” in width.  The 
daughter card may be configured by user to add customized 
features to the SBC.  From the processor, four SpaceWire 
ports, a 32-bit parallel PCI bus, and optionally one x4 RapidIO 
port (mutually exclusive with the fourth RapidIO port to the 
backplane) are routed to the daughter card connector.  Power 
conversion from the base card POL regulators is also supplied 
through the daughter card connector.  Likely applications for 
the daughter card would be to add additional unique functions 
or heritage interfaces that would leave the subsystem such as 
MIL-STD-1553 and Controller Area Network (CAN), both of 
which employ unique physical layers.  There is sufficient space 
on the daughter card format for one FPGA device. 

V. RECONFIGURABLE COMPUTING MODULE 
Many payload electronics boxes require signal processing.  

The Reconfigurable Computing Module (RCM) meets this 
need in a SpaceVPX 6U-220 format.  A block diagram of the 
module is shown in Figure 6.  Two Xilinx Virtex-5QV RAM-

programmable FPGAs provide significant reprogrammable 
logic for implementing signal processing algorithms.  Each 
FPGA has 1 GB of DDR2 SDRAM attached to it and each 
connects to a small daughter card (3.8” x 2.86”) for 
personalizing any external I/O that is connected (e.g. ADCs for 
analog inputs or DACs for analog outputs).   

The 18 SERDES lanes on each FPGA are connected to the 
backplane (8 lanes) through a cross-point switch, to the 
daughter card (4 lanes) and to the other FPGA (6 lanes).  A 
utility FPGA provides the utility plane connections for the 
module, a flash interface to up to 8 GB of TMR flash and either 
a SpaceWire control plane interface or an internal embedded 
microcontroller.  As such the module may be controlled 
remotely through the SpaceWire port or by loading and 
executing code on the module.  FPGA bit files are stored in the 
flash and are loaded under direction of the remote or local 
controller.  

Figure 7 shows CAD drawings of the RCM with major 
components identified.  Note that heat pipes are used to remove 
heat from the two FPGAs to the wedge locks.  The two 

 

Figure 5: Front and back side CAD drawings of the RAD5545 SBC 

 

Figure 4:  RAD5545 SBC block diagram 
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daughter cards may be plugged into identical connectors on the 
top of the front view of the module.  In order to maximize 
function, the daughter card may span the two sets of 
connectors, especially if only one side of the card has 
implemented function or interfaces.  Besides the obvious ADC 

and DAC functions, FPGA daughter cards may be used for 
redundant SERDES connections, electrical to optical or 
extended memories. 

 

 

 
 

 
 
 

VI. RADSPEED™ DSP MODULE 
Providing a lower power per GFLOPS signaling processing 

solution, the RADSPEED DSP SpaceVPX module includes 
either one or two single instruction, multiple data (SIMD) 
digital signal processor components, supported by a unique 
variant of the RAD55xx™ family called the RADSPEED HB 
[5] [6].  The RADSPEED HB is a host/bridge that 
communicates with the two DSPs across a unique high 

performance parallel bus called the ClearConnect® Bridge, 
shown in the block diagram in Figure 8 as “CCBR”. 

Each RADSPEED DSP contains two independent multiple 
thread array processors (MTAP) each of which consists of 76 
identical processing elements.  Each processing element 
includes a full double precision floating point engine, fixed 
point logic unit, multi-port register file, and 6 KB of SRAM.  
The aggregate capability of both MTAPs is 70 GFLOPS of 
peak throughput providing up to 140 GFLOPs in total on the 
module and supplemented by the horsepower of the quad-core 

 

Figure 7: Front and back side CAD drawings of the RCM 

 

Figure 6: Reconfigurable Computer Module block diagram 
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RADSPEED HB as appropriate.  Each MTAP includes a 
dedicated DDR2 DRAM port and the module includes 1 GB of 

DRAM on each port.   
. 

 

 
The DDR3 DRAM interface on the RADSPEED HB SoC 

can support up to 8 GB of memory, mounted on an XR-DIMM 
identical to the one provided for the RAD5545 SBC.  Also, as 
included on the RAD5545 SBC, an RTAX2000S FPGA is 
included to provide the triplicated Flash interface and to 
generate the SpaceVPX Utility plane signals. 

Because the process technologies of these key components 
are different, the supply voltages are also not identical.  As a 
result, the RADSPEED DSP module includes a myriad of POL 
regulators to generate all of the local voltages.  These various 
voltages are also power sequenced. 

The SIMD architecture RADSPEED DSP is well suited to 
both signal processing and image processing, leveraging 
features such as an optimized Fast Fourier Transform (FFT) 
library function.  Performance analysis of both Space-Time 
Adaptive Processing (STAP) and Synthetic Aperture Radar 
(SAR) functions as well as analysis of hyperspectral imaging 
have been performed.   Some of the benchmarks executed on 
the RADSPEED DSP are the Complex Ambiguity Function 
(CAF) [11] and image processing algorithms such as the Harris 
Corner Detector for feature detection and the Histogram of 
Oriented Gradient (HOG) for object detection [12] 

VII. MODULE TESTING  
The RAD750 SBC has completed checkout and is now 

supporting its applications.  The RADSPEED DSP module is 
in design.  The RAD5545 SBC and the RCM should complete 
fabrication and move to the lab checkout and bring-up by 
4Q16.  All of these modules align with the SpaceVPX 6U 
Payload/Controller slot profile family and the latter three have 
user defined signals in the same locations, enabling them to be 
interoperable.  (The RAD750 SBC with its heritage PCI Bus 
and 1553 I/Fs on the backplane requires a different slot though 
user I/O are consistent with the other three modules.)  Thus a 
common test structure and two test backplanes (peripheral and 
payload) have been created for use across these modules and 
many others that may be created in the future.  The test 
backplane is designed to route signals for the utility, control, 
data, and expansion planes for Controller and Payload slot 
types.  Each Module is tested in accordance to their system slot 

type.  Each slot type has a different backplane signal routing.  
Table 2 captures the different slot types supported for each 
module described above.  

Table 2 – Module Slot Types 

Slot Type Backplane Module 
Controller/Payload 
/Peripheral Peripheral RAD750 SBC with PCI 
Controller/Payload Payload RAD750 SBC without PCI* 
Controller/Payload Payload RAD5545 SBC without PCI 
Controller/Payload 
/Peripheral Peripheral RAD5545 SBC with PCI* 
Payload Payload RCM 
Peripheral Payload RCM with PCI* 
Payload Payload Single RADSPEED DSP* 
Payload Payload Dual RADSPEED DSP 
Payload Payload Storage Module* 
Switch Switch*  RapidIO Packet Switch* 
Controller/Switch Switch* Controller w/ Packet Switch* 

*Future 
The test fixture is side loading which allows for backplane 

probing.  The backplane is designed to be compatible with a 
commercial chassis, leveraging OpenVPX infrastructure and 
commercial modules for workbench testing.   The test fixture 
supports up to two redundant modules of each type. This will 
allow for testing of module redundancy.  Backplane slot 
profiles adhere to the SpaceVPX defined profiles as 
summarized in the family slot profile shown in Figure 9.  The 
main difference between the Peripheral and Payload 
backplanes are the expansion planes in P2/J2 and P5/J5.  The 
peripheral backplane routes connector single-ended signals for 
the PCI Bus in P5/J5 and most test user defined signals on 
P2/J2.  The Payload P2/J2 has very few test user defined 
signals due to routing challenges with the data plane in P1/J1 
and instead uses connector differential for these signals on 
P5/J5.  The test interfaces include JTAG connections.  Test 
signals are all common on the backplane regardless of slot 
profile used and are located in the Utility Plane per the 
standard.  

 
Figure 8: Block diagram of the RADSPEED DSP card 
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Figure 11 depicts the tester backplane connections and 
supported signals required for test of up to two controller or 
payload modules. Note that the controller cards are tested 
independently of each other therefore two cards are not 
required for bring up and test.  Single string processing is also 
supported. The tester backplane routes signals needed for 
module testing.  All interfaces, such as the SpaceWire, 
RapidIO, clocks and discretes are routed to backplane 
connectors for testing or wrapping. Management signals on the 
utility plane are also routed to the backplane.   

  
High performance interfaces such as SpaceWire or 

RapidIO require test equipment that can drive or monitor 
these interfaces.  Figure 10 diagrams the test setup and 
general connections for these advanced high performance 
modules (VPX modules).  Existing SpaceWire test 
equipment such as those from Star Dundee and / or 4 Links 
will be used for working with and analyzing the SpaceWire 
signals.  RapidFET designed by Fabric Embedded Tool 
Corporation will be used to test RapidIO interfaces.  
Because of its diagnostics capability, this tool can be used 
during board bring up and component testing as well.   

Ethernet is an interface that many organizations use in 
non-space labs for testing or development between 
terrestrial equipment.  Currently being developed with the 
NSF Center for High-Performance Reconfigurable 
Computing (CHREC) [13] is an Ethernet - SpaceWire box 
which will use SpaceWire as a medium to transport Internet 
protocol (IP) packets.  Device drivers will enable these 
packets to be used directly by processors in the SpaceVPX 
module with IP awareness.  This will facilitate lab testing 
and application development without requiring an Ethernet 
port on the space hardware.  The system test equipment 
(STE) PC can communicate with such processor 
applications as if they are IP.  Similarly, IP will be usable 
for inter-processor communication over the SpaceWire 
network within the box. 

Also being developed is a software/hardware 
Prototype development fixture which will allow customers 
to develop applications on these modules without requiring 
the System Tester.  This will expedite customer 
development. 
 

 

VIII. SUMMARY 
This paper has described a family of SpaceVPX modules 

that will greatly increase the processing options for creating 
scalable single string and single point fault tolerant payloads.  
All of the modules utilize the same group of SpaceVPX slot 
profiles and thus are interoperable with appropriate backplane 
routings of the utility, control, data and expansion planes.  
SpaceWire is part of all of these and provides a critical 
function as the control plane as well as medium speed data 
movement.  Several other modules are under development that 
will provide additional functions and connectivity within the 
same structures.   

Table 2 provides a summary of the modules presented 
along with their key technical specifications. 
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Table 2 – High Performance SpaceVPX Module using SpaceWire Summary 

Module  MIPS MFLOPS GB RAM 
GB 

NVM 

Data 
Port 
Rate 
Gbps 

Data 
Ports 

SpaceWire 
Port Data 

Rate Mbps 

Space-
Wire 
Ports 

Daughter 
Board 

Connectors 

RAD750 SBC 500 250 0.128 0.5 1 1 256 4   

RAD5545 SBC 5600 3700 8 4 16 4 320 12 SBC, DIMM 

Dual V5 FPGA RCC   10000 2 4 10 6 100 4 2-RCC 
Dual 90nm RADSPEED 
DSP 6200 143700 12 4 16 4 320 4   

 
 

 
Figure 11: Controller/Payload Tester Backplane.  (SpW = SpaceWire) 
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Abstract—Cobham Gaisler presents a network layer 
implementation for easy integration of SpaceFibre and Serial 
RapidIO into modern System-on-Chips. 

Index Terms— Serial RapidIO, SpaceFibre, System-on-Chips 

I. INTRODUCTION 
SpaceFibre (SpFi) [1] is a new high-speed serial data link 

specifically designed for spaceflight applications that 
incorporates several Quality-of-Service (QoS) techniques. 
Independent communication channels can be combined into a 
single network stream by means of virtual channels. The virtual 
channels are multiplexed based on reserved bandwidth, 
priorities, time-slots, or a combination of these mechanisms. 
Integrated Fault Detection, Isolation and Recovery (FDIR) 
support guarantees fault-free communication. SpFi is particu-
larly well suited for, but not limited to, device-to-device 
intercommunication. 

Serial RapidIO (SRIO) [2] is another high-speed serial data 
link considered for space applications. With support for inter-
process messages, doorbell messages and memory I/O 
operations, it is particularly well suited for chip-to-chip and 
board-to-board intercommunication.   

Cobham Gaisler is currently working on a modern network 
layer implementation for both SpaceFibre and Serial RapidIO 
(also referred to as “logical layer”). Due to major similarities 
between these two communication standards, a single, modular 
concept is developed, in which only a few blocks must be 
swapped depending on the underlying physical layer. The new 
architecture advances earlier concepts as it is specifically 
designed to handle high data throughput rates and also targets 
multi-core and multi-memory systems. 

 

II. DIFFERENCES AND SIMILARITIES BETWEEN  
SPACEFIBRE AND SERIAL RAPIDIO 

While there are fundamental differences between 
SpaceFibre and Serial RapidIO in terms of error-recovery 
management and QoS mechanisms, the actual data transmitted 
over both protocols shows many similarities. 

SpaceFibre uses for raw data transmission the simple 
SpaceWire packet format [3], which consists of one or several 
addresses, the packet payload and an End-of-Packet (EOP) 
marker. In theory, the packet length of such a raw packet is not 
limited. By using the additional Remote Memory Access 
Protocol (RMAP) protocol [4], remote memory I/O access 
becomes possible via SpaceWire/SpaceFibre as well. 
SpaceFibre also supports broadcast frames, which are multi-
purpose high-priority messages. These messages are comparable 
to SpaceWire time-codes but in addition to a simple sequence 
number they also comprise a data payload of 8 bytes. 

Serial RapidIO is a more packet-based protocol that already 
includes remote memory I/O access operations (defined in the 
logical I/O specification) and messages (defined in the 
messaging specification). Data streaming is in contrast to 
SpaceFibre rather a supplement than an essential part, which 
also reflects the different application domains of these two 
protocols since SRIO is clearly targeted at chip-to-chip 
communication. However, with the optional data streaming 
protocol (defined in the data streaming logical specification), 
complex streaming applications can also be implemented over 
Serial RapidIO. 

Thus, by adding RMAP to SpaceFibre and the data 
streaming protocol to Serial RapidIO, three basic data transfer 
types can be identified that must be handled by a common 
network layer, see also Table I. The first type describes 
interrupt-style short messages, which are used for example for 
processor to processor communication. The SpFi broadcast 
messages and the SRIO doorbell messages clearly fall into this 
category. The SRIO data message, however, is more complex as 
it can also carry larger payloads of up to 4K data and it therefore 
does not have a real equivalent in the SpaceFibre domain. The 
second type describes memory I/O access operations, for 
example read, write or read-modify-write operations and for this 
data transfer type the differences between RMAP and the I/O 
logical specification are rather small. The third type describes 
data streams, which are made possible over SRIO using the data 
streaming protocol. In principle, streaming over SpaceFibre can 
be realized by only using the SpaceWire packet format but for 
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more advanced applications it might be worth to consider an 
additional protocol like the CCSDS packet transfer protocol [5]. 

TABLE I.  SUPPORTED DATA TRANSFER TYPES 

Type SpaceFibre Serial RapidIO 

Interrupt messages Broadcasts Messages, Doorbells 

Memory I/O access RMAP Protocol I/O Logical Spec. 

Data Streams 
SpaceWire Packets 
and/or CCSDS packet 
transfer protocol 

Data Streaming 
Specification 

 

III. NETWORK LAYER ARCHITECTURE 

 
Fig. 1. Simplified block diagram of the GRSPFI/GRSRIO Network Layer 

 

A. Overview 
A simplified block diagram of the network layer is shown in 

Figure 1. The virtual channels of the SpaceFibre port or several 
ports of a Serial RapidIO endpoint are connected to one or 
multiple network layer processing cores via inbound and 
outbound routing switches. Each processing core is connected to 
a generic bus master. At present, the AMBA bus is directly 
supported for a simple integration with the Gaisler product line. 

A processing core comprises a configurable number of 
transmission and reception queues for interrupt messages, one 
transmission and one reception queue for data streams and one 
transmission queue for memory I/O access operations. Control 
and status registers for each queue are clearly separated and can 
be mapped for example to 4K boundaries to allow a Memory 
Management Unit (MMU) to restrict the access of specific 
queues to specific CPU cores. 

In a multi-memory system, several processing cores can be 
instantiated, which all comprise their own bus master. Then, data 
can concurrently be transmitted and received over several SpFi 
virtual channels / SRIO ports at the same time.  

The front-end of the bus master, i.e. the interface to the 
processor core, has separate FIFO-like read- and write-channels. 
The back-end of the bus master can be configured for different 
bus widths (e.g. 32 bit, 64 bit or 128 bit) and bus protocols 
(AMBA or AXI4). Due to the generic FIFO interface 
architecture, the bus master could even be replaced by custom-
built logic, e.g. by a bridge to a Network-on-Chip (NoC), a local 
on-chip memory or a direct interface to a microcontroller.  

This highly flexible design allows many different System-
on-Chip (SoC) approaches. For instance, several SpFi virtual 

channels can be shared by one single core, multiple cores can 
manage one single SpFi virtual channel, or specific virtual 
channels can exclusively be managed by a particular CPU core. 

B. Handling of interrupt messages 
1) Data Messages (SRIO) 

For these messages, multiple queues on both inbound and 
outbound side can be installed during design time by 
corresponding VHDL generics. If multiple processing cores are 
used, a particular queue is always managed by one particular 
processing core, although this affiliation can be reprogrammed 
dynamically during runtime by software. 

On inbound side, each message reception queue comprises a 
filter that allows the mapping of a mailbox number or a range of 
mailbox numbers to this specific queue. For instance, the user 
could set up five queues, the first four queues accepting 
messages addressed to mailbox 0 to 3 and the fifth queue 
accepting messages addressed to all other, higher mailbox 
numbers. As an additional feature, data messages can also be 
filtered based on their destination ID. If a message is received, 
which is addressed to a mailbox number / destination ID 
combination that is not accepted by any message reception 
queue, the processing core automatically generates and 
transmits ERROR responses to the source node. Concurrent 
reception of letters is not supported. If a message packet is 
received with a letter number different to the one of the currently 
processed message, this message is dropped and RETRY 
responses are generated and transmitted to the source node. Both 
aforementioned events are logged in status register fields and 
can optionally trigger interrupts. 

On outbound side, each message transmission queue is set 
up to transmit messages to one particular (or several alternative) 
port numbers. However, this port number(s) can also be changed 
dynamically during runtime by software. The queues are 
serviced by the processing core in a round-robin fashion. 

Each message reception and transmission queue comprises a 
circular buffer that contains DMA descriptors set up by 
software. The depth of the circular buffer as well as its location 
in memory can be changed during runtime, effectively allowing 
the software to swap queues if necessary. On both inbound and 
outbound side, the head pointer to the circular buffer is managed 
by software and the tail pointer is managed by the DMA engine. 

For incoming messages, the software first sets up descriptors 
that point to free memory spaces and then increments the head 
pointer accordingly. By doing so, it signals to the DMA engine 
that the new descriptors are ready to be processed. Once the 
DMA engine has received and stored a message successfully, 
the current descriptor is updated and the tail pointer is 
incremented. By doing so, the descriptor and thus also the 
received message is handed over to software. Furthermore, the 
processing core generates and transmits a DONE response to the 
source node. Each message descriptor is updated with a time-
stamp value after successful reception that is taken from an 
external source, e.g. an external timer module. 

For outgoing messages, the descriptors point to memory 
spaces containing the message payloads to be transmitted. 
Again, the software signals to the DMA engine that the 
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descriptors are ready for processing by incrementing the head 
pointer. Once the DMA engine (i) committed a message 
successfully to the Serial Rapid IO endpoint and (ii) received a 
response (DONE, ERROR) from the destination node, the 
descriptor is updated with the result and the tail pointer is 
incremented accordingly. By doing so, the software is informed 
that the descriptors are free again and both the descriptors and 
the corresponding memory spaces can be reused by software. In 
case of a RETRY response, the processing core retries the 
message automatically until the message is either accepted by 
the destination node or until a retry threshold level is reached. 
Not until then, the descriptor is handed over to software. 

For both the outbound and inbound side, interrupts can be 
enabled for each message independently that are either triggered 
after successful processing or when an error condition occurred. 
In addition, an interrupt can be enabled on inbound side that is 
triggered when a particular message reception queue becomes 
full. In case of a full message reception queue, the processing 
core also generates and transmits RETRY responses to the 
source node. 

For multi-packet messages, timeout mechanisms are 
available on both outbound (request-to-response) and inbound 
side (response-to-request) that limit the allowed time in which 
the destination node sends a response packet (outbound side) or 
the next message segment (inbound side). Timeouts are flagged 
in status registers and can also be set up to trigger interrupts. 

 
2) Doorbell Messages (SRIO) / Broadcast Messages (SpFi) 

For doorbell/broadcast messages, multiple circular buffers 
exist for both inbound messages and outbound messages. The 
buffers use the same concept of handshake between software 
and hardware as is the case for other messages, that is, the 
software manages a head pointer and the DMA engine manages 
a tail pointer. In contrast to normal messages, however, the 
buffers do not contain descriptors but rather the doorbell/ 
broadcast messages themselves. 

On inbound side, the DMA engine stores incoming 
doorbell/broadcast messages automatically to an assigned buffer 
as long as free space is available, that is, as long as the head 
pointer is ahead of the tail pointer. The doorbell/broadcast 
messages can be assigned to particular reception buffers by 
filtering their destination ID (SRIO) or their broadcast channel 
number or a range of broadcast channel numbers (SpFi). Once a 
message is successfully received and stored to memory, the 
DMA engine increments the tail pointer accordingly and the 
processing core generates and transmits a DONE response to the 
source node (only SRIO, SpFi broadcasts are never 
acknowledged). Under normal conditions the software will 
ensure that the head pointer of the doorbell reception queue is 
ahead of the tail pointer by a couple of messages. However, if 
the software cannot process the incoming doorbell/broadcast 
messages fast enough, it can apply back-pressure by simply not 
incrementing the head pointer. If the reception buffer is full, the 
processing core automatically generates and transmits RETRY 
responses to the source node (only SRIO). Each 
doorbell/broadcast message is stored with a time-stamp value 

that is taken from an external source, e.g. an external timer 
module. 

On outbound side, the software can set up one or several 
doorbell/broadcast messages at once and then increment the 
head pointer as desired. Once the DMA engine committed a 
doorbell/broadcast message successfully to the SRIO/SpFi 
endpoint the tail pointer is incremented. In case of a RETRY 
response, the processing core retries the doorbell message 
automatically until the message is either accepted by the 
destination node or until a retry threshold level is reached (only 
SRIO). Not until then, the buffer space is handed over to 
software. 

For both the outbound and inbound side, interrupts can be 
enabled that are either triggered after successful processing or 
when an error condition occurred. In addition, an interrupt can 
be enabled on inbound side that is triggered when the 
doorbell/broadcast message reception buffer becomes full. 

Furthermore, one doorbell/broadcast output signal for each 
processing core is available at the network layer port. If enabled, 
the signal is pulsed after the reception of a doorbell/broadcast 
message and the doorbell/broadcast message payload value is 
signaled on dedicated output pins. Optionally, the payload of the 
doorbell/broadcast is first compared to a programmable value 
and mask. Only if the comparison succeeds, the output signal is 
pulsed. In addition, doorbell/broadcast input signals for each 
processing core enable external hardware components to 
generate and transmit doorbell/broadcast messages directly. The 
payload value of the doorbell/broadcast message is also 
provided by the external component via dedicated input signals. 

C. Handling of memory I/O operations (SRIO/SpFi) 
On outbound side, I/O operations are managed in a similar 

way as outbound messages. Each processing core comprises one 
I/O transmission queue. This queue makes use of a circular 
buffer that contains DMA descriptors set up by software. The 
depth of the circular buffer as well as its location in memory can 
be changed during runtime, effectively allowing the software to 
swap queues if necessary. The head pointer to the circular buffer 
is managed by software and the tail pointer is managed by the 
DMA engine. 

For outgoing I/O operations, the descriptors contain all 
required information about the operation itself as well as 
pointers to memory spaces, which are either reserved for data 
that is read from a remote device or which contain data that shall 
be written to a remote device. 

Just as for the message handling, the software signals to the 
DMA engine that the descriptors are ready for processing by 
incrementing the head pointer. Once the DMA engine (i) 
committed an I/O operation successfully to the SRIO/SpFi 
endpoint and (ii) received a response from the destination node, 
the descriptor is updated with the result and the tail pointer is 
incremented accordingly. By doing so, the DMA engine hands 
over the descriptor as well as the memory space to the software 
for further processing. 

Incoming I/O operations can gain direct access to the local 
memory space. Translation between SRIO/RMAP addresses 
and local addresses is accomplished by an optional, fixed 
memory offset value. Memory protection can be implemented 
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by defining up to four memory partitions where each partition 
can be configured to be either read and writable or read-only. 
Interrupts can be enabled for successful memory accesses. 
Furthermore, interrupts can be generated in case of errors on the 
bus or if the remote node tries to access a forbidden memory 
area. Then, the processing core also generates and transmits an 
ERROR response to the source node. 

D. Handling of data streams 
The handling of data streams is not yet fully defined but it is 

planned that raw SpaceWire packets and CCSDS packets will 
be supported for SpaceFibre and the data streaming protocol for 
Serial RapidIO. On inbound and outbound side, data streams 
will be managed in a similar way as messages. Each processing 
core will comprise multiple transmission and reception queues, 
which store DMA descriptors in circular buffer structures. 

IV. VERIFICATION 
At present, a preliminary version of the GRSRIO Serial 

RapidIO network layer has been implemented that includes one 
processing core and that implements all data transfer types 
except of the optional data stream protocol. 

 

 
Fig. 2. Simplified block diagram of the GRSRIO testbench environment 

 
A full VHDL testbench environment has been set up, see 

Figure 2 for a block diagram. The GRSRIO IP core is connected 
to two concurrent processes mimicking a Serial RapidIO 
physical layer and another process simulating the AMBA bus 
master. The main testbench process runs 38 tests altogether, 
covering all aspects of the logical I/O and messaging 
specification and is achieving 100% statement coverage. 

V. IMPLEMENTATION RESULTS 
Example synthesis results for a GRSRIO IP core with two 

transmission and reception queues for messages and two 

transmission and reception buffers for doorbell messages can be 
found in Table II for a Xilinx Virtex-5 FX130 device. The 
internal data path of the GRSRIO IP core is 128-bit wide. 

TABLE II.  IMPLEMENTATION RESULTS ON VIRTEX-5 FX130 

Max. Throughput Rate: > 25 Gbps (ƒ = 156.25 MHz) 

Slice LUTs: 7619/81920 (9%) 

Slice Flip-flops: 2218/81920 (2%) 

Block RAMs: 2/298 (0%) 

 

VI. CONCLUSIONS 
Cobham Gaisler offers with the SpaceFibre and Serial 

RapidIO network layers innovative solutions for the integration 
of these protocols into modern System-on-Chips with multiple 
cores and/or multiple memories. The flexible architecture offers 
good scalability and can support several bus back-ends like 
AMBA and AXI4. A preliminary version of the Serial RapidIO 
network layer was fully verified and synthesis results show high 
maximum throughput rates at reasonable resource utilization. 
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Abstract—SpaceFibre is the upcoming European standard for 

on-board high-speed communications. The need for data-rate 

beyond 1 Gb/s is already present in space missions, and it is 

currently fulfilled by non-standard approaches based on 

Serialiser/Deserialiser components such as Texas Instruments 

TLK2711. The SpaceFibre standard also integrates Quality of 

Service and Fault Detection, Isolation and Recovery mechanisms, 

which allow a highly reliable communication, suitable for space 

systems. 

The abovementioned features make the SpaceFibre standard 

undoubtedly complex; therefore an adequate test equipment is 

necessary for the validation of systems based on this standard. 

In this paper, a test equipment for SpaceFibre links is presented. 

This is designed to support the development of new SpaceFibre 

devices, as well as complex systems based on SpaceFibre. A system 

demonstrator was implemented to validate the equipment 

features.  

Index Terms—SpaceFibre, test equipment, high-speed serial 

link, EGSE (Electrical Ground Support Equipment) 

I. INTRODUCTION 

Modern and forthcoming missions for Earth Observation 

and science (e.g. Euclid, Juice, Metop-SG, CarbonSat…), are 

more and more demanding very high-speed reliable data 

transmission especially within the different units in a payload 

(beyond 2 Gbps) . Thanks to the evolution of technology for 

detectors, each single payload can comprise different 

bandwidth/channels of operations at a very high-speed. In such 

a context, being able to manage the science data handling and 

transmission within a payload and from payloads to platforms 

on-board is still an open point. SpaceWire networks are suitable 

for single links working up to 400 Mb/s while there is still no 

standardised solution for higher data-rate. 

The European Space Agency (ESA) is therefore finalising a 

new standard for high-speed data links called SpaceFibre [1], 

supporting data-rates beyond 2 Gb/s. As such, the SpaceFibre 

standard allows highly reliable and very high speed point-to-

point connections. SpaceFibre defines a complex protocol in 

order to cope with such stringent requirements, therefore specific 

competences and a considerable effort are necessary to develop 

and validate systems based on this standard. 

In this paper, a device for test and validation of SpaceFibre-

based systems is presented, which provides a powerful yet simple 

way of validating and debugging such systems. Among its 

features, the SpaceFibre test equipment can be used to analyse 

SpaceFibre traffic at different protocol levels, inject SpaceFibre 

packets and verify the conformance to the SpaceFibre standard. 

The SpaceFibre test equipment can be controlled by means of a 

PC through a user-friendly Graphical User Interface. The main 

use cases of the SpaceFibre test equipment and test results are also 

presented. 

The SpaceFibre test equipment is built upon the experience of 

the University of Pisa on the SpaceFibre standard. Indeed, the 

University of Pisa has been working on the SpaceFibre standard 

since 2014, under a collaboration with ESA for the review and 

consolidation of the SpaceFibre draft standard. During the work 

on the topic, a SpaceFibre interface IP-core was independently 

developed and interoperability with other implementations was 

demonstrated [2]. The design of the IP-core was carried out using 

a robust hardware design and verification flow, involving the 

development of a formal verification environment to prove the 

functionality and compliance of the IP-core to the SpaceFibre 

standard [3]. 

This paper is organised as follows: 

The current state-of-the-art in the field of test equipment for 

SpaceFibre is presented in Section II. 

Section III presents the proposed SpaceFibre test equipment. 

Section IV describes the implementation of such test 

equipment. 

Section V shows the tests on the system prototype. 

Finally, the conclusions are drawn in Section VI. 

II. RELATED WORK 

SpaceFibre is a high-speed serial link standard, specifically 

designed for use on-board spacecraft, and developed by the 

University of Dundee for ESA. The standard is currently under 

finalisation by the European Cooperation for Space 

Standardization (ECSS).  

SpaceFibre is able to operate over fibre-optic and copper 

cable and supports data rates as 2.5 Gb/s, 3.125 Gb/s and 6.25 

Gb/s per lane, up to a maximum of 20 Gb/s with multilane 

design. SpaceFibre is backwards compatible with the SpaceWire 
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standard at packet level, which allows easy integration of the 

new standard into existing systems based on SpaceWire.  

SpaceFibre will be used in all cases where data-rate 

requirement is 1 Gb/s and beyond, which is already a 

requirement for currently designed space mission payloads. 

Other than the high-data rate, the SpaceFibre link will take 

advantage of Quality of Service (QoS) and Fault Detection, 

Isolation and Recovery (FDIR) capabilities. One of the possible 

applications of SpaceFibre is the multiplexing of multiple 

SpaceWire channels over a single SpaceFibre link, in order to 

reduce the harness on the spacecraft [4]. Each SpaceFibre 

Virtual Channel (VC) can be seen as a SpaceWire link; 

therefore, a bundle of SpaceWire links can be replaced by a 

single SpaceFibre link resulting in a considerable mass reduction 

and compact system setup, adding QoS and FDIR features to 

SpaceWire links. 

STAR-Dundee produced StarFire [5], a test unit to support 

the development and early adoption of the SpaceFibre standard. 

The unit can generate random packets over the SpaceFibre links 

as well as consume received data. StarFire can route the 

SpaceWire ports to VC0 or VC1 of the SpaceFibre interfaces. 

The unit supports 2.5 Gb/s single-lane SpaceFibre link rate. 

 

III. SYSTEM DEFINITION 

The SpaceFibre test equipment presented in this paper, also 

referred to as “SpaceFibre Analyser”, comprises the following 

main features: 

 

 Two SpaceFibre interfaces 

 Two SpaceWire interfaces 

 Compliant with SpaceFibre and SpaceWire standards 

 Ethernet / PCIe interfaces for host PC communication 

 Real-time communication with the host PC through PCI 

communication 

 8 Virtual channels for each SpaceFibre interface, which 

is seen as sufficient for present and future device needs 

 SpaceWire/SpaceFibre bridging 

 Link-Analyser mode to monitor the 

SpaceFibre/SpaceWire links 

 Can be used as Electrical Ground Support Equipment 

(EGSE) for the validation of satellites based on 

SpaceFibre/SpaceWire. 

 Hardware packet generator and packet consumer to allow 

the easy saturation of the SpaceFibre link and enable 

stress testing of the SpaceFibre network 

 Error injection/Word replacement capability to facilitate 

conformance testing of the system under-test 

 TX/RX trace memory of 8192 4-byte words to check 

protocol-specific features such as flow-control, 

acknowledgement, frame re-transmission 

 Simple to use with either graphical user interface, or 

command line interface for test automation. 

 

 

Fig. 1.  SpaceFibre test equipment 

The test equipment features a sophisticated error injection 

mechanism on the SpaceFibre link in order to test all the 

functionality of the Device Under Test. The error injection is 

available in the following different options: 

 

 Bit Error Rate (BER) mode, in which the user sets a 

desired BER and the test equipment randomly injects bit 

flips on the TX/RX data according to the selected BER. 

 Bit flip, in which the user sets the desired word to corrupt 

 Word replacement, in which a certain word can be 

replaced by another one selected by the user 

 

In particular, the bit flip and word replacement modes are 

useful to test various corner cases of the protocol, e.g., device 

not receiving ACKs, device not receiving FCTs, etc. All the error 

injection options listed above, are fully customisable by the user 

through the Graphical User Interface on the host PC. 

 

In the following sections, the use modes are briefly described. 

 

A. EGSE operation mode 

In EGSE operation mode, the SpaceFibre test equipment can 

be used to emulate a device in a SpaceFibre network, generating 

predefined packets and responding to user-defined packets. The 

SpaceFibre test equipment is able to generate and to consume 

SpaceFibre packets in real time. The user can choose to use the 

internal hardware packet generator/consumer or reading/writing 

packet contents from/to a file on the host PC. 

 

B. Link Analyser operation mode 

The SpaceFibre test equipment allows the monitoring of the 

link. In this operation mode the SpaceFibre test equipment is 

connected in the middle of two different SpaceFibre nodes. 

The SpaceFibre traffic that flows on the link can be monitored 

by the user through the host PC. Errors can be injected on the link 

to verify the reliability of the communication. 

 

Host PC

SpFi link SpFi link

SpaceFibre
Test Equipment

SpFi node 1 SpFi node 2
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C. Conformance tester operation mode 

The SpaceFibre Analyser provides to the user a list of 

conformance tests, in order to verify the correct features 

functionality expected from the SpaceFibre standard. 

Tests available are useful for the verification of the 

SpaceFibre initialization protocol, FDIR and QoS capabilities of 

DUT, and for the correct handling of corner cases such as 

reception of empty packets. 

 

IV. IMPLEMENTATION 

The proposed SpaceFibre Analyser is implemented as a highly-

optimized AXI4-centric system.  AXI4 is part of the AMBA 4 

specification for high performance systems. All the peripherals 

are connected to the AXI subsystem, this allows to have a high 

flexibility and, at the same time, to move data among the 

different interfaces at a very high speed. 

 

 
 

Fig. 2.  SpaceFibre test equipment implementation overview 

The user, interacting with the GUI, generates commands that are 

forwarded through the Host interface to the Analyser 

Microprocessor. The Microprocessor is responsible for the 

configuration and the control of the entire SpaceFibre test 

equipment. The Host interface can also be exploited for sending 

and receiving high-speed data streams from one, or multiple, 

SpaceFibre and SpaceWire ports.  

SpaceFibre and SpaceWire CODEC IPs used are from 

IngeniArs S.r.l.  The IngeniArs SpaceWire CODEC IP-core [6] 

has considerable heritage in space projects, both on ground and 

flight hardware. The IngeniArs SpaceFibre CODEC IP-core [7] 

was intensively verified with a complete and structured 

SystemVerilog/UVM based test environment reaching the 

complete code coverage of the RTL [3]. Additionally, the 

SpaceFibre CODEC IP was demonstrated interoperable with 

third-party SpaceFibre equipment such as the StarFire 

equipment [2]. 

The SpaceFibre and SpaceWire CODEC IPs share a common 

implementation structure, as depicted in Figure 3. They are 

equipped with a high-performance AXI interface and a highly 

optimised DMA engine interfacing with the AXI system, which 

allows efficient data movement on the system bus connecting 

the system memory to the SpaceFibre/SpaceWire ports. At the 

same time, it allows to realise a simple yet efficient bridging 

between SpaceFibre and SpaceWire ports.  

The Hardware Packet Generator and Consumer are 

implemented in such a way they do not interfere with the other 

peripherals of the test equipment. They can unobtrusively fulfil 

the SpaceFibre or SpaceWire link bandwidth. 

The Error Injection module acts at the lowest possible word-

level, allowing to accurately insert very specific errors on the 

data stream in order to stimulate complex scenarios.  

 

 

Fig. 3.  SpaceFibre/SpaceWire Codec IP structure 

The Trace Memory, finally, can be programmed to trigger on a 

user defined word and show to the user all the words flown 

through the port within a time window centred on the triggered 

word. 

 

Each subsystem of a SpaceFibre/SpaceWire Codec IP, and of 

the Analyser in general, is highly configurable by the user at run 

time using the GUI, thanks to the specific system architecture 

adopted.   

 

V. TEST AND RESULTS 

The complete SpaceFibre test equipment was tested in with the 

two SpaceFibre ports connected with a physical loopback, as 

shown in Figure 4. 

 

The SpaceFibre test equipment is connected to the Host PC 

running the GUI through the Ethernet port and the loopback on 

SpaceFibre ports is realised through an eSATA cable. 

Many specific tests were carried out in order to verify the correct 

behaviour of all the subsystems.  
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Fig. 4.  SpaceFibre test equipment demonstrator connection for testing 

 

 

Some of the most remarkable tests are: 

 

i) Hardware packet generators and consumers were 

intensively tested with a lot of different packet sizes and 

bandwidths. Figure 5 shows the SpaceFibre test 

equipment GUI for the setup of the SpaceFibre port. The 

most useful parameters are directly visible on this 

window for all the Virtual Channels, so that the user can 

have a quick and complete overall view of the system. 

More specific parameters for each VC can be configured 

in a detailed section of the GUI. 

 

 

Fig. 5.  GUI showing Hardware Packet Generator/Consumers on different 

Virtual Channels 

ii) The Trace Memory was programmed to trigger in many 

different cases, both in transmission and in reception, 

completely exploiting and testing the trigger 

functionality of the component (Figure 6). 

 

 
Fig. 6.  Trace memory shown on the GUI 

 

iii) The Error Injection module was greatly stressed. To 

verify its functioning the built-in trace memories of the 

SpaceFibre test equipment were used, testing all the three 

operation modes (bit flip, error on specific words and 

BER insertion on the link). The BER tests also verified 

the theoretical maximum error rate sustainable before the 

link disconnection (10−5). 

 

iv) The Software Packet Generator and Consumer were 

intensively used. This software tool generates a stream of 

fixed-step incremental data that is sent to a certain Virtual 

Channel of one of the SpaceFibre ports. By using the 

loopback connection, this stream is received by the other 

SpaceFibre port and sent back to the Host PC by the 

SpaceFibre test equipment unit. The software Packet 

Consumer also checks the correctness of the received 

data. 

 

v) The software File Reader and File Writer were also used 

to test the SpaceFibre Analyser functionality. The 

working principle is the same of the Software Packet 

Generator and Consumer, but the data is read from a user-

specified file and written back to another file. There is an 

option to read the file to send continuously, re-starting 

from its beginning when it ends, in order to stress more 

the test equipment. The correctness of the received data 

was proved by comparing the two files with external 

tools. 

 

VI. CONCLUSIONS 

A SpaceFibre test equipment, with its features and hardware 

architecture, was described in this paper. The proposed test 

equipment comes together with a complete Graphical User 

Interface that allows the user to extensively configure the unit 

itself and to put in place complex and automatically verifiable 

data transmission and reception schemes from and to the Host 

PC, using a variety of different interfaces to the host (Ethernet, 

PCIe). 

The test equipment, with its two SpaceFibre and two SpaceWire 

ports, can be effectively used in many different situations, acting 

like an EGSE, or like a link analyser to monitor the link between 

two SpaceWire/SpaceFibre nodes, or performing some 

conformance tests to verify a third party SpaceWire/SpaceFibre 

device. 

To accomplish these tasks, the SpaceFibre test equipment has 

many embedded tools: 

SpFi link

Ethernet

Host PC
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 integrated Hardware Packet Generators and Consumers 

 Trace Memory able to trigger on a user specified word 

and to show a window of the words flowing on the link 

 Advanced Error Injection module able to insert errors in 

different modes (bit flips, word replacement, BER) and 

completely configurable by the user to artificially create 

particular operational scenarios. 

Additionally, the test equipment is able to realize the bridge 

between the SpaceFibre and SpaceWire ports. 

A great effort was spent in the configurability of all the aspects 

of the SpaceFibre test equipment by means of the GUI. The GUI, 

running on basically every OS, provides a compact yet complete 

view of every Virtual Channel of the SpaceFibre ports and 

provides to the user the complete control over all the aspects of 

the SpaceFibre test equipment. It also includes some very 

advanced functionality, like an automatic Software Packet 

Generator and Consumer/Checker and the possibility to send 

data to the Analyser reading from a file and, on the other hand, 

to write data received from the Analyser into a file. 

All these features were deeply tested, making the SpaceFibre test 

equipment a powerful tool for the verification of external 

SpaceWire/SpaceFibre devices in many different situations. 
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Abstract— SpaceFibre is a new technology for use onboard 

spacecraft that provides point-to-point and networked 

interconnections at Gigabit rates with in-built Quality of Service 

and Fault Detection, Isolation and Recovery. The SpaceFibre 

standard is virtually finished, with the ECSS standardisation 

activity to be ended this year.  

There is a need for equipment to support the development and 

testing of applications of the entire protocol stack. This paper 

describes the new generation of SpaceFibre equipment designed 

for this purpose. They provide users with several options for 

platforms and connectors, such as FMC, USB 3.0, cPCI, PXI, 

PXIe and SpaceVPX. The number of platforms supported and 

the flexibility of the equipment provides the end user with a 

broad range of options to include SpaceFibre in their current 

system design. This helps to promote the adoption of SpaceFibre 

technology.  

A number of designs using the equipment here described is 

currently available or under development. They include the 

SUNRISE SpaceFibre Router and the Multilane SpaceFibre 

interface, among others. When combined, these new boards and 

designs offer a powerful and rich set of tools to help with 

SpaceFibre designs. 

Index Terms— SpaceFibre, RTG4, USB, cPCI, PXI, PXIe, 

SpaceVPX, EGSE, FMC 

I. INTRODUCTION 

SpaceFibre (SpFi) will be released as an ECSS standard 

later this year [1]. With the addition of the network and 

multilaning layers the standard is virtually finished.  

STAR-Dundee released a few years ago the STAR Fire unit [2] 

to help with the SpFi implementation and adoption in the initial 

stages of the protocol. However, a new generation of 

Electronic Ground Support Equipment (EGSE) products is 

required to provide users with suitable hardware to implement 

and test the whole SpFi protocol stack. Furthermore, there is a 

need for demonstrators with space-qualified components to 

increase SpFi maturity. In this article a new family of products 

specifically designed to provide a platform to support SpFi 

adoption is presented. 

II. STAR FIRE MK3 

The STAR Fire Mk3 is the evolution of the initial STAR 

Fire device [2]. It shares with the old version some of its 

features. It has two SpFi and two SpaceWire (SpW) interfaces, 

two MICTOR connectors for connecting a Logic Analyser, and 

four SMB connectors. Three of those are external input 

triggers, and one is an external output trigger. Fig. 1 illustrates 

the block diagram of the STAR Fire Mk3 design. Fig. 2 shows 

the STAR Fire Mk3 unit. 
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Figure 1. STAR Fire Mk3 architecture 

 

The new STAR Fire unit can operate as a SpFi link 

analyser, SpFi interface and as a bridge between SpFi and 

SpW, among others. It has embedded pattern data generators 

and checkers. The Mk3 version features a USB 3.0 micro B 

interface, which provides communications with a much higher 
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data rate with the host PC. This means that the SpFi link can be 

directly interfaced from a computer at very high data rates. The 

old version can only use instead basic internal data generators 

and checkers for this purpose. 

A bigger FPGA has also allowed an upgrade of the internal 

data generators and checkers to emulate realistic instruments. 

Specifically, this new unit features some of its Virtual 

Channels connected to advanced data generator and checkers. 

These provide with complex data generation capabilities, thus 

allowing more realistic data streams automatically generated 

and checked by the STAR Fire unit without the need for 

computer intervention. Some of the capabilities of these new 

data generators and checkers are: 

 

 The type of data pattern can be selected among 

different options: random pattern, incrementing 

pattern, fixed word value, alternating word values, left 

or right circularly rotating four byte pattern  

 Data value/seed is configurable  

 Data pattern and packet lengths are configurable 

 Length of data bursts and data rate can be configured  

 EEP can be inserted in a specific position 

 The initial four words of each packet can be configured 

 

The capabilities of the embedded Analyser have also been 

improved. Now it is possible to trigger on any given data or 

control word received and also to select the Virtual Channel 

when triggering in data frames. Finally, a DDR memory is 

used instead of the internal FPGA memory to store the 

captured values, resulting in greater recording capabilities. 

 

 

Figure 2. STAR Fire Mk3 unit 

 

III. SPACEFIBRE PXI BOARD 

PXI (PCI eXtensions for Instrumentation) is an industry 

standard widely used as a platform for electronic 

instrumentation in automated test systems [3]. It is currently 

used in many industry areas, including aerospace. PXI uses 

PCI in the communication backplane.  

PXI Express (PXIe) uses the same PXI form factor but 

features PCI Express (PCIe) as backplane communication 

protocol. Switching from PCI to PCIe allows multiplying the 

available bandwidth from 132 MB/s up to 12 GB/s [4]. 

The SpaceFibre PXI board has been developed to 

implement a range of SpW and SpFi devices. The board is a 

3U compatible with PXI, Compact PCI (cPCI) or PXIe racks. 

It can also be provided with the PXIe interconnection if 

required. 

The board offers DDR memory and programmable clock 

sources to provide the end user with a very flexible architecture 

to implement multiple designs. It features a novel set of front 

panel interconnects. There is a set of flexible interface 

connectors that can be used to customise the board, such as 

SpFi, SpW, external triggers, etc. Thus, the board can be easily 

modified to accommodate different designs. This allows using 

the same PXI board to implement many different products. 

Several designs have already been implemented using the 

PXI Board, such as the SUNRISE 8-port SpFi Router (Fig. 3), 

the STAR Fire design (Fig. 1), a 4-port SpFi interface, a 

Multilane (up to 4 lanes) SpFi interface, or a SpW to SpFi 

bridge. 

 

 
 
Figure 3. PXI Board configured as SpaceFibre Router. The front panel has 

8 SpFi ports and 4 SpW ports  

 

A. The SUNRISE SpaceFibre Router 

The SUNRISE router is the first implementation of a SpFi 

routing switch. Fig. 4 depicts the router block diagram. It 

features 8 SpFi interfaces with 4 Virtual Channels each, plus 4 

SpW interfaces tied to a ninth SpFi port. All of them are 

accessible over the front panel, as shown in Fig 3. There is also 

an internal configuration port (Port 0).  

This router implements path and logical addressing, group 

adaptive routing, virtual networks, time distribution and 

message broadcast. It also fully supports the Quality of Service 

(QoS) and Fault Detection Isolation and Recovery (FDIR) 

capabilities native to SpFi. 
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Figure 4. SUNRISE SpaceFibre Router Block Diagram 

 

IV. SPACEFIBRE RTG4 PXIe BOARD 

The SpaceFibre RTG4 PXIe board is a variation of the 

standard PXI board. This board is a 3U featuring a Microsemi 

RTG4 PROTO FPGA instead of a Spartan 6. This allows 

implementing designs with multiple SpFi and SpW interfaces 

in radiation-hardened technology.  

Like the standard PXI, this board offers two banks of DDR 

memory, and a PXIe interface. It also offers the same set of 

flexible interfaces connectors as the PXI card. Up to 8 SpFi 

interfaces are supported. Furthermore, various front panel 

options are offered, also with an option for a custom front 

panel to support custom applications.  

Current designs with this board include a multilane SpFi 

interface. Others designs planned for the near future include a 

10-port SpFi router or an 8 lane-SpFi interface. 

 

 
 

Figure 5. SpaceFibre RTG4 PXIe board 

 

V. SPACEVPX-RTG4 LITE BOARD 

SpaceVPX (also known as VITA 78) [6] uses the 

OpenVPX (VITA 65) backplane standard [5] adding features 

required for space to the VPX standard. They include 

important aspects in space, such as single-point failure 

tolerance, fault detection on critical configuration signals, 

robust system diagnostics, etc. Moreover, SpaceVPX offers the 

possibility of using SpW and SpFi for control and data planes. 

A SpaceVPX Lite board will be made available in the 

coming months. Similar to the aforementioned PXIe-RTG4 

board, this is a 3U unit with a Microsemi RTG4 PROTO 

silicon and a SpaceVPX [6] interface supporting a SpW control 

plane and a SpFi data plane along with standard management 

functions. In the front panel there are available two SpW and 

two SpFi connectors for user access.  

An FMC daughterboard connector is available, with a 

family of daughter boards planned. Among them, a dual 

3 GSamples/s ADC FMC board will be released with the 

board. 

 

 
 

Figure 6. SpaceVPX-RTG4 PCB design 
 

VI. FMC SPACEWIRE/SPACEFIBRE BOARD 

The FMC-SpaceWire/SpaceFibre board (Fig. 7) is an 

FPGA Mezzanine Card (FMC) which is designed to extend the 

capabilities of an FPGA development board by adding support 

for SpW and SpFi interfaces. The board features a standard 

FMC High Pin Count (HPC) connector and has four SpW ports 

with accompanying tri-colour status LEDs, and two SpFi ports. 

The SpW signals are connected via LVDS buffers, and all SpFi 

signals are AC coupled. This adds protection preventing 

damage to the FPGA in case of signals levels being out of 

specifications. 

There is an on-board 125 MHz oscillator that can be used 

as a reference clock inside the FPGA. Also, two SMA 

connectors provide with the option of using an external 

differential clock input instead of the on-board oscillator. 20 

GPIO pins are available to the user.  
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Two sets of switches are used to set different connections 

of the SpW and SpFi signals on the FMC connector. The FMC 

board can be configured using the switches to work with a 

number of FPGA development kits including but not limited 

to: 

 Microsemi RTG4 Development Kit - HPC1 and HPC2 

 SmartFusion2 Adv Dev Kit - HPC and LPC 

 Xilinx VC707/VC709 Board 

 
 

Figure 7. FMC-SpaceWire/SpaceFibre board 

 

VII. CONCLUSION 

The SpaceFibre standard is now basically complete. There 

is a growing number of space applications that can benefit from 

the SpFi features, namely, multi-Gbps data rate and in-built 

QoS and FDIR. Consequently, there is a growing interest on 

SpFi. A new set of products to support its adoption is required. 

In this article a new generation of SpFi test and 

development equipment has been described. The equipment is 

flexible and supports popular platforms and connectors such as 

FMC, USB 3.0, cPCI, PXI, PXIe and SpaceVPX. Furthermore, 

a number of designs using this equipment is ready or under 

development and will be also made available by  

STAR-Dundee. These include the SUNRISE SpFi Router, 

Multilane or Multiport SpFi interfaces, etc. When combined, 

these new boards and designs offer a powerful and rich set of 

tools to help with SpFi designs. 
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Abstract - The Geostationary Operational 

Environmental Satellite R-Series Program (GOES-R, 

S, T, and U) mission is a joint program between 

National Oceanic & Atmospheric Administration 

(NOAA) and National Aeronautics & Space 

Administration (NASA) Goddard Space Flight Center 

(GSFC).  SpaceWire was selected as the science data 

bus as well as command and telemetry for the GOES 

instruments. GOES-R, S, T, and U spacecraft have a 

mission data loss requirement for all data transfers 

between the instruments and spacecraft requiring 

error detection and correction at the packet level.  The 

GOES-R Reliable Data Delivery Protocol (GRDDP) [1] 

was developed in house to provide a means of reliably 

delivering data among various on board sources and 

sinks.  The GRDDP was presented to and accepted by 

the European Cooperation for Space Standardization 

(ECSS) and is part of the ECSS Protocol Identification 

Standard [2]. 

 

GOES-R development and integration is complete 

and the observatory is scheduled for launch November 

2016.  Now that instrument to spacecraft integration is 

complete, GOES-R Project reviewed lessons learned to 

determine how the GRDDP could be revised to 

improve the integration process.  Based on knowledge 

gained during the instrument to spacecraft integration 

process the following is presented to help potential 

GRDDP users improve their system designs and 

implementation. 

 

I. INTRODUCTION 

 

The GOES-R, S, T, and U spacecraft program is a key 

element of the National Oceanic and Atmospheric 

Administration's (NOAA) weather satellite observation 

operations. The GOES-R spacecraft uses European 

Cooperation for Space Standardization (ECSS) 

SpaceWire (SpW) [3] for the transfer of sensor, telemetry, 

ancillary, command, time code, and time synchronization 

information between instruments and the spacecraft.  In 

addition, the spacecraft and instruments are required to use 

the GRDDP for all data transferred over on-board 
SpaceWire links.   

 

In an effort to minimize risk the GRDDP underwent a 

robust testing program by the GOES-R Project, instrument 

providers, and spacecraft developer.  Several SpaceWire 

router implementations were used in this testing as well 

final mission integration.  These implementations included 

two different ASICs and three different FPGAs designs.  

Integrating this diverse combination of SpW routers 

proved to be a challenge for GOES-R.  The current version 

of GRDDP will not be modified for the follow-on GOES 

spacecraft.  Hardware and software for the GOES-S, T, 

and U spacecraft are copies of GOES-R.  The construction 

and integration of these spacecraft have progressed to the 

point where it is cost prohibitive to make changes to their 
hardware and software.  
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II. CURRENT GRDDP FEATURES 

 

The GRDDP uses the lower level SpaceWire data link 

layer to provide reliable packet delivery services to one or 

higher level host application processes.  For the GOES-R 

series spacecraft, the lower level protocol is the Packet 

Level service specified in the ECSS SpaceWire standard 

[3].  The original GRDDP requirement goal was to have 

no data loss with a simple to implement protocol using 

microcontroller, ASIC, or FPGA designs. 
 

The GRDDP design philosophy is that all good 

received packets must send an acknowledgement packet 

(ACK) to the transmitter.  Packets with errors are 

discarded and not acknowledged. The header is eight bytes 

and has an eight bit CRC trailer.  The protocol can be used 

in simple point-to-point full duplex interfaces or a full 

networked environment.  GOES-R has both point-to-point 

and networked environments.   

 

The GRDDP has two protocol services which are 

Reliable Delivery (RD) and Urgent Message (UM).  The 

RD service requires a positive acknowledgement for all 

received error free packets.  This service is used for data 

that is critical to the mission.  Examples of RD data types 

are instrument sensor data, commands, and critical 

telemetry.  UM service is for data that is fire-and-forget 

such as ancillary data and less critical telemetry that 

updates at higher rates.  RD packets must utilize the header 

sequence number for sliding window, missing packet 

detection, duplicate packet detection, and packet order 
processing where UM packets do not. 

 

There is a virtual channel capability included in the 

GRDDP.  This allows up to 96 virtual channels (VC) to be 

used on a single physical SpW link.  VCs are defined by 

SpW Logical Address (SLA) pairs that are required to 

operate independently.  The VC capability allows mixing 

of low, medium, and high rate data on a single physical 
SpW connection, while having a logical separation. 

 

Packet segmentation is not allowed in order to comply 

with the keep-it-simple philosophy for the protocol.  If a 

user has shorter packets it is allowed to pack out the 64k 

application space.  Any error condition outside the 

protocol’s ability to manage it causes the GRDDP to stop 
and report this condition to a higher level process. 

 

III. GRDDP STARTUP REQUIREMENTS 

MISSING FROM ORIGINAL 

SPECIFICATION 

 

There are five instruments on the GOES-R spacecraft 

covering a wide range of Earth and Solar sensing 

capabilities.  The data rates from these instruments varies 

widely.  The instruments started development before a 

spacecraft contractor was selected.  This created a 

situation where the spacecraft provider wasn’t in a 

position to negotiate instrument operation over the SpW 

GRDDP links.  The instrument providers all implemented 

the startup operation of their GRDDP interfaces 

differently since the specification was not explicitly 

specific. This caused the spacecraft to develop unique 
startup processes for each instrument. 

 

 During GRDDP development and proof-of-concept 

testing, the GOES-R Project development system host 

processors were up and running long before instrument 

links were established.  This case was reversed when the 

instruments were integrated with the spacecraft. The 

instrument’s GRDDP interfaces established links with the 

spacecraft before their host processors were fully 

functional.  Another difference between GRDDP 

development and spacecraft integration is that 

development system startup procedures were 

implemented manually where the spacecraft procedures 

are automated. This prevented testing during development 

that could have identified startup interface failures due to 

host processor initialization delays.  Additional problems 

relating to instrument reset/reboot and timecode 
processing were encountered. 

 

Post GRDDP development and when the instrument 

providers delivered emulators, integration and software 

verification testing proceeded using spacecraft host 

processors and simulators.  The spacecraft simulators had 

functionally equivalent spacecraft SpW network routers 

and were used to test command products and procedures 

in operational configurations.  This testing revealed 

problems with instrument reset/reboot, router flow control, 

and timecode processing.  These issues were analyzed and 

resolved. 

 

 The primary and highest rate GOES-R instrument 

GRDDP interface establishes links with the spacecraft and 

buffers messages until the instrument’s host processor is 

ready.  It takes approximately 3 seconds for this 

instrument’s host processor to reach the state where it can 

configure the GRDDP interface and process messages.  

Due to GOES-R timecode processing requirements, the 

instrument needs to receive time information from the 

spacecraft as soon as the link is established.  In order to 

deal with these issues procedures were created holding 
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high rate and ancillary packets for 3 seconds.  No delays 
were implemented for time messages. 

 

The link to host processor startup latency issue was a 

problem for all GOES-R instruments.  The corrective 

action implemented, shown in Figure 1, was creation of a 

programmable delay in the instrument startup procedures 

holding off link initialization until the host was fully 

operational.  This programmable delay is different with 

each instrument and defined in spacecraft to instrument 
Interface Control Documents (ICD). 

 

Figure 1.  GOES-R GRDDP Startup Host Delay 

Compensation Procedure 

 

The next highest rate GOES-R instrument is the first of 

four instrument nodes, as seen from the spacecraft, in an 

onboard network.  This instrument designed their flight 

software to initiate an internal reset every 1.3 seconds if a 

spacecraft transmit channel is not opened causing a 

disconnect/reconnect cycle.    This causes the SpW 

timecode hardware to lose synchronization with the other 

nodes on the router, since a disconnect on any port resets 

the six bit SpW timecode count for all ports.  If this 

instrument’s internal resets continue, the other instruments 

on the link will see a loss of timecode for a period of 

greater than ten seconds.  This condition, by GOES-R 

requirements, causes the other instruments on the link to 

safe themselves.  To mitigate this problem, procedures 

were developed that powered this instrument on and 

opened GRDDP channels before the other instruments 

sharing the same link were powered on and activated.  

Also, procedures diagramed in Figure 2 were implemented 

that powered this instrument down after shutting down the 
other instruments on the link. 

 

Based on GOES-R integration experience as discussed 

above several modifications to the GRDDP specification 

are recommended.  In order to deal with link to host 

initialization delays GRDDP users should revise the 

protocol with the following: 

 

From: 

7.2 Reset Command 
When a Transmit End Point (TEP) transitions to 

the Enabled state, it shall send a Reset command 

to its remote Receive TEP and initiate an 

acknowledgement timer.   

 

To: 

7.2 Reset Command 
When a Transmit TEP transitions to the Enabled 

state and all associated processors are fully 

operational, it shall send a Reset command to 

its remote Receive TEP and initiate an 

acknowledgement timer. 

 

This compensates for link to host startup delay issues and 

eliminates the need for programmable delays in startup 
procedures. 

 

GOES-R has implemented a dual redundant SpW 

architecture between the spacecraft and onboard 

instruments.  If GRDDP users implement redundant SpW 

interfaces GRDDP requirements need to be added to 

insure transmitters and receivers are connected to the 
correct link. 

Figure 2.  Startup and Shutdown Procedure 

 

 

Instrument has powered on
and is looking for Reset Packet

from spacecraft

Instrument receives Reset packet
and sends ACK packet

opening link

Instrument host processor
starts boot process

Instrument host processor
completes boot process

Spacecraft starts sending
time ticks and time messages

Spacecraft implements
programmable delay

All GRDDP links are open and
handling traffic

 

Power on first instrument
in network chain and open

it’s GRDDP channels

Initiate first instrument’s 
host processor delay

Procedure

Spacecraft starts sending
time ticks and time 

messages

All GRDDP links are open 
and handling traffic

Power on remaining 
instruments in network 

chain and open

their GRDDP channels

Initiate remaining 
instrument’s host processor 

delay procedures

Startup proc

Close all GRDDP channels

Shut down the first 
instrument in the chain

Shut down all instruments 
except the first one in the 

chain

Shut down proc
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IV. GRDDP PRIORITY PROCESSING 

 

The current GRDDP requirements for transmit 
priority processing are as follows: 

 

4.1.2 Transmit Priority 
When more than one packet is available for 
transmit, all Acknowledge packets shall be 

transmitted first, then Reset Command packets, 

then Urgent Message packets, then 

retransmit packets, then Data packets. 
 

4.1.3 Data Transmit Queue 
When data packets from more than one channel 

are available for transmit, packets shall 

be transmitted in the order in which they are 
queued. 

 

4.1.4 Urgent Message Transmit Queue 
When Urgent Message packets from more than 

one channel are available for transmit, packets 

shall be transmitted in the order in which they are 
queued. 

 

The GOES-R spacecraft uses the GRDDP UM service 

to distribute ancillary packets at a 100Hz rate to the 

primary instrument.  There is a latency requirement for this 

ancillary data.  The spacecraft implemented flight 

software compliant with the GRDDP specification.  Due 

to a unique set of circumstances, this instrument’s 

operational procedures caused delays in transmitting 

ancillary data packets outside the latency requirement.  It 

was determined the ancillary packet latency requirement 

was more important than meeting GRDDP priority 

requirements.  A modification was made to transmit 

packets that met the latency requirement and violated 
GRDDP requirements.   

 

It is recommended that GRDDP transmit packet 

priority processing requirements be changed to allow a 

more adaptive design.  The basis for this requirement 

change is that when a packet is ready and the channel is 

idle it should be sent immediately instead of being sent to 

a queue.  In the case where the channel is busy the packet 

should be sent to a queue.  As soon as the channel returns 

to an idle state queued packets need to be transmitted 
highest priority first. 

 

 

 

 

 

V. HEADER REVISION 

 

The current GRDDP specification defines a single 

header format for all protocol packet types and is shown 

in Figure 3.  Based on experience gained from GOES-R 

spacecraft and instrument integration a revision to the data 

packet header is proposed.  In addition, an ACK packet 

and Reset packet header are to be added to the GRDDP.  

These changes enable the protocol to be more robust.  Also, 

these recommendations improve error detection and 
management capabilities. 

 

The first of these recommended header revisions is 

addition of a version number to all three packet types.  The 

version number aids in detecting packets that may be in 

the data stream, but are not valid for a specific mission 

need.  Inclusion of a version number replaces the user 

defined nibble in the original GRDDP header.  The 

proposed GRDDP Data packet header is shown in Figure 

4. 

 

Originally it was intended that the spacecraft and 

instruments cooperatively develop and Interface Control 

Document (ICD) defining GRDDP user selectable 

parameters.  It was assumed the spacecraft to instrument 

ICD would be adequate and allow “trouble free” 

spacecraft to instrument communications.  However, as 

spacecraft and instrument development advanced into 

integration mismatches occurred.  The reason for these 

mismatches was due to the lack of a requirement for either 

side to verify the other side’s operation.  The Reset packet 

header format is to be lengthened by 5 bytes and is shown 
in Figure 5. 

 

This proposed Reset packet header allows a plug-and-

play environment where programmable protocol 

parameters would be provided to protocol receivers.  The 

receiver could optionally adaptively configure for that 

channel’s parameters.  The ACK to the Reset packet 

could either verify matching parameters to a 

predetermined configuration or indicate some 

requirement is beyond the receiver’s capabilities. 
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Figure 4.  Proposed Data Packet Header 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Proposed Reset Packet Header 

 

 

 

Protocol ID = 238
Version Number = ’1’

Packet Type = 0 for RD
Packet Type = 3 for UM
Sequence Number = 0 for UM

Payload

Packet 
Type
4 Bits

Destination 
SLA

1 Byte

Protocol
ID

1 Byte

Source 
SLA

1 Byte
Version 
Number
4 Bits

Packet Control

MSB
1 Byte

LSB
1 Byte

Channel
Number
1 Byte

Sequence
Number
1 Byte

Application Data

1 to 65535 Bytes

CRC

1 Byte

SpaceWire Packet

Embedded GRDDP Data Packet

EOP

Packet Length

0 or more 
destination 
addresses

 

Version Number = ’1’

Packet Type = 2
Packet Length MSB and LSB = ‘0’

Channel Type = ‘0’ for RD

Channel Type = ‘1’ for UM
Window  Size = [1, 2, 4, 8, 16, 32, 64] for RD
Window  Size = ‘1’ for UM

Transmit Retries = 0 to 255 for RD
Transmit Retries = 0 for UM
Transmit Timeout ms MSB = 0 to 255 for RD
Transmit Timeout ms MSB and LSB = ‘0000’ for UM

Sequence Number = 0

Payload

SpaceWire Packet

Embedded GRDDP Reset Packet

Channel
Type
1 Bit

Destination 
SLA

1 Byte

Protocol
ID

1 Byte

Source 
SLA

1 Byte
MSB

1 Byte
LSB

1 Byte

Sequence
Number
1 Byte

CRC

1 Byte
MSB

1 Byte
LSB

1 Byte

Transmit
Retries
1 Byte

MSB
1 Byte

LSB
1 Byte

EOP

Packet 
Type
4 Bits

Version 
Number
4 Bits

Packet Control

Window  
Size
7 Bits

Window  Control Transmit Timeout (ms)Packet Length Max. Data Size

0 or more 
destination 
addresses

 

0 or More
Destination
Addresses

Payload
0 or More

Destination
Addresses

Packet 
Type
4 Bits

Destination 
SLA

1 Byte

Protocol
ID

1 Byte

Source 
SLA

1 Byte
User

Defined
4 Bits

Packet Control
Packet 
Length
MSB

1 Byte

Packet 
Length

LSB
1 Byte

Channel
Number
1 Byte

Sequence
Number
1 Byte

Application Data

0 to 65536 Bytes

CRC

1 Byte

SpaceWire Packet

Embedded GRDDP Packet

149



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Proposed ACK Packet Header 

 

VI. MISCELLANEOUS 

RECOMMENDATIONS 

 

There is no current GRDDP requirement that a channel 

should exclusively deliver RD or UM packets.  In order to 

reduce the possibility of complications, it is recommended 

that such a requirement be added.  Reset packet rate has 

proven to be a problem.  It is recommended that a 

requirement be added controlling GRDDP Reset packet 
rate to something on the order of once a second.   

 

It is essential that the spacecraft disable the redundant 

port to the instrument prior to power on.  Also the 

instrument should initiate communications after 

determining which side is active based on the link’s run 

status.  In order to eliminate programmed delays in power 

up sequences the spacecraft needs to detect when the 

instrument is “alive.”  This is accomplished when the 

spacecraft receives a Reset packet.  The next step is to 

open timecode and command channels.  When all 

channels are in the Open state telemetry data should 
commence. 
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Abstract — Modern and prospective spacecraft data system 

networks consist of many systems and sensors producing 

streaming traffic. Outside spacecraft video cameras also generate 

intensive data streams. Motion video traffic requires specific 

latency and speed. Video frames should be delivered with small 

delays and jitter over high-rate SpaceFibre networks. 

The paper considers live streaming video over onboard 

spacecraft networks with its fixed packet size and periodical 

issue, detection of packet reordering, small delays. ARINC-818-2 

and CCSDS Digital Motion Imagery streaming traffic, 

characteristic of video streams are analysed, requirements for 

streaming services and transport protocol are presented, the 

overview of existing streaming protocols is done.  

The STP-2 protocol was proposed for streaming data service in 

SpaceFibre networks. It is based on STP, which provides a 

number of native streaming features. STP-2 has some significant 

modifications that improve delivery of streaming data flows over 

high-rate SpaceFibre networks. Use cases for it application 

illustrate its benefits.  

Index Terms — Spacecraft, Onboard Networks, Live Video, 

Streaming Features, SpaceFibre, STP-2. 

I. INTRODUCTION 

Modern communications and data exchange between 

onboard spacecraft systems could be cyclic [1] and streaming 

[2, 3]. This is especially true for optical and television systems, 

for example, onboard video camera. Live streaming video 

forms special requirements for data delivery speed, latency and 

jitter. 

To provide necessary bandwidth for transmitting video 

streams over onboard spacecraft networks high-speed 

SpaceFibre networks may be used [4]. SpaceFibre has a 

compatibility with SpaceWire standard on Network level. 

SpaceFibre specification describes only three bottom layers of 

the OSI model and does not cover transport layer and 

streaming service. Therefore, there is an essential task to 

analyze existing transport layer protocols for streaming data, 

taking into account characteristics of video streaming traffic 

and the compact implementation in spacecraft onboard 

systems. 

To solve this problem the research of streaming traffic and 

its features was done. The industrial aerospace standards for 

streaming video ARINC-818-2 [5] and CCSDS Digital Motion 

Imagery [6], characteristic of video streams are analysed, 

requirements for streaming services and transport protocol are 

represented, overview of existing streaming protocols is done.  

II. STREAMING TRAFFIC: DEFINITION AND MAIN FEATURES 

There are several definitions of streaming traffic: 

1) Traffic type characterized by viewing and/or listening for 

information as new information becomes available [7]. 

2) Streaming data transfer is a way of transferring real-time 

or buffered data such as sound, video, documents or photos 

through the networks with acceptable Quality of Service. 

Receiving system can start playback or display data before 

receiving full information [8]. 

3) Streaming traffic is the uniform data stream with a 

constant bit rate [9]. 

The third definition is more general but, it is the most 

representative for streaming traffic. There are several main 

features of streaming traffic: fixed packet size (no wide range 

of sizes); periodic packet issue with stable intensity; tolerant to 

single and sporadic corruption; allow to predict buffer size, 

optimise and streamline sender\receiver equipment [2]. 

Here is a short summary of industrial standards for 

streaming video ARINC-818-2 and CCSDS 766.1-B-1 Digital 

Motion Imagery. 

III. SUMMARY OF ARINC-818-2 AND CCSDS 766.1-B-1 

ARINC-818-2 (ARINC) is the standard that describes 

interfaces for transmitting video information to cockpit 

displays of civil and military aircrafts: Boeing 787, Airbus 

A380, A400, C-130, F18, F22, F35. ARINC specification 

describes video/audio transmission in real-time, information 

indicating on the pilot cabins displays [5]. Transmitted data can 

be uncompressed, compressed or encrypted. ARINC standard 

includes information about parameters of transmitting video 

(TABLE I. ). 

TABLE I.  PARAMETERS OF VIDEO TRAFFIC IN ARINC-818-2 

Resolution 

*Frame 

size, 

Kbyte 

*Line 

size, 

Kbyte 

Playback 

frequency 
Accepted latency  

VGA 640х480 600 1,25 

15 - 120 Hz 

CCSDS 2015 

conference: 

50 ms – telerobotics 

SVGA 800х600 937,5 1,56 

XGA 1024х768 1536 2,00 
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Resolution 

*Frame 

size, 

Kbyte 

*Line 

size, 

Kbyte 

Playback 

frequency 
Accepted latency  

WXGA 1366х768 2049 2,67 NASA; 

60, 75 ms – critical 

communication;  

100 ms – 

interactive video. 

SXGA 1280х1024 2560 2,50 

SXGA+ 1400х1050 2871,1 2,73 

WSXGA 1600х1024 3200 3,13 

UXGA 1600x1200 3750 3,13 

1920x1440 5400 3,75 
  

* - results are for 16 bit color depth. 

CCSDS 766.1-B-1 Digital Motion Imagery (hereinafter 

referred to as CCSDS) is a standard that identifies which 

television and video industry standards should be utilized for 

interoperability in a spacecraft, between spacecrafts and 

between a spacecraft and Earth. The CCSDS specification 

describes real-time video data transmission and video 

streaming (telecasting). Transmitted data can be uncompressed, 

compressed or encrypted (Secure JPEG2000) [6]. CCSDS 

includes information about parameters of transmitting video 

(TABLE II. ). 

TABLE II.  PARAMETERS OF VIDEO TRAFFIC IN CCSDS 766.1-B-1 

Traffic Resolution 
*Frame 

size, Kbyte 

*Line size, 

Kbyte 

Playback 

frequency, 

Hz 

Personal video 

conferencing 
320х240..1280x720 150..1800 0,625..2,5 10 – 60 

Medical 
conferencing 

320х240..1280x720 

Standard resolution 

640x480 

150..1800 
600 

0,625..2,5 
1,25 

10 – 60 

Situational 

awareness 
640x480..1280x720 600..1800 1,25..2,5 

25 – 60 

Public affairs 24, 25, 60 

High 

Resolution 

Digital 
Imaging 

1920x1080..4096х21

60 
4050..17280 3,75..8 24 – 120 

* - results are for 16 bit color depth. 

IV. REQUIREMENTS FOR ONBOARD STREAMING DATA 

DELIVERY PROTOCOL 

Basing on the analysis of definitions and features of the 

streaming traffic, industrial standards ARINC-818-2 and 

CCSDS 766.1-B-1, streaming video characteristics and 

requirements of aerospace industry to compactness and 

simplicity of onboard systems implementation, following 

requirements for the onboard streaming protocol were 

formulated: 

‒ Stable intensity of packet issue: It is supported by fixed 

packet size (excluding some cases, such as compressed 

video) during the communication session and fixed 

period of packet issue. It follows from the streaming 

definition [9]; 

‒ Small delays of the real-time streaming data 

transmission: 

a) a connection oriented protocol allows to reduce the 

header size for data packets with the payload; 

b) simple data delivery mechanism implemented at the 

hardware level: 

o No buffering on the sender and receiver sides;  

o No acknowledgements and retries; 

‒ Data delivery control on the receiver side: 

a) Check packet header for correctness; 

b) Packet filtering – dropping the packets with error 

header; 

c) Packet loss and out-of-order detection;  

‒ Compatibility with SpaceFibre/SpaceWire.  

V. STREAMING ORIENTED PROTOCOLS OVERVIEW 

Detailed overview of existing streaming protocols was 

done. It is based on researches [2, 10, 11, 12, 13]. Following 

protocols were considered: 

 Internet, multimedia and real-time Transport layer 

protocols: TCP, UDP, RTP, RTCP, SCTP, SSTP, 

RSVP, DCCP; 

 Onboard and aerospace Transport layer protocols: 

Saratoga, ECSS-E-50, CFDP, SCPS-TP, JRDDP, STP, 

STP-ISS rev.2; 

 Protocol stacks that can be used for streaming: SOIS, 

RapidIO, ARINC-818-2, SpaceWire, SpaceFibre. 

Also streaming protocols of Application layer (such as 

Apple HLS, Adobe RTMP and others) were reviewed as 

general purpose mainstream streaming protocols. Short 

description for each considered protocols are given in [14]. 

Streaming features of each reviewed onboard and aerospace 

transport protocols are presented in TABLE III. – TABLE VI.  

TABLE III.  COMPARISON OF INTERNET PROTOCOLS AND REAL-TIME 

TRANSPORT LAYER PROTOCOLS  

Mechanisms 

and features T
C

P
 

U
D

P
 

R
T

P
 

R
T

C
P

 

S
C

T
P

 

S
S

T
P

 

R
S

V
P

 

D
C

C
P

 

Header 
length, bytes 

20-60 8 16 Transmits 

data 

transfer 
reports 

12 16 8 
12-
16 

Max payload, 

bytes 
64K 64K 

Depends 
on the 

profile 

64K 1G 64K 1020 

Compatibility IP networks UDP IP networks 

Fixed packet 

size 
- - - + - - - - 

Periodical 

data transfer 
- - - + - - - - 

Best-effort 

delivery 
- + + + - + + + 

Data 

correctness 
check 

+ - + - + + - + 

Data sequence 
check 

+ - + - + + - - 
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Mechanisms 

and features T
C

P
 

U
D

P
 

R
T

P
 

R
T

C
P

 

S
C

T
P

 

S
S

T
P

 

R
S

V
P

 

D
C

C
P

 

Only without 
packet 

retransmission 

- + - + - - + + 

Time stamp in 

packet 
- - + + +- - - - 

TABLE IV.  COMPARISON OF ONBOARD AEROSPACE TRANSPORT LAYER 

PROTOCOLS 

Mechanisms 

and features 

S
A

R
A

T
O

G
A

  

E
C

S
S

- 

E
-5

0
-1

3
  

C
F

D
P

  

S
C

P
S

-T
P

  

J
R

D
D

P
  

S
T

P
  

S
T

P
-I

S
S

 

r
e
v
.2

  

Header length, 

bytes 
12  2 4  15  10  8  9  

Max payload, 

bytes 
256·109  4K 64K  64K  64K  4G  

2K or 

64K  

Compatibility 

UDP/ 

UDP-
lite  

MILST

D-
1553B  

SCPS-SP, 

IPSec, 
IPv4/v6  

SpaceWire or 

SpaceFibre 

Fixed packet 

size  
+ - + - - + - 

Periodical 

data transfer 
- - - - - + - 

Best-effort 

delivery 
+ + + + + + + 

Data 

correctness 

check 

+ + + + + + + 

Data sequence 
check 

+ - + + + - - 

Only without 
packet 

retransmission  

- - - - - + +- 

Time stamp in 

packet 
+ - - - - - - 

TABLE V.  COMPARISON OF INTERNET AND MULTIMEDIA APPLICATION 

LAYER PROTOCOLS USED FOR STREAMING 

Mechanisms 

and features R
T

S
P

 

A
d

o
b

e
 

R
T

M
P

 

M
P

E
G

-T
S

 

A
p

p
le

 H
L

S
 

A
d

o
b

e
 H

D
S

 

M
ic

ro
so

ft
 S

S
 

Header length, 

bytes 
Transmits 
control 

commands 

to video 
server 

18 4 
4 

(MPEG-TS) 
16·109  

 (max. 

size 

MP4) 
Max payload, 
bytes 16M 184 

184 

(MPEG-TS) 

Compatibility 
RTP, 

UDP, TCP 
TCP 

any 

transport 
networks 

HTTP 

 

Fixed packet 
size  

- + - + + + 

Periodical data 
transfer 

- - - - - - 

Mechanisms 

and features R
T

S
P

 

A
d

o
b

e
 

R
T

M
P

 

M
P

E
G

-T
S

 

A
p

p
le

 H
L

S
 

A
d

o
b

e
 H

D
S

 

M
ic

ro
so

ft
 S

S
 

Best-effort 
delivery 

- + + + + + 

Data 
correctness 

check 

- - - - - - 

Data sequence 

check  
- + + + + + 

Only without 

packet 
retransmission  

+ + + + + + 

Time stamp in 
packet 

- + + + + + 

TABLE VI.  COMPARISON OF HIGH-PERFORMANCE PROTOCOL STACKS 

Mechanisms 

and features 

S
p

a
c
ec

ra
ft

 

O
n

b
o

a
r
d

 

In
te

r
fa

ce
 

S
e
r
v
ic

e
s 

 

R
a

p
id

IO
 

A
R

IN
C

-8
1

8
 

(r
e
v
. 
2

) 
 

S
p

a
c
eW

ir
e
  

S
p

a
c
eF

ib
re

  

Protocol Data 
Unit (PDU)  Depends on the 

transport and 
data link layer 

protocols 

Data 

Streaming 

packet 

Fiber 

Channel 

frame 

Packet 

PDU header 

length, bytes 
4-8 24-28 

Unlimited 
Max PDU 

payload, bytes  
64K  2112 

Function  Spacecraft Avionics  Spacecraft 

PDU fixed 

size 
+- - - - - 

Periodical data 

transfer 
+- - - - - 

Best-effort 

delivery 
+ + + + - 

Data 
correctness 

check 

+ + + + + 

Data sequence 

check 
Depends on the 

transport and 
data link layer 

protocols 

+ - - + 

Only without 

packet 

retransmission  

- + + - 

Time stamp in 
PDU  

+ - - + 

 

According to the conducted analysis, nowadays there is no 

streaming protocol which provides all required mechanisms for 

onboard streaming data delivery. Existing protocols were 

designed for specific tasks in general purpose applications. 

Only the STP protocol [15] most closely meets onboard 

streaming protocol requirements: periodical packet issue and 

fixed packet size; packets are delivered without 

acknowledgments (best-effort delivery) and without lost packet 

retransmission; data correctness check is provided; it is 

connection oriented protocol; it has compatibility with 

SpaceFibre/SpaceWire. Thereby it was decided to modify 

existing STP protocol for solving essential problem of 
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streaming data delivery in onboard spacecraft SpaceFibre 

networks. Modified protocol was called STP-2. Description of 

main mechanisms of this protocol is provided in this paper. 

VI. STP-2 – STREAMING TRANSPORT PROTOCOL EDITION2 

A. General description 

The STP-2 protocol is a transport layer protocol over 

SpaceFibre. It provides transmission of streaming data between 

nodes of a SpaceFibre network with stable intensity and fixed 

packet size (or fixed maximal packet size for application such 

as transmission of compressed video).  

Data packets are used for streaming data delivery in STP-2. 

Data packets are delivered without acknowledgments and 

retransmissions. It may have a fixed size or a variable size. 

This allows using STP-2 for streaming traffic transmition with 

PDUs of the same size (for example, data from sensors, video 

frames, or lines of uncompressed video) or PDUs of the 

variable size (compressed video). 

STP-2 protocol is a connection-oriented protocol. It 

supports up to 4096 transport connections for one device. 

Connection parameters are set in the transport connection 

establishment phase. Therefore STP-2 provides an ability to 

transmit large sized data with minimum overheads. Transport 

connection is established under the control of a master node. 

There are two main operating schemes: 

1. Data exchange between two devices, one of which is the 

master and the second – slave. It supports data transfer from 

slave to master and from master to slave (Fig. 2. . 

2. Data exchange directly between two slave devices 

(transmitter and receiver) under control of the third device – 

the master node (Fig. 3. . 

STP-2 was developed for compact implementation in 

spacecraft onboard systems. There is no full packet buffering at 

the receiver and transmitter side. Implementation of STP-2 

may be either completely hardware or hardware/software. To 

improve performance it is recommended to implement data 

send/receive STP-2 mechanisms in hardware; the transport 

connections control could be done in software.  

STP-2 protocol has failure detection and indication 

mechanisms. The protocol detects errors in header and in 

payload of packets; packet loss (for data packets and servise 

command/packets). It is also monitored the failure of a 

master/slave device (as a result of the device crash or the 

communication link disconnection between them). 

B. STP-2 Interfaces 

There are two STP-2 interfaces with the Application layer: 

the streaming data interface and the configuration interface 

(Fig. 1. ). The Streaming interface is used to transfer streaming 

data from applications. It is recommended to implement this 

interface in hardware for high performance. The Configuration 

interface provides means for the STP-2 configuration 

parameters change, for transmission of status information, reset 

commands. 

The SpaceFibre packet interface is used for transmission of 

STP-2 packets over SpaceFibre virtual channels.  

STP-2

SpaceFibre

Streaming 
interface

SpaceFibre
packet
interface

link

Applications

Configuration
interface

Transport layer 
interface

Network layer 
interface

Physical

Data Link

Session

Network

Transport

Application

Presentation

 
Fig. 1.  The STP-2 protocol and OSI model 

C. Basic principles of data exchange in STP-2 

The Exchange data should be carried out in three phases: 

1. Connection establishment. 

2. Data transmission. 

3. Connection closure. 

Connection establishment and connection closure are 

performed under the master control in both STP-2 operating 

schemes.  

There are two packet types in STP-2 protocol: service 

packets and data packets. Data packets are used to deliver 

streaming data. A Data packet can transfer up to 32M bytes. 

Service packets are used to establish and close connection, for 

flow control. There are several kinds of service packets: 

 Transport connection control packets (Open 

Connection Request, Open Connection Confirm, 

Close Connection Request, ets.); 

 Heart Beat – notify that a node is valid; 

 Status Request – request to get statistic report for 

STP-2 transport connections; 

 Status – transport connection statistics report: 

number of received/discarded packets, etc. 

 Start – request to start data transfer from 

transmitter; 

 Stop – request to stop data transfer from 

transmitter. 

Receiver can control of data flow with using of Start and 

Stop commands. 

The data exchange between a master and a slave is shown 

in Fig. 2. The master has initiated the connection 

establishment. The master is the data receiver in this example. 

The slave is data transmitter. 

SpaceFibre
Network
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Data receiver

Slave
Data transmitter

Open Сonnection 
Request 
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Confirm

DATA packets 
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Fig. 2.  The Data exchange between master and slave 
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The second STP-2 operating scheme is presented in Fig. 3. 

First of all the master configures transport connection for the 

slave receiver via the Open Connection Request (OCR) packet. 

Then the slave transmitter is configured by the master (see Fig. 

3. ). 

Slave
Data receiverSlave
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Confirm

Data packets 
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Fig. 3.  The Data exchange between two slaves and remote master 

D. Transport Connection Establishment and Flow control 

STP-2 provides connection-oriented data transmission. 

There is a master device on one side of the connection and a 

slave device – on the other. Only master can be an initiator of 

the connection establishment. The transport connection 

establishment is performed by means of two-phase handshake 

(see Fig. 2). Initiator sends the OCR packet. This packet 

includes transmission parameters for the slave: connection ID 

(to identify connection in the master device and in the slave 

device), period of packet issue, max payload size, data transfer 

direction, etc. (Fig. 4. ). 

The slave responds with confirmation – Open Connection 

Confirm (OCC) packet. Then the tcnf timer should be started. 

Timer expiration means that data transmission from the slave 

should be started. 

 

REQUEST Connection request

Connection confirm

CONFIRM
Connection

established

tcon

STP-2 STP-2

tcnf

Connection
established

DATA

DATA PACKET
DATA

Master Slave

 
Fig. 4.  Two-way handshake connection establishment phase in STP-2 

The SpacerFibre protocol supports guaranteed data delivery 

at the Data link layer. But the OCC packet could be not deliver 

due a physical connection lose, routers failure or a failure in the 

slave device. For detection of this problem a connection timer 

(tcon) is used in the master. It startes when the OCR packet is 

sent. 

If during tcon timer the OCC packet from the remote device 

has not been received, then the master device should resend the 

OCR packet. (The master can perform muliple retries of a 

connection establishment, since data transmission via the 

network can be restored, for example, due using of spare 

connection lanes and routers.) The slave could receive the 

repeated OCR packet from same master (in case the OCC 

packet from this slave is lost in the network). In such case the 

slave should recend the OCC packet.STP-2 should write 

information about this error to status register. 

Flow control. 

The OCR packet has the «Ready to receive» field. This field 

indicates that the master is ready to receive data from the 

remote device as soon as possible.  

Then the transmitter sends packet after packet in the preset 

periods without waiting for any credits or confirmation from 

the receiver. 

To limit streaming flows in the Data transmission phase 

STP-2 implements Stop and Start service packets. The Stop 

packet will stop data transmission (without connection 

closure). The Start packet will start (restart) data transfer from 

the transmitter. 

 

E.  Transport Connection Closure 

Transport connection could be closed on request only from 

the master (Fig. 5. ). The Master sends Close Connection 

Request (CCR) packet. Slave responds it – Close Connection 

Confirm (CCC) packet. tcls and tend timers are used in similar 

way like  tcon and tcnf timers during connection establishment 

phase. 

REQUEST
CCR

CCC

CONFIRM
Connection 

closed

tcls

STP-2 STP-2

tend

Connection 
closed

Master SlaveConnection 
established

 
Fig. 5.  The transport connection closure on request from master device 

The CCR or the CCC packet can be lost in the network (as the 

OCR or the OCC can be lost in the Connection closure phase). 

But the CCR packet should not be repeated in this case. When 

the master goes to the Connection Closure phase, it stops 

transmission of the HeartBeat packets. If the CCR packet will 

be lost in the network, non-availability of HeartBeats would 

cause connection closure by the slave. If the CCC packet is lost 

in the network, the slave received CCR command and close 

connection. 

Connection should be also closed by slave when there are 

no data packets or Heart Beat packets from the sender for a 

long period of time. Standby timer tsb is used in this situation. 
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The timer counts the time of waiting for the next data packet or 

Heart Beat packet transmitted over the connection. On the 

timer expiration the transport connection should be closed (Fig. 

7. ). 

DATA 1

Master SlaveSTP-2 STP-2

ConnectionClosed.indСоединение закрыто

tsb

CONFIRM

Connection 

closed

DATA 1

HEART BEAT

Reciever Transmitter

thbDATA 1

HEART BEAT
thb

thb

Connection 
established

thb

 
Fig. 6.  The transport connection closure on standby timer expiration on 

the receiver side 

Similar situation occurs on the transmitter side. If Heart 

Beat packets are not received after the timer expiration then 

transmitter should close connection (Fig. 7. ). 

DATA PACKET 1

STP-2 STP-2

DATA 1

DATA 2
DATA PACKET 2

Connection 
closed

Master Slave
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DATA 1

DATA 2
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DATA 3
DATA PACKET 3

thb

Connection 
established

thb

Receiver Transmitter

 
Fig. 7.  The Transport connection closure on standby timer expiration on the 

transmitter side 

 

F. Data transmission phase 

STP-2 provides data transmission in two directions for the 

first operating scheme: from the master and from the slave 

device. Data are transmitted between two slaves in the second 

operating scheme. Transmission direction is specified in the 

OCR packet. Data packets are sent only after transport 

connection establishment (see Fig. 8. , Fig. 9. ). 
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Fig. 8.  Data transmission from the slave device 
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Fig. 9.  Data transmission from the master device 

In STP-2 data from the application (for example, an 

onboard spacecraft camera) should be sent N-Char-by-N-Char. 

(The bit width of interface with application can vary in 

different implementations).  

Data flow is divided into PDUs; Every PDU together with 

the data packet header and tailer is sent through the SpaceFibre 

network.  

When the first operating scheme is used (Fig. 2) if the 

transmitter has no data to send, then STP-2 should issue Heart 

beat service packets. The HeartBeat is addressed to the second 

device (master or slave). The packet notifies remote device that 

implementation of STP-2 protocol on the transmitter side is in 

the state of operability, but there is no data from application to 

send. Also the receiver should send Heart Beat packet to 

indicate that it is serviceable. 

When the second operating scheme is used (Fig. 3) the 

master sends the Heartbeats to the both slaves and every slave 

sends HeartBeats to the master.   

If the slave does not reseive a HeartBeat due long time it 

should close connection. (If the master is fail, other (spare) 

master can open connection with this slave due this 

mechanizm.) 

 

G. Data Size Control on the Transmitter Device 

STP-2 guarantees that the size of transmitted data of every 

data packets over established connection will not exceed the 

parameter of max accepted data size. The parameter is 

specified during the connection establishment. For this purpose 

transmitter should count the number of sent bytes. If the 

counter has reached the value of parameter, then the packet 

transmission should be terminated with EEP; the STP-2 

controller should write information about this error to status 

register. 

H. Control of Packet Sending Frequency at the Transmitter 

Device 

STP-2 provides control of data packet sending frequency in 

order to maintain constant transmission rate. There is the 

packet send timer on the sender side. Timer duration is 

configured via an OCR packet. Only one data packet is allowed 

to be sent during the timer period. If the timer expired and End-

of-Message symbol was not received from the application, then 

STP-2 should complete packet transmission by inserting cut-
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error indication into “Sending flag” field of data packet. The 

field is the last byte of data packet before EOP. STP-2 should 

write information about this error in a status register. 

I. Data Size Control at the Receiver Device 

STP-2 guarantees that the size of received data of every 

data packets packet over established connection will not exceed 

the parameter of max accepted data size. The parameter is 

specified during the connection establishment. Receiver (like 

transmitter) should count the number of received bytes. 

Counter should be incremented only to amount of data passed 

to applications (for example, monitor). If the counter has 

reached the parameter value, reception of packets should be 

terminated. The rest of packet bytes should be discarded till 

reception EOP or EEP. STP-2 should notify application about 

it when last payload bytes will be transferred to Application 

layer. Information of the occurred error should be written to 

STP-2 status register. 

J. Packet Filtering on the Receiver Device 

STP-2 detects errors in the packet header and payload at the 

receiver side. Received packets with a CRC header error 

should be discarded as incorrect. If a CRC error of the payload 

is detected then this packet should be passed to the applications 

with indication of the error. STP-2 should write information 

about this error to status register. 

K. Out-of-order Data Packet Detection 

STP-2 supports out-of-order data packet detection. For this 

purpose data packets are numbered by time stamp on the 

transmitter side (Fig. 10. ). Time stamps are independent from 

Reset actions. It is monotonically increased. 
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Fig. 10.  Data Packets numbering by time stamps 

L. Statistics report  

STP-2 allows monitoring of streaming data delivery. It 

provides feedback on the quality of service in streaming data 

distribution by periodically (or by request) sending statistics 

information to master device in a transport connection. For this 

purpose Status service packets are issued by the receiver or/and 

the transmitter. The Packet includes the following information: 

 error code (packet loss, incorrect packet size, packet 

delay variation, etc.); 

 numbers of  such errors (errors of such type); 

 occurrence time (first and last time). 

 An application, that has received such information, may 

control quality of service parameters, perhaps by limiting flow. 

VII. CONCLUSSION 

The paper gave an overview of actual problem to deliver 

streaming video over onboard spacecraft SpaceFibre networks. 

Streaming traffic features and streaming video characteristics 

were considered. Industrial standards for streaming video 

transmission ARINC-818-2 and CCSDS Digital Motion 

Imagery were analyzed. Main requirements for streaming 

protocols were presented. The overview of existing streaming 

protocols was done. 

In this article a new STP-2 protocol for streaming data over 

onboard SpaceFibre networks was proposed. This protocol is 

based on STP protocol. STP is adapted for streaming data 

transfer. STP-2 has some important modifications which allow 

to improve delivery of streaming data flows over high-rate 

SpaceFibre networks. They are: two operating schemes are 

suitable for onboard spacecraft systems (master-slave and 

master-two-slaves), quick transport connection establishment 

and closure, data size control on the transmitter and receiver 

devices, stable intensity of streaming data delivery, packet 

filtering, out-of-order packets detection, monitoring of 

streaming data delivery and state of device’s operability.  
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Abstract—Deterministic behavior is an important paradigm 
for verification and validation of real-time systems such as those 
on crewed space vehicles and robotic spacecrafts. Providing 
deterministic characteristics of the data transfer for the spacecraft 
that uses the SpaceWire technology is an essential problem, 
especially for autonomous vehicles like satellites. Deterministic 
data delivery guarantees that transmission of data from one node 
of the onboard network to the target node would not take longer 
than the specified time period. Such task is solved by using specific 
communication protocols that include a scheduling service.  

Modern space industry demands a protocol running over 
SpaceWire, which can provide deterministic data transmission 
characteristics. The scheduling problem becomes more 
complicated, when we consider a number of communication 
protocols simultaneously operating in every node of the network, 
e.g. RMAP, STP-ISS, CCSDS PTP. Traffic from different 
transport protocols can interfere especially while getting access to 
the SpaceWire link in a node. 

The paper presents Multiprotocol Scheduling Service - a new 
scheduling protocol for SpaceWire networks which provides 
deterministic data delivery in a network and performs arbitration 
of data coming from several transport protocols. Firstly, we give 
an overview of TDMA-based network protocols that have been 
developed for the ground-based and onboard networks. Then, we 
present Multiprotocol Scheduling Service which is based on the 
STP-ISS scheduling mechanism and extended with additional 
features. 

Index Terms— Scheduling, Determinism, SpaceWire, STP-ISS, 
On-board Network, Quality of Service. 

I. INTRODUCTION 

Determinism is a philosophical doctrine stating that all 
events are caused by things that happened before them and that 
people have no real ability to make choices or control what 
happens. The same is for the behavior of the complex systems 
and networks. Deterministic systems have predictable behavior, 
which is necessary to perform analysis to ensure requirements 
are met. Deterministic data delivery guarantees that data from 
one node of the onboard network would be delivered to the target 
node in a fixed time. The developer can schedule all the onboard 
traffic and prevent the potential deadlock and data delivery 

delays. Such task is solved by using a specific communication 
protocol that includes a scheduling service.  

If we have a number of different entities that transfer data to 
the network, we need a single scheduling instance that would be 
able to control all the data transfer from the particular node. 
Deterministic characteristics are obtained by using time-division 
multiplexing (TDMA). Time-division multiplexing (or 
scheduling) is used in network technologies to obtain guaranteed 
latency and throughput for user data, and to avoid conflicts with 
simultaneous network resources usage.  

Current paper provides an overview of existing 
communication protocols that use scheduling quality of service 
and compares them. Also we propose a solution for scheduling 
of traffic from several transport protocols and applications 
operating on top of SpaceWire. It is a new Multiprotocol 
Scheduling Service (MSS) which gives different options to 
guarantee that data in the SpaceWire network would be 
delivered to the target in time. 

II. EXAMPLES OF TDMA-BASED DETERMINISTIC DATA 

DELIVERY PROTOCOLS 

Time-division multiplexing problem is an important issue for 
communication protocols where deterministic data delivery is 
required. Time multiplexing is actively used in 2G and 3G 
mobile networks, as well as in some wireless personal networks, 
such as Bluetooth, ZigBee, Ubiquiti.  

SpaceWire on-board networks also require time-division 
multiplexing solutions as the technology that is used in 
spacecraft and avionics. We reviewed a number of ground-based 
and on-board network protocols. Current section provides an 
overview of these protocols with scheduling quality of service 
[1], [2], [3]. This will help to understand, which mechanisms and 
algorithms are used to provide deterministic data delivery for 
different tasks. 

Time multiplexing requires periodic synchronization 
between nodes. For this purpose, the protocol can use specific 
messages from the time-master to synchronize local clock. For 
example, there are reference messages in TTCAN [4], [5] which 
are transmitted in every basic cycle. Profinet IO IRT [6] 
implements Precision Transparent Clock Protocol (PTCP) [7]. 
PTCP synchronizes the clock of the network nodes by periodical 
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broadcasting of the synchronization frames, which are sent in 
every communication cycle. SpaceWire-D [8] and STP-ISS [9], 
[10] use time-codes, which are sent in every time-slot and epoch 
respectively. TTEthernet [11], [12] defines Protocol Control 
Frames (PCF) which contains accumulated time information 
regarding its passing from sender to a receiver. PCF should be 
sent once in the cluster cycle.  

There are some interesting mechanisms used by other 
protocols. In TTP/C [13], for example, a node can calculate the 
difference between the clock of the sending node and its own 
clock by noting the time when messages are received from other 
nodes with the known schedule (TTP/C is a broadcast protocol, 
so all nodes receive all messages). Flexray [14, 15], uses similar 
approach: every node in each channel shall measure and store 
the time differences between the expected and the observed 
arrival times of all sync frames received during the static 
segment, calculate and apply clock correction term during the 
network idle time. Byteflight [16] nodes synchronize on cyclical 
synchronization pulses generated by SYNC master in every time 
interval. In SpaceFibre [17] the time value shall be taken from 
the local time register, which is regularly updated by the time-
distribution broadcast channels. TSN [18] uses physical layer 
timestamps to compute network delays and define 
synchronization events. 

Some protocols achieve determinism by using scheduling 
not only in nodes but in switches also. For example TSN uses 
concept known as the “time-aware shaper” (TAS), which 
deterministically schedules traffic in queues through switched 

networks. With the time-aware shaper concept it is possible to 
control the flow of queued traffic from a TSN enabled switch. 
Ethernet frames are identified and assigned to queues based on 
the priority field of the virtual local area network (VLAN) tag. 
Each queue is defined within a schedule, and the transmission of 
messages in these queues is then executed at the egress ports 
during the scheduled time windows. Other queues will typically 
be blocked from transmission during these time windows, 
therefore removing the chance of scheduled traffic being 
impeded by non-scheduled traffic. 

In addition to a schedule for the network a protocol can use 
priorities. In SpaceFibre several virtual channels can be 
scheduled to send data in the same time-slot. In this situation 
medium access controller sends data from the virtual channel 
with the highest precedence. 

Protocol can allocate only a part of the epoch for the 
scheduled traffic. For example, in Profinet IO the IRT part of the 
communication cycle is reserved for real-time communications, 
in which the deterministic message frames are sent. 

Among all of the overviewed protocols only two are able to 
operate in SpaceWire networks: SpaceWire-D and STP-ISS. 
However, SpaceWire-D uses another transport protocol, RMAP, 
for transmitting data over the network, so it complicates the 
protocol hierarchy. Building any transport protocol over another 
transport protocol – the RMAP transport protocol, tangles the 
protocol stack and introduces unnecessary overheads.  

Comparative analysis of different TDMA-based protocols 
features is given in Table I. 

TABLE I.  COMPARATIVE ANALYSIS OF DIFFERENT TDMA-BASED PROTOCOLS 

        Feature 
 
Protocol 

Topology Synchronization Static 
scheduling 

Dynamic 
scheduling 

Operation on 
top of 
SpaceWire 

Synchronization 
period 

TTCAN bus yes yes no no Once an epoch 

Byteflight bus yes yes no no Once a time-slot 

Flexray bus no yes yes no Once an epoch 

TTP/C bus no yes no no Once a time-slot 

TTEthernet distributed yes yes yes no Once an epoch 

SpaceFibre distributed separate channel yes no no Undefined 

SpaceWire-D distributed yes yes no with RMAP Once a time-slot 
TSN distributed yes yes no no Implem. dependent 

Profinet IO IRT distributed yes yes yes no Once an epoch 

STP-ISS distributed yes yes no yes Once an epoch 

 

III. MULTIPROTOCOL SCHEDULING SERVICE 

Modern space industry demands a protocol running over 
SpaceWire, which can provide deterministic data transmission 
characteristics [2]. The basic SpaceWire standard covers three 
bottom layers of the OSI model and does not provide transport 
services [19]. Nowadays, there is a number of transport protocols 
intended to operate over SpaceWire. They are: RMAP, CCSDS 
PTP, STP-ISS, STUP, JRDDP, SpaceWire-R, STP and 
SpaceWire-D. Each of them is intended to solve its particular 
tasks and, in many cases, there are two or more transport 
protocols operating simultaneously in one network. Moreover, a 

single node can implement several transport protocols running 
over SpaceWire (for example, RMAP, CCSDS PTP, STP-ISS). 
Traffic from different transport protocols can interfere especially 
while getting access to the SpaceWire link in a node. It is rather 
difficult to avoid conflicts with simultaneous network resource 
usage, thus we cannot provide deterministic delivery of data in 
the network. 

Consequently, there is not only an issue of schedule creation 
and synchronization between the nodes but also an issue of 
arbitration of different transport protocols’ data flows. For 
SpaceWire networks only SpaceWire-D protocol deals with an 
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issue of scheduling in SpaceWire networks. However, 
SpaceWire-D was not designed for scheduling traffic from 
several transport protocols as it gets data directly from the 
Application Layer. Moreover, SpaceWire-D utilizes RMAP to 
communicate over the network, which imposes restrictions and 
effects on its flexibility in use. 

Therefore, it was decided to take the STP-ISS scheduling 
mechanism as a basis and develop a new scheduling protocol, 
which solves abovementioned problems. Also we extended 
functionality of this mechanism by some abilities and features of 
other scheduling protocols. The new scheduling protocol is 
called Multiprotocol Scheduling Service (MSS).  Fig. 1 shows 
the place of the MSS in the protocol stack and its comparison 
with the OSI reference model [20]. 

 

Fig. 1.  Comparison of the MSS with OSI 

The STP-ISS scheduling mechanism is based on SpaceWire 
time-codes distribution provided by the SpaceWire standard.  

A. SpaceWire Time Synchronization 

The local time ticks in each node must be periodically 
resynchronized within the global time base [9]. The STP-ISS 
rev.2 scheduling mechanism is based on the SpaceWire time-
codes broadcasting mechanism. These time-codes contain a six-
bit value of system time. Each node and switch has its internal 
six-bit time counter. There should be a single node or switch in 
a network, which is set as the time-master. It is responsible for 
time distribution over a network. When the time master receives 
a tick from a host-system, it should increment its time counter 
and send new time value in a time-code. When a node or a switch 

receives a time-code, it should update its internal time counter 
with the received time value. This new value should be one more 
than the time-counter’s previous time value.. When a switch 
receives a time-code with time value, which is one more than the 
internal counter’s value it increments the counter value and emits 
a tick signal. This tick signal propagates to all the output ports of 
the switch so that they emit the time-code. When switch receives 
a time-code with a time-code value that is equal to the internal 
counter value, then it is ignored. It helps to prevent circular time-
codes propagation. This is the way the time-codes are used to 
synchronize all the network nodes with the time master’s 
clock [19]. 

B. The STP-ISS Scheduling Mechanism 

According to the STP-ISS scheduling mechanism, there is a 
single schedule for the whole SpaceWire network. It gives an 
opportunity for the node to send data only during particular time-
slots. The schedule and time-slot duration are set during the 
configuration phase and are stored in each end-node of the 
network. The time-slot timer (TTS) counts duration of the current 
time-slot for a particular node. Synchronization according to a 
scheduling mechanism is performed once in an epoch. An epoch 
has a constant number of time-slots. For example, an epoch can 
consist of 10, 20, 64 or more time-slots, but it should contain at 
least 2 time-slots. The scheduling table describes one epoch. 

The number of time-slots in one epoch should be defined 
during the configuration phase and should be set to the time-slots 
counter CTS value. The time-slot duration DTS should be set to 
the time-slot timer TTS.  

The epoch duration DE is calculated in the following way:  

 (1) 

If the time-slot duration DTS value changes, the epoch 
duration value DE should be calculated and updated. 

Each node is permitted to send packets at a particular time-
slot in accordance with the schedule. At the end of its time-slot, 
the node should stop the data transmission. However, the 
transmission actually stops only after the current packet is 
transmitted to the network (the STP-ISS protocol has limited 
PDU length). If any other node has data for transmission, but it 
is not scheduled for transmission at the current time-slot, then 
this node should wait for its time-slot. 

 
Fig. 2.  Time-code relevancy window 
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STP-ISS protocol defines the time-code relevancy window 
that shows if the received time-code is relevant or not. This 
parameter defines a number of time-slots in the end of the epoch 
and in the beginning of the next epoch. During these time-slots 
a received time-code is considered as relevant (K is time-code 
relevancy window size). The time-code relevancy window is 
shown in Fig. 2. Time-code relevancy window is a configuration 
parameter and should be set during configuration phase. It could 
be defined individually for each node in accordance with the 
accuracy of local clocks. 

The time-slot timer expiration in the last time-slot of an 
epoch and reception of a relevant time-code indicate beginning 
of the new epoch, in which the time-slot counter CTS will count 
time-slots starting from zero. When the node gets the time-code, 
it does not analyze the time-code number. The beginning of a 
new epoch is associated with the fact of the time-code reception. 

There are two possible synchronization cases, which can 
occur: 

• the next time-code is received during first K/2 time-slots 
of the epoch; 

• the next time-code is received during last K/2 time-slots 
of the epoch. 

Considering the node functionality, the abovementioned 
cases mean that the internal time-slot timer and the time master 
are not synchronized. This means that the node should start the 
synchronization process. 

Fig. 3 shows the case, when a node started a new epoch and 
the expected time-code is received during first K/2 time-slots of 
the new epoch. In this case, the node should terminate time-slot 
timer TTS and calculate new value for the time-slot duration. The 
DTS_new value is calculated according to the equation (2):  

TS
TSnewTS C

t
DD

Δ+=_

, 
(2) 

where ∆t is the current value counted since the beginning of the 
epoch.  

 
Fig. 3.  Time-slot timer value correction (the time-code received during the first time-slot of the epoch 

Subsequently, the node updates the epoch duration value 
according to the equation (3). 

TSnewTSE CDD ⋅= _  (3) 

The newly calculated value will be applied to the TTS timer 
for the next time-slot. 

Let us consider the second case when the time-code is 
received during the last K/2 time-slots of the epoch (see Fig. 4). 
In this case, the node should terminate the current epoch and 
calculate new values for the time-slot timer. For this purpose, the 
node takes the current ∆t value counted since the beginning of 
the epoch and calculates the new time-slot duration according to 
the equation (4):  

TS
newTS C

t
D

Δ=_

 
(4) 

The next time-slot starts with the new TTS timer value DTS_new. 
If the epoch timer expires simultaneously with the time-code 

reception, then there is no need to correct the epoch timer value. 
The moment of the epoch timer expiration and the time-code 
reception is determined depending on the implementation. These 
events are not strictly simultaneous in the hardware. So there is 
some gap between these events that could be considered as 
satisfactory or not. Also this gap can be useful to take into 
consideration the accuracy or jitter of the time-code reception. 
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Fig. 4.  Time-slot timer value correction (the time-code received the last time-slot of the epoch) 

The STP-ISS protocol should count the number of received 
irrelevant time-codes. Reception of three irrelevant time-codes 
means that the internal time-slot timer and the time master are 
significantly asynchronous. In this case, it is necessary to 
synchronize with the time master. Reception of the third 
irrelevant time-code should determine the beginning of the new 
epoch. The node should terminate the time-slot timer and wait 
for reception of the next time-code. In this new epoch the node 
should not send data until reception of the next time-code. After 
reception of a time-code the node should update the time-slot 
duration value and then continue data transmission according to 
the schedule. New time-slot duration value should be calculated 
according to the equation (5):  

TS
newTS C

t
D

Δ=_

, 
(5) 

where ∆t is the time value, that is counted starting from the 
moment of third irrelevant time-code reception and finishing 
with the next time-code reception. 

C. Multiprotocol Scheduling Service 

The described above STP-ISS scheduling mechanism, has 
been extended with additional features for operation with several 
transport protocols simultaneously and results in a new 
scheduling protocol for SpaceWire networks - Multiprotocol 
Scheduling Service. It should be implemented not only in the 
end-nodes (as it is designed in STP-ISS) but also in switches 
which are directly connected to the nodes. Let us now consider 
MSS mechanisms and features in details.  

1) Scheduling table: Generally, there is a schedule for the 
whole SpaceWire network defining in which time-slots a 
particular node can send data. An example of such scheduling 
table is given in Table II. Time synchronization mechanism was 
taken from the STP-ISS without any modifications. Scheduling 
table should be stored in each node and should be designed in 
such a way that an access to shared resources (e.g. output switch 
ports, links, etc.) is multiplexed in time. 

According to the MSS a node can only send data in the 
specified time-slots. However, if there are several transport 
protocols operating in one node it is necessary to somehow share 
this time-slot between them. For this purpose we proposed to 
allocate full time-slot for a particular transport protocol, and if 
there is more than one transport protocol in a node scheduled to 

send data at one time – these protocols should be arbitrated by 
priorities. 

TABLE II.  SCHEDULING TABLE FOR THE NETWORK 

Node 
Time-slots 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 141516 17 1819 20

0 

1 

2 

...
 

25 

According to the proposed approach, an entire time-slot is 
assigned for transmission of data of a particular transport 
protocol. It gives an opportunity for the certain transport 
protocol on the certain node to send data only during a particular 
time-slot. In such case all other protocols, which operate in the 
node, should wait for their time-slots. An example of the 
scheduling table for this approach is shown in the Table III. 

TABLE III.  SCHEDULING TABLE FOR NODES AND TRANSPORT 
PROTOCOLS 

Node Protocol 
Time-slot 

0 1 2 3 4 5 6 7 8 9 10 11 121314151617181920

0 
STP-ISS 

RMAP 

PTP  

1 
STP-ISS 

RMAP 

PTP 

2 
STP-ISS 

RMAP 

PTP 

...
 

25 
STP-ISS 

RMAP 

PTP 

If several transport protocols are scheduled to send data at 
one time and have data for sending in the allowed time-slot, then 
the protocol with the higher priority will send data first. This 
gives an opportunity to effectively utilize the network capacity. 
Using of priorities is optional, so this mechanism could be 
switched off (or even not implemented in a node). In this case 
transport protocols scheduled for the same time-slot should send 
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data in the same order as they were prepared for the 
transmission. 

The Multiprotocol Scheduling Service does not require any 
data buffers: it passes transport protocol data directly to 
SpaceWire without keeping it inside the scheduler. In the 
allowed time-slot the scheduler arbiter analyses whether 
transport protocols have data to send or not and makes a decision 
which transport protocol may transmit data. Then, the particular 
transport protocol can pass its data packet to the Multiprotocol 
Scheduling Service for sending over the network.  

If the packet length is too big for the duration of the time-slot 
and we do not have enough time to send the packet, than we have 
two options: 

• let the MSS finish the packet transmission, exceeding 
the time-slot boundaries; 

• cut the packet and insert EEP in the end. 
It is the configuration parameter of the scheduling protocol. 
2) Transport protocols identification: Although each 

transport protocol has its own protocol identifier, it is difficult to 
identify what protocol or application sends the data to the 
network. This is due to using SpaceWire path addressing in the 
packets as it is not limited in length. Moreover, there could be 
applications, which do not have any protocol identifier but may 
send data directly to the SpaceWire without using any transport 
protocol.  

Therefore, for the purpose of identification, each entity 
sending or receiving data passing through the MSS has its own 
SpaceWire logical address. In addition, the Multiprotocol 
Scheduling Service has a separate SAP for each protocol or 
application that is trying to send data by its means. Each SAP is 
associated with the logical address of the SAP service user.  

 

Fig. 5.  Multiprotocol Scheduling Service SAPs with upper entities 

If a transport protocol works with a number of applications 
on top, and each application has its own logical address, then 
SAP could be associated with a range of logical addresses. 
Applications also could send data directly to the scheduling 
protocol; so they also have separate logical addresses. An 
example of protocol and application identification by the MSS 
is shown in Fig.6.  

If the Multiprotocol Scheduling Service gets a time-code or 
interrupt, it sends it to all the SAPs. It means that all transport 
protocols and applications have a possibility to get a control 

code, and if they need it – receive and process it. Also if a node 
with Multiprotocol Scheduling Service is a Time Master, then 
MSS should have an ability to transmit time-codes to the 
network and to all the SAPs of the protocol simultaneously. It is 
done to give ability to other applications or transport protocols 
in a node to get the correct time information. 

RMAP 
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RMAP 
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App#0
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App#1
LA 56

SpaceWire 

Arbitration

 
Fig. 6.  Example of protocol and application identification  

3) Switches: SpaceWire-D protocol is intended to be 
implemented in the SpaceWire nodes only, but the Multiprotocol 
Scheduling Service would be implemented in SpaceWire 
switches also to get guaranteed deterministic network behavior 
in any network configuration. In MSS we propose to use the port 
guardian mechanism, which is described in [1]. The following 
mechanism should be implemented in switches, which are 
directly connected to the nodes. This mechanism is optional and 
it can be switched off for a particular switch. 

Most of described above network technologies suppose port 
guardian mechanism in order to protect the network from nodes 
that try to transmit data at inappropriate time-slots. Often such a 
"watch dog" is implemented as a separate device or chip in order 
to increase fault tolerance. The Port guardian guarantees that the 
node would not transmit data during wrong time-slots and 
eliminates «babbling idiot» problem. 

SpaceWire switches store the scheduling table (see Table II), 
but it is simpler than for the nodes (Table III). Switch does not 
know which protocol sends the packet, but it should be able to 
block the packet transmission, if the node is not scheduled for 
data transmission in the current time-slot. The switch’s 
scheduling table identifies, which port is allowed to send data 
during a specific time-slot. Thus, according to this schedule, the 
switch can determine whether the packet should be discarded or 
it can be routed to the outgoing port. If the leading byte of the 
SpaceWire packet has been received in the time-slot, in which 
the node is allowed to send data, then this packet can pass 
through the router. Otherwise, this packet should be discarded. 

The Fig. 7 shows a SpaceWire network with network 
switches, marked as «Net guard», which store a scheduling table 
and permit data transmission. The switch, which is not 
connected to nodes, could be a standard SpaceWire routing 
switch, which is not able to analyze the scheduling.  
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Fig. 7.  Network with network guardians 

2) Out-of-schedule nodes: If in a network there is a number 
of nodes that work out-of-schedule and are not included into a 
scheduling table, then it is better to isolate these nodes in a 
separate network region. The Switch that would connect this 
region to another, scheduled part of network should contain a 
scheduling table that will regulate data transmission from this 
region. An example of out-of-schedule region is shown in Fig. 8. 

 
Fig. 8.  Example of out-of-schedule region  

IV. CONCLUSION 

In the current paper we proposed new scheduling service that 
will provide determinism to SpaceWire networks, where 
multiple transport protocols and applications are operating. For 
this purpose we overviewed communication protocols, which 
use Time-Division Multiplexing (scheduling) concept to provide 
the deterministic data delivery. We analyzed the scheduling 
mechanisms and decided to take the STP-ISS scheduling 
mechanism as the basis for a new service. Also we proposed 
some improvements and additions to this mechanism that 
increase the quality of deterministic data delivery. This 
mechanism can prevent network resources usage conflicts and 
increase the network bandwidth. 

The proposed Multiprotocol Scheduling Service (MSS) will 
solve the serious problem of deterministic data delivery that 
currently is one of most important tasks for space industry.  
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Abstract—Satellite onboard control systems have changed 

significantly towards of complexity of control algorithms. 

Network operation must be flexible and adapt easily to 

configuration and composition changes of the onboard network. 

Plug-and-Play should solve this problem. Plug-and-Play 

technology is aimed for network monitoring, should promptly 

detect changes in it and correctly handle any network situation. 

Due to size increase of onboard networks, one center (Plug-and-

Play Manager), which would quickly react to changes in the 

entire network, is not enough, one must have several such 

centers. Thereby there is the problem of Plug-and-Play 

manager’s placement in the network, to provide rapid response 

and efficient management of other devices in the network. 

Depending on the SpaceWire network functions and 

requirements, it must be taken into account in its design, in 

determining position for the Plug-and-Play managers. In the 

paper, we consider some reference variants of 

SpaceWire/GigaSpaceWire networks: 

 Network designer chooses the number of Plug-and-Play 

managers according to the network size and others 

parameters. The network is not clustered, not divided into 

subnetworks.  

 Network designer chooses the number of Plug-and-Play 

managers according to the network size and others 

parameters. However, the network that is initially 

undivided into subnets, in the search for of the network 

managers location is divided into subnets. 

 Network designer clusters the network, divides it into 

subnets. For each subnet, the manager's placement 

problem is solved separately in accordance with the 

requirements to particular subnet. 

In this paper, we will consider in details two approaches to 

determining location of Plug-and-Play centers in 

SpaceWire/GigaSpaceWire networks.  

The first approach is based on a method of graph partitioning 

into subgraphs. The second approach is based on a P-median 

graph search algorithm. Both approaches are described in 

details. Advantages and disadvantages of these methods will be 

presented; their computational complexity will be evaluated. 

In network managers placement it is important, what will be 

characteristics of data transfer from Plug-and-Play managers to 

nodes. These characteristics include data transmission time, data 

transmission delay, etc. It is important how the network nodes 

are distributed among the Plug-and-Play managers for control. 

The network managers loading should be as uniform as possible. 

All these parameters directly affect the quality of the Plug-and-

Play technology. 

We assess transmission characteristics between the Plug-and-

Play manager and network nodes for each of these approaches, 

give recommendations of using these approaches for Plug-and-

Play managers placement, taking into account various features of 

the construction and administration of 

SpaceWire/GigaSpaceWire networks. 

Index Terms— onboard networks, network management, 

SpaceWire, GigaSpaceWire, Plug-and-Play. 

I. INTRODUCTION 

Creation of modern onboard networks requires innovative 

approaches for its administration and management, among 

them - automation of all possible processes, configuration 

flexibility. PnP technology means network management 

without human configuring the onboard network. In the PnP 

technology, devices use a special algorithm, to research and 

configure each other. For this technology, one must have a 

network of some "smart" devices that will execute PnP 

algorithms. 

Depending on the goals and tasks, a number of the required 

PnP managers is set, which must be present and be in operation 

in the network. In case of centralized PnP, there is only one 
manager in the network. This manager performs configuration 

and full network administration. However, for large networks 

with a large number of subscribers one manager may be not 

enough, because it cannot enough quickly manage the network. 

Therefore, a decentralized mode can be used, in which there 

are several managers. In the first and in the second case it is 

necessary to choose a place(s) of managers in the network 

structure.  

For centralized mode, it is reasonable to locate manager in 

a center of the network.  

Before choosing a place of managers’ connection in a 

decentralized mode, the network should be divided into several 

regions.  
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In some projects, splitting onboard computing network of 

the satellite is done in the design phase, in creation of a 

network in accordance with its logical and physical structure. 

For example, the nodes and routers, which are located in one 

instrument area, may be defined as a separate region. In each 

such region a separate manager is used. It can be placed in the 
center of the subnet (just as a manager of the entire network is 

placed in a centralized mode).  
However, in many other projects, developers do not carry 

out the network division into regions. In this case, a 

decentralized mode PnP technology is used; the network can be 

splitted into several regions. Then you need to select position 

of the manager connection for each region separately. 

To solve the problem of network splitting into regions it is 

convenient to represent the network as a graph: the vertices of 

the graph correspond to the network devices, edges correspond 

to physical communication channels between devices. For easy 

way, we present non-oriented graph, as the data transfer can be 

in both directions for SpaceWire duplex communication 

channels. Weight of an edge between two vertices connected 

by this edge is a distance equal to one. 

In another approach, the network originally isn’t divided 

into separate regions - managers are placed in the network by 

using algorithm, which finds a P-median in the network (where 

P - is the number of placed managers). 

To check the results of network’s partition we use imitation 

modeling.  

II. DIVISIONS OF A NETWORK INTO REGIONS APPROACH 

A. Partition of a graph on subgraphs 

The task of partitioning of a graph into subgraphs is deeply 

explored and there are different algorithms for its solution. 

Different algorithms are suitable for different requirements. 

The following requirements are relevant for our task: 

subgraphs that contained one node shan't be created; ability to 

control of subgraphs quantity; taking into account graph 

connectivity and closeness of a result to optimum (that is a 

result, which on these or those signs is more preferable than 

others). 

To divide a graph into the required quantity of subgraphs, 
the following input data are necessary: 

1) A specification of the graph structure. 

2) Number of managers of the Plug and Play and their 

characteristic. 
 The manager of the Plug and Play is capable to support 

different number of devices (nodes of a graph) correspondingly 

to its technical characteristics, such as: memory size; 

performance; throughput and other. In some cases (the 

centralized Plug and Play) one manager of the Plug and Play is 

capable to service all given network entirely. The search 

algorithm of a median line of a graph is used for finding a 

network connection point for the manager position in the 

graph. 

In case of the decentralized Plug and Play mode, before 

using the search algorithm of median line in a graph, it is 

necessary to divide the graph into subgraphs. The quantity of 

subgraphs depends on capabilities and resources of the selected 

Plug and Play managers. 

The algorithm, which is capable to divide a graph into a 

given quantity of subgraphs taking into account connectivity, 

without formation of single subgraphs - multi-level algorithm 

of Kernighan-Lin [1]. It consists of three stages (Fig. 1): 

1. The Stage of coarsening 

2. The Separation stage 

3. The Recovery stage 

 

 
Fig. 1. Stage multilevel algorithm. 

At the stage of coarsening a sequence of smaller graphs, 

each with fewer nodes, is constructed. Coarser graph can be 
obtained by tightening adjacent nodes. The edge between two 

nodes is deleted and the multinode is created, which consists of 

these two nodes. The algorithm "Random matching" was 

chosen to implement this stage. The random matching basic 

idea is that the nodes are visited in a random order. If the node 

  wasn't included in matching, then the algorithm randomly 

selects one of its adjacent nodes, which is also not included in 

matching. If such a node   exists, then the algorithm includes 

an edge ( ,  ) in matching; it also marks nodes   and   as 

visited. If there is no unmarked adjacent node  , then the node 

  remains free and passes into the following graph. This stage 

of coarsening is needed by the fact that an initial network can 

have big size. Adding this stage in the multi-level algorithm 

allows to reduce considerably an operating time of the 

separation algorithm for networks with large number of nodes. 

The second stage of a multilevel algorithm – the separation 

stage. The Kernighan-Lin algorithm is selected for bisection of 

the graph. It begins with the initial division of the graph in half. 

At each iteration it searches for a subset of nodes from each 

part of the graph, such that the exchange of these subsets leads 

to separation of smaller cross-section. If such subsets exist, 

then the exchange is made, and this becomes the partition for 
the next iteration. The algorithm continues by repeating the 

entire process. If it can't find two such subsets, then the 

algorithm comes to an end because for this division the local 

minimum is reached, and any further improvement can't be 

made by the Kernighan-Lin algorithm. The Kernighan-Lin 

algorithm finds a local minimum for the separation, when it 

starts with a good initial separation. The requirement of 

repetitive calculations can be quite cumbersome, especially if 
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the graph is large. However, since the input of the separation 

algorithm receives a much smaller coarse graph, performing 

multiple requires very little time. 

The last stage of the multilevel bisection – the recovery 

stage. During the recovery stage separation obtained for the 

coarser graph is projected back to the original graph. A more 

accurate graph has greater number of degrees of freedom that 

can be used to improve the separation and reduce the weight of 

the separator. For this reason, after division, the algorithm of 
division refinement is used. As the algorithm of refinement the 

described above Kernighan-Lin's algorithm is selected. The 

main idea of its application is in using the found solution for a 

coarse graph as an initial division for the Kernighan-Lin 

algorithm described at this stage. The reason is that this 

projected split is already good; therefore, Kernighan-Lin will 

converge within a few iterations to the best separation. 

Thus, having passed the initial graph through all three 

stages, the output of the multilevel algorithm will be the two 

subgraphs that are most connected inside. To get more 

subgraphs one could put one of the resulting subgraphs to the 

input of the algorithm and repeat it.  

After division of the graph into desired number of 

subgraphs, each of them, using a search algorithm median 

graph's is searched for a node, some centre to which a Plug-

and-Play manager is connected. As mentioned above, this is a 

graph's median search algorithm [2]. 

In a number of tasks about placement of service stations it 

is required to locate a service station in the graph so that the 

amount of the shortest distances from this point to peaks of the 
graph was minimal. The optimum location of point in the 

specified sense is called the median line of a graph. Proceeding 

from the nature of target function, such tasks call minisummny 

tasks of placement [3]. The matrix of the lengths of the shortest 

paths between all nodes in the graph is calculated using the 

algorithm of Floyd–Warshell and used to determine the median 

graph, which is determined by the smallest value of the total 

distance from one node to all others [4]. 

After performing the graph partitioning and the center 

search in each subgraph the output data will be formed that 

contain: 

1) A description of the network structure, with the 

distribution of devices across the regions. 

2) A List of nodes to which Plug-and-Play managers are 

connected. 

The presented algorithm is a heuristic, it is able to issue 

an acceptable solution in most practically important cases. 

However, in contrast to the exact algorithm for finding P-

medians, it has the following features: 

 doesn't guarantee finding of the best solution; 

 doesn't guarantee finding of the solution even if it 

exists; 

 can issue the incorrect solution in certain cases. 

To identify the effectiveness of this algorithm in practice, 

we conducted a series of tests on the networks of different size 
and different topologies. a serial execution of the algorithm on 

networks was produced: 

 Mesh 4х4 (16 nodes). 

 Mesh 6х6 (36 nodes). 

 Mesh 8х8 (64 nodes). 

 Arbitrary topology (61 nodes). 

For each network, the division into three regions was 

done 10 times. Among all the obtained solutions the best was 

found according to two criteria. The first is the minimum 

distance (in number of switches on the path) between the 

Manager and the most remote from it node in the subgraph. 

The second is the difference (in number of nodes) between the 

resulting subgraphs’ sizes. 

 

Fig. 2. The ratio of best and worst solutions in different topologies for a 

heuristic algorithm 

The diagram in Fig. 2 illustrates a ratio between the 

number of the received partitions. The blue column shows 

how many solutions for a network with this topology are the 

best, and orange – the number of opposite solutions. 

Apparently from the diagram, the amount of the best results 

prevails on all networks, except a Mesh topology 8х8. As the 
reason for that serves the network size: as more nodes and 

edges are in the network, there are more options for graph 

division. Thus, the algorithm will issue more various 

solutions, thereby the number of the best solutions will make a 

smaller share of all possible. In case of arbitrary topology 

though the quantity of nodes is comparable with a Mesh 

topology 8х8, number of communications are less; the 

structure of a network too considerably influences the number 

of different solutions also. 

The diagrams below (Fig. 3 and Fig. 4) provides a 

comparison of algorithm graph partitioning to subgraphs with 

the second, the exact algorithm considered in this article 
according to the selected criteria. 
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Fig. 3. The maximum distances in regions of the worst, best and exact 

solutions 

Provided in Fig. 3 diagram allows to see a difference 
between the best solution (an orange column), the worst (red) 

and exact (blue) by the first criterion – the maximum distance 

between the manager and the most remote node in all regions. 

From the diagram it is visible that the algorithm is capable to 

issue a solution, comparable by this criterion with exact. The 

fact that for a Mesh 6х6 the exact solution turned out on 1 hop 

better says only that there was not enough number of the 

carried-out tests for receiving partition, comparable with 

exact. 

 

Fig. 4. Loads of managers of the worst, best and exact solutions 

From the diagram in Fig. 4 one can see the difference 

between the best (orange column), worst (red) and exact 

solution (blue) according to the second criterion: the 

difference between the sizes of the obtained regions. As from 

the previous graph, it is clear that this algorithm allows to 
obtain a solution comparable with the exact by the second 

criterion. However, unlike the previous chart, the difference 

between the best and worst value for the second criterion is 

large. 

A comparison of the solutions, obtained by the heuristic 

algorithm, with the exact, according to the selected criteria, 

but separately for every criteria, was above. If we compare the 

results under both criteria, it turns out that only for a network 

with arbitrary topology solutions are comparable to exact. 

Thus, we can conclude that the algorithm gives best 

results for networks with arbitrary topology. It does not mean 
that for networks with a regular topology (Mesh) it is 

impossible to obtain a solution comparable to accurate. But for 

this solution it will be necessary to conduct a greater number 

of runs of the algorithm. 

III. P-MEDIAN APPROACH 

P-median problem can be often found in logistics [5,6]. 

This problem is from graph theory. In its classical form, it 

looks like: to place p services on the graph thereby the sum of 
the shortest distances from each services to the other graph 

vertices is the minimum possible. We have changed the 

classical form for solving the problem of placement managers 

in the network. In our case it is necessary to place p managers 

(p-median) in the network thereby the distance of each 

manager to the nearest nodes is as low as possible. The main 

condition for the solution existence is a full coverage of the 

vertex set V of the graph G (V, U) by union the median subset 

VP (includes managers) and attachment subset VA (includes 

nodes in the obtained regions) (1). 

        (1) 

This approach finds managers location in the network, and 

then the network divides into regions. The region is defined by 

a set of nearest nodes from its manager. The distance between 

two nodes is the sum of edges weights in the path. Each edge 

has distance equal one.  

P-medians algorithm is exact, and important feature of this 

algorithm is that any solution is the best of all possible 

solutions to the given criteria. There may be several such 

solutions. 

The optimal solution criteria: 

 The minimum distance from the manager to other 
nodes in the region. The minimum distance is 

necessary to reduce transmission delays between the 

manager and the nodes of the region. 

 The maximum uniform region. The uniform number of 

nodes in the region is necessary to protect against 

overloads or outages of individual managers in the 

network. 

Since we use several criteria for solving this problem, you 

need to identify the main criteria on which the solution will be 

evaluated. In this algorithm, the main criterion is the distance. 

At first, algorithm looks for the best solutions by the distance, 

and then as far as possible uniform attaches nodes to the 
median and forms the regions. In this approach, the losses can 

be in the uniform number of nodes in the regions. 

As input data it has: 

1) Graph of the network. 

2) The number of managers, (p). 
As an output a designer receives the following information: 

1) nodes ID to which to connect managers. 

2) nodes ID, which are part of every manager's region. 

3) Route of data transfer between the manager and the 

nodes of the region. 
To describe p-median algorithm, we use a simplified 

example of a network with Mesh topology and size of 3x3, 

shown in Fig. 5. For example, take p = 2, i.e., you must place 2 

manager. 
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Fig. 5. An example network with Mesh topology and size of 3x3 for solving p-
median problem, where p=2.   

1) Create a matrix of shortest distances MSD. 
 A B C D E F G H I 

A 0 1 2 1 2 3 2 3 4 

B 1 0 1 2 1 2 3 2 3 

C 2 1 0 3 2 1 4 3 2 

D 1 2 3 0 1 2 1 2 3 

E 2 1 2 1 0 1 2 1 2 

F 3 2 1 2 1 0 3 2 1 

G 2 3 4 1 2 3 0 1 2 

H 3 2 3 2 1 2 1 0 1 

I 4 3 2 3 2 1 2 1 0 

Fig. 6. Matrix of shortest distances MSD 

2) Sort the rows by ascending distance. 
The index shows the distance from median to nodes in the 

row (Fig. 7). 

3) Choose two rows (since p=2) and remove from this rows 

median nodes. At this step, median nodes are H and B. 
In Fig. 7 nodes in the left part of the table are potential 

medians, and all that is in the right side of the table - 

attachable nodes. We removed median nodes in the right table 

side of the selected rows, as we do not consider the interaction 

between managers. In Fig. 7 the selected rows are in green, 

and median nodes in the right table side are in red. 

A A0 B1 D1 C2 E2 G2 F3 H3 I4 

B B0 A1 C1 E1 D2 F2 H2 G3 I3 

C C0 B1 F1 A2 E2 I2 D3 H3 G4 

D D0 A1 E1 G1 B2 F2 H2 C3 I3 

E E0 B1 D1 F1 H1 A2 C2 G2 I2 

F F0 C1 E1 I1 B2 D2 H2 A3 G3 

G G0 D1 H1 A2 E2 I2 B3 F3 C4 

H H0 E1 G1 I1 B2 D2 F2 A3 C3 

I I0 F1 H1 C2 E2 G2 B3 D3 A4 

Fig. 7. Sorted distance matrix 

4) Derive a new table AMD that contains attachable nodes, 

medians, to which they are attached, and the distance to them 

in ascending order (Fig. 8). 

5) Remove attachable nodes, to which the distance is not 

minimal. In Fig. 8 removed nodes are in red. 

6) From the resulting table one can uniquely identify nodes 

that can be attached to only one median. In Fig. 8 uniquely 

attachable nodes are in green, removed nodes are in red. 
Attachable 

nodes 
A C E G I D F A C G I 

Medians B B B,H H H B,H B,H H H B B 

Distance 1 1 1 1 1 2 2 3 3 3 3 

Fig. 8. Matrix AMD 

7) Distribute remaining nodes on the medians with the 

maximum uniformly attachment. 
Nodes E, D, F can be attached to the both medians - B and 

H. These three nodes cannot be uniformly divided between the 

two medians, so one median gets two nodes, a second median 

gets one node. 

8) Check solution’s set coverage. 
In this example, the set of vertices is V = {A, B, C, D, E, F, 

G, H, I}, a median subset is VP = {B, H}, the subset of 

attached vertices is VA = {A, C, D, E, F, G, I}. Since VP∪VA 

= V, then the solution is correct. 
The obtained solution is shown in Figure 2. Nodes A, C, D, 

E are in region for the manager at the node B. Manager at the 

node H attaches nodes F,G,I [7]. 
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Fig. 9. Solution for p-median problem for network with Mesh topology and 

size of 3x3, where p=2 

The P-median problem is NP-complete, and the time to 

solve it depends exponentially on the input data size. However, 

in view of the fact that currently the network has a small 

number of units (not more than 224 SpaceWire standard) [8], 

The P-median problem still can be solved using exact 

algorithm. In this paper, is used the exact algorithm for solving 

the P-median problem.  We have done several tests to measure 

the operating time of the algorithm on different topologies with 

different number of regions. The Fig. 10 shows a plot of the 

dependence of time consumption and input data. 

 
Fig. 10. Dependence of time consumption and input data for exact algorithm. 

As can be seen from the graph the longest it searches a 

solution for the network 8x8 with five regions and network 

10x10 with four regions. Solutions for these configurations 

have been received in about an hour. 
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IV. COMPARISON OF THE RESULTS, OBTAINED BY THESE 

APPROACHES 

In an experiment to compare two approaches of finding the 

points of connection managers in network, we have chosen 

networks with different topologies and different number of 

nodes. In the presented topologies in rectangles and squares 

represent switches, and circles – labeled terminal nodes; nodes 

highlighted with a solid color – connected managers. Nodes in 

the region are circled by the color of the appropriate manager. 

1) Arbitrary topology. 

Contains 61 node 22 of the switch 39 and terminal nodes). 

In this topology three centres of the connection managers of 

the PnP were searched. 

Fig. 11 shows the solution obtained using the heuristic 

algorithm of graph partitioning into subgraphs. Regions 

highlighted in red (25 nodes), blue (node 29) and brown (7 

nodes). The maximum distance from the Manager to the nodes 
in the region is 4-hop (number of switches on the path between 

the manager and the most remote from it node in the 

subgraph). 

 

 

Fig. 11. An example of the worst solutions of the heuristic algorithm for an 

arbitrary topology 

Fig. 12 shows the solution obtained by using algorithm p-

median. Regions highlighted in red (20 nodes), blue (21 nodes) 

and brown (20 nodes). The maximum distance from the 

manager to a node in the region is 3 hops. 

 

Fig. 12. Example of the solution of exact algorithm for arbitrary topology 

2) Mesh 8x8.  
This regular topology contains 128 nodes, 64 switch and 64 

terminal node). On this topology, were searched five 

managers. It is important to note that to each switch is 
connected one terminal node. For simplicity of illustration, we 

do not represent terminal nodes in the network. 

Fig. 13 shows the solution obtained by the heuristic 

algorithm of partitioning a graph into subgraphs. Regions 

highlighted in red (28 nodes), green (26 nodes), blue (28 

nodes), pink (28 nodes), and yellow (18 nodes). The 

maximum distance from the manager to a node in the region is 

3 hops. 

 

 

Fig. 13. Example of the best solution of a heuristic algorithm for Mesh 

topology with size 8x8 

Fig. 14 shows the solution obtained by using algorithm p-

median. Regions highlighted in red (26 nodes), green (26 

nodes), blue (26 nodes), pink (26 nodes), and yellow (24 

nodes).The maximum distance from the manager to a node in 

the region is 3 hops. 
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Fig. 14. Example of the solution of exact algorithm for Mesh topology with 

size 8x8 

V. SIMULATION RESULTS 

The data below were obtained using simulation software 

NetSim focused on SpaceWire networks simulation [4]. The 

network was simulated by simultaneous operation of a 

manager PnP with three devices in the region. The SpaceWire 

packets do not go beyond the region, that is, the majority of 

traffic was exclusively within each region and had no effect on 

downloading of the neighboring regions. 

To perform the configuration of all devices within each 

region the RMAP protocol is used; the packet size is 23 bytes 

to 28 bytes. 

A. Mesh 8x8. 

According to the obtained results of simulation were plotted 

diagram for channel load for five managers. For each manager 

defined input (the columns ‘In’) and output (columns ‘Out’) 

channel download. 

In the Fig. 15 highlighted in red are the simulation results of 

the worst, in orange are the best solutions obtained by the 

approach of partitioning the graph into subgraphs, in blue the 
results of the exact algorithm. BA-14 – a manager of the red 

region, BA_28 is the manager of the green region, BA_41 is 

the manager of the yellow region, BA_55 is the manager of 

the blue region, BA_69 manager of the pink region. 

 

Fig. 15. Loading of channels for all managers in Mesh topology with size 8x8 

From Fig. 15 it is seen that the heuristic method may 

produce a result about 1,5 times worse from optimum. The 

load on input and output ports will sharply increase. However, 

the best distribution results will not differ much from the 

optimal. 

An important feature of the division into regions is the 
uniformity of the number of nodes in the regions. The figure 

shows the distribution of nodes in the regions. 

 
Fig. 16. The uniformity of the regions worst, best and exact solutions 

From the diagram, it is possible to note, that even the best 

solution of a heuristic algorithm can strongly lose by criterion 

of uniformity of regions, while the exact algorithm always 

outputs a solution with evenly loaded regions. 

B. Arbitrary topology. 

The results of simulation of solutions to partition the 
arbitrary topology using heuristic and exact methods showed 

that when splitting the graph into subgraphs, it is important to 

consider not only the number of nodes in the region, but also 

their degree- the number of edges leaving the given vertex. In 

other words, in case of a network should consider how many 

active ports are involved in nodes that are distributed in the 

region. We did not consider this option and the figure shows 

simulation results in which the exact algorithm gives the load 

on the input and output ports bigger than the best solution of 

the heuristic approach. 

At every switch within the region sent the total number of 
packets equal to the sum of the number of active ports (used in 

this network topology) and the number of adjustable rows of 
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the routing table. The routing table mentioned the same for all 

switches, but due to different numbers of active connections 

on each switch there was a difference in the traffic for each of 

them. For each terminal node has sent a fixed number of 

packets. But it could also have an impact on the loading of 

channels, because a different number of terminal nodes 

present in solutions of the heuristic and the exact algorithms. 

On Fig. 17 BA-40 is a manager of the red region, BA_41 is 

a manager of the blue region, BA_42 is a manager of the 

brown region. 

 

Fig. 17. Loading of channels for all managers in arbitrary topology 

Also it presents a paradox due to the fact that the best 

solution of the heuristic algorithm, the regions formed so that 

each region was nodes and with big and with fewer active 

ports. While the algorithm based on algorithm P-median was 
placed in the same region nodes with large number of ports, 

and in another region – with less, although the number of 

nodes in regions of exact and heuristic algorithms is the same. 

VI. CONCLUSION 

This article presented two approaches to determine the PnP 

managers of locations in networks and their regions. The first 

approach is based on a heuristic algorithm, the second – on an 

algorithm that gives guaranteed exact solution. The selected 

topology is represented as an undirected graph, divided into 

regions. Then we carried out simulation with traffic shaping 

entirely inside each formed network region. 

The results of the network partition in case of the heuristic 

algorithm may be 1.5 times worse than the optimal result 

obtained by exact method. However, the best solution heuristic 

algorithm is close to optimal, but to obtain it you need multiple 
iterative runs of the algorithm. Heuristic approach is cheaper to 

apply on large networks with a large number of managers, 

however, if there are limited number of PnP  managers (up to 

5), it is better to use the exact algorithm, which gives optimal 

solution according to the criteria of distance and load.  
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Abstract—There are several standardized protocols based on 
SpaceWire which provide data exchange between several nodes.  
SpaceWire is also suitable for interprocess communication (IPC), 
by the help of higher level protocols. However, currently there is 
no standardized protocol which is targeting IPC on SpaceWire 
networks. This paper proposes a protocol, which uses the 
capabilities of SpaceWire to build up networks for distributed 
computing on a spacecraft. The core of this protocol is the IPC 
mechanism for communication between the nodes and methods 
to support a reconfiguration of the network. A key feature of this 
protocol is an interface for a reconfiguration mechanism, which 
can be implemented on application level. This enables the 
utilization of unreliable commercial off the shelf (COTS) nodes, 
allowing system recovery from erroneous state. Additionally, the 
reconfiguration can be used to adapt the distributed computer to 
different mission phases. The protocol has the potential to build 
the foundation of a distributed on-board computer consisting of 
COTS components. Such distributed computer could be capable 
of fulfilling high performance demands as well as high reliability 
needs. Though, the protocol itself is not restricted to be used 
solely in fully-featured reconfigurable distributed systems. The 
IPC methods can be applied stand-alone as well, to establish a 
lightweight communication between nodes on a SpaceWire 
network by excluding the reconfiguration parts of the protocol. 

Index Terms— SpaceWire, Network, Protocol, Reconfigurable, 
Interprocess Communication, COTS, High Reliability. 

I. INTRODUCTION 
Distributed systems with COTS components use multiple 

computing nodes to share the workload and offer significantly 
higher computing performance than currently used space-
qualified on-board computers. It is necessary to offer complex 

IPC services and satisfy strict requirements for satellite 
missions, such as real time and reliable transmission as well as 
high transmission speed. Reliability of COTS can be realized 
via redundancy by the execution of equivalent tasks on 
different nodes and by the reconfiguration of nodes and tasks, 
i.e., migration of tasks to other available nodes after some 
nodes fail. The distributed system should support upgrade, 
maintenance and failure detection, isolation as well as 
recovery.  

SpaceWire is suitable for IPC with further protocols. 
However, currently there is no standardized protocol that is 
explicitly targeting IPC on SpaceWire networks and to be 
utilized in reconfigurable distributed on-board computers. 
Therefore, a new protocol, based on SpaceWire, is necessary to 
support the reconfigurable distributed on-board computers. 

We will introduce a new protocol called SpaceWire-IPC, 
which is beneficial for reliable and fault tolerant distributed on-
board computers 

The paper is organized as follows. Section II presents the 
related work, which was taken into account during 
development of our proposed SpaceWire-IPC protocol. Section 
III describes the requirements for the protocol, derived from 
our project. Structure and properties of the new protocol 
SpaceWire-IPC are introduced in section IV. Finally, section V 
provides the comparison between SpaceWire-IPC and already 
existing protocols, followed by a conclusion in section VI. 

II. RELATED WORK 
This section provides an overview of existing SpaceWire 

compatible protocol specifications. With the exception of 
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SpaceWire-R, all protocols are referenced and officially 
adopted by an according ECSS standard [1]. Additionally, the 
trends of IPC and reconfiguration in space systems are 
presented. 

A. Overview of Existing SpaceWire Protocols 
The subsequent paragraphs list SpaceWire protocols, which 

were considered for the development of the distributed on-
board system. 

1) Remote Memory Access Protocol (RMAP) 
The Remote Memory Access Protocol (RMAP) protocol, 

defined by standard [2], is commonly used in space 
applications for reading from and writing to memory in remote 
SpaceWire nodes. The protocol provides the ability to address 
destinations by the use of path or logical addressing over the 
Target SpW Address fields as defined in [3]. However, in case 
only logical addressing is required it is also possible to skip the 
Target SpW Address. The protocol can be directly integrated 
into a standard SpaceWire protocol by using the Protocol 
Identifier. By use of an Instruction byte, the following 
modes/message types are possible: 

• Read command/ write command 
• Verify / no verify of data before write 
• Acknowledge / no acknowledge of write command 
• Read-Modify-Write 
If data shall be read or an acknowledgment is required, a 

set of Reply Address fields are available, which are usable for 
path and/or logical addressing. The source of the received 
command is stored inside the Initiator Logical Address. To 
prevent a lock-step limitation during communication two 
Transaction Identifier bytes are available, which allow the user 
to apply out of order transfers. To define the target location for 
read or write commands, a set of four Address fields, plus an 
additional Extended Address field is used. 

Written and read data is secured by Cyclic Redundancy 
Checks (CRCs) for Header and Payload data independently. 

2) CCSDS Packet Transfer Protocol (CCSDS PTP) 
The CCSDS protocol is intended to encapsulate a user 

defined protocol that needs to be transferred through a 
SpaceWire network [4]. Similar to the RMAP, an arbitrary 
amount of Target SpW Address fields can be used for routing. 
Alternatively, the Target Logical Address is used to define the 
destination. The Protocol Identifier distinguishes between 
different SpaceWire packet types. The interpretation of data of 
the CCSDS Packet fields is user specific and defined inside the 
User Application field. 

3) GOES-R Reliable Data Delivery Protocol (GRDDP) 
The main purpose of GRDDP is to transfer data of sensors, 

telemetry and commands among peripheral instruments and the 
on-board computer [5]. The Destination SLA serves as a logical 
address, related to the targeted destination. To provide 
information about the source of the packet Source SLA is used. 
Four different packet types can be used by defining the Packet 
Type field: 

• Application Data 
• Acknowledge 
• Reset Command 

• Urgent Message Data 
To detect packet loss or to order out-of-order packets, a 

Sequence Number is provided. The whole packet, except End-
Of-Packet (EOP), is covered and checked by a CRC. 

4) Serial Transfer Universal Protocol (STUP) 
The STUP protocol, defined in [6], serves as a light 

weighted protocol with the intention to implement a more 
complex protocol, inside the data field. To define the source of 
the packet the Source Logical Address is used. Different kinds 
of data structures can be defined by the Data fields. The 
standard defines an example where the first data byte defines a 
kind of message type, which is used to interpret the left data 
bytes. Only write, read and read reply commands are offered in 
this example. 

5) SpaceWire-R 
SpaceWire-R is used for reliable data transmission within 

SpaceWire networks [7]. It is based on the GRDDP and the 
Joint Architecture Standard Reliable Data Delivery Protocol 
(JAS RDDP). SpaceWire-R provides features like 
multiplexing, message segmentation, reliable transfer, network 
traffic flow control (optional) and heartbeat signaling 
(optional) [7]. 

B. Trends in Space Systems 
Several space projects use distributed on-board computers 

to meet the increasing demands of on-board processing ability. 
The On-Board Computer - System Architecture (OBC-SA) 
consists of two on-board computers, one of which is COTS 
from Freescale’s PowerPC multicore CPU [8]. The High-
Performance Reconfigurable Computing Space Processor 
(CSP)’s hardware structure is based on both COTS and 
radiation-hardened technologies. ISS SpaceCube Experiment 
Mini (ISEM)’s hardware has two CSP boards which are 
interconnected by SpaceWire and UART [9]. CSP aims to 
offer space image processing, distributed parallel computation 
and fault tolerance [9]. The Fault-Tolerant Distributed On-
Board Computer (FTD-OBC) gains higher reliability and 
higher processing performance by multiple processing nodes 
connected by CAN buses of 1 Mbps [10]. 

III. PROTOCOL REQUIREMENTS 
Inspired by the rise of distributed computing techniques 

and advantages of SpaceWire, the project Scalable On-board 
computing for Space Avionics (ScOSA) and its predecessor 
project On-board Computer - Next Generation (OBC-NG) at 
German Aerospace Center (DLR) use COTS hardware besides 
radiation-hardened components to establish a distributed on-
board computing network, based on SpaceWire. Their goal is 
to leverage performance of a distributed architecture and still 
maintain the required reliability. 

In ScOSA, three types of nodes, High-Performance Nodes 
(HPNs), Reliable Computing Nodes (RCNs) and Interface 
Nodes (IFNs) are used (see Fig. 1). HPNs are based on a Xilinx 
Zynq XC7Z020 architecture (CPU + FPGA) while RCNs have 
a LEON3 as FPGA soft-core implementation. The SpaceWire 
router is integrated in the FPGAs of the RCNs, the HPNs and 
the IFNs. 
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Fig. 1.  ScOSA system overview 

The middleware offers monitoring, task management, 
checkpointing and reconfiguration services for the system. 
These services are coordinated by three types of roles among 
the RCNs and HPNs: Master, Observer and Worker. A global 
configuration for all nodes means the deployment of the 
Master, Observers and Workers on RCNs and HPNs, settings 
of monitoring behavior, and channels availability and 
subscriber lists of IFNs, etc. The Master is responsible to 
initiate the configuration for all nodes in the network, by 
broadcasting the configuration command. The Master also 
monitors the distributed system via a periodical heartbeat 
mechanism and a plausibility check of some control values of 
application tasks. Some internal states of the application tasks 
are periodically sent to the mass memory storage for 
checkpointing. If a node fails, the Master will trigger a system 
reconfiguration and redistribute the tasks to other nodes. After 
the reconfiguration finishes, the checkpoints will be retrieved 
from storage back to the nodes, which are running the 
corresponding tasks. Two or more Observers are assigned to 
monitor the Master. In case the Master fails, a decision will be 
made to choose one Observer to take over the failed Master’s 
tasks. 

This reconfigurable distributed system intensively relies on 
IPC. For the consideration of scalability and throughput, a bus 
topology can’t be used [11]. Nodes are interconnected with 
point-to-point links. An irregular network topology structure is 
used to avoid a single-point failure and to maintain flexibility 
[11]. 

To summarize the analysis of requirements for the ScOSA 
distributed system, the network should 

• be scalable and flexible, 
• be able to transfer arbitrary large messages, 
• have high reliability supported by redundant routes 

among nodes in case of failed nodes, 
• guarantee the reliability of messages delivery, 
• deal with message losses, 
• support monitoring, error notification and 

reconfiguration. 

IV. PROTOCOL DESCRIPTION 
The ScOSA project mainly uses the SpaceWire-IPC for the 

communication among the distributed computing nodes. The 
SpaceWire-IPC is located at the transport layer of ISO-OSI 
model [12]. SpaceWire acts as the underlying protocol (see 
Fig. 2). 
 

On-board Applications

Physical
Data Link
Network
Transport

Session
Presentation
Application

OSI Model

SpaceWire

SpaceWire-IPC

 
Fig. 2.  Protocols and OSI model 

A. Features 
SpaceWire-IPC offers communication for: 
• IPC among nodes 
• Management services from and to Master 
SpaceWire-IPC supports: 
• Multiple logical nodes on one physical device 
• Reliable transmissions of data as well as unreliable 

transmissions 
• Recognition of failed connections and failover 

mechanisms 
• Transmission of messages with arbitrary size 
• Transmission of large-size messages 
• Transparent use for different underlying protocols 
• Multiple APIs rather than only read and write 

commands 
The protocol is message-based, meaning that instead of 

streams, single messages are sent from one node to another. 
These messages can be reliable or unreliable. 

SpaceWire offers no regulation regarding the maximum 
packet sizes. SpaceWire-IPC implements a sequencing 
technique, which allows splitting large messages into smaller 
packets, with their size being user-defined. The message is 
subdivided in packets on the sender and reassembled at its 
destination node. In case of reliable message, it is a 
bidirectional packet transfer with acknowledgments. Each 
packet has a checksum to verify the integrity. 

B. Design Decisions 
This section lists and explains the message structures used 

in SpaceWire-IPC (see Fig. 3). 
 

Target SpW Address
(1 byte)

Target SpW Address
(1 byte)…...

Target Logical Address
(1 byte)

Potocol Identifier
(1 byte)

Sender Node ID
(2 bytes)

Receiver Node ID
(2 bytes)

Timestamp
(8 bytes)

Payload Data
(0 to n bytes)

EOP
(1 byte)

Message Type
(1 byte)

Checksum
(4 bytes)  

Fig. 3.  Structure of a SpaceWire-IPC Packet 
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1) Message Header 
The message header shown in Fig. 3 is identical for all 

types of messages. The header contains source and destination 
of the packet, the timestamp it has been created and the size of 
the payload. While the header stays the same, the message type 
determines the structure of the payload data. 

a) Sender Node ID and Receiver Node ID 
Sender Node ID and Receiver Node ID are the logical 

addresses of the nodes that participate in this transmission. An 
ID determines exactly one entity in the network capable of 
sending and receiving messages. This does not necessarily 
mean, that it has to be unique for each physical node (regarding 
to SpaceWire Addressing), which is connected to the network. 
A physical node can have multiple software components 
running, which are able to send and receive messages. 

b) Timestamp 
This marks the time the packet has been created. The 

timestamp, together with the sender and receiver node ID, is 
the unique identifier for a packet. 

c) Message Type 
This field determines the structure of the payload data. It 

also indicates how the receiving node should handle this 
message. The possible values are listed in TABLE I. 

One exception in this scheme is the Large Message 
Transfer. The bits 0-6 define the encapsulated message type as 
usual. The most significant bit determines if this message is 
part of a Large Message Transmission. 

TABLE I.  SUMMARY OF MESSAGE TYPES 

Integer Value Message Type 

0 Unreliable Data Transmission 

1 Reliable Data Transmission 

2 Data Request 

3 Data Response 

4 Reconfiguration Request 

5 Message Acknowledge 

6 Heartbeat 

7 Error Notification 

128+ Large Message Transfer 

 
d) Payload Data 

To stay as versatile as possible, the payload data is just an 
arbitrary-sized byte array. The structure can be derived from 
the message type. For some message types, the array has a 
fixed size, other message types have a variable-sized array of 
data. The exact structure for each data type is described later in 
this paper. 

e) Checksum 
The checksum provides a way to check the integrity of the 

transmission. As it is not guaranteed that the underling protocol 
has a mechanism to detect erroneous messages, the integrity 

check will be implemented in this protocol. The protocol does 
not dictate a specific algorithm for the checksum. The only 
restriction is, that it must not exceed the size of the 32-bit value 
provided by this field. The value of this checksum should 
consider all of the previous fields of the transmission to 
guarantee the integrity of the whole packet. 

The checksum algorithm can be selected by considering the 
mission requirements and available resources of the nodes in 
the network. An example for checksums is the CRC32 
algorithm as described in the IEEE802.3 (Ethernet) Standard. 

2) Data Transmissions 
The Data Transmission types are the central message type 

for transmitting data inside the distributed system. The data is 
handled by the protocol as an arbitrary byte array. Hence, it has 
no influence on the handling of the message. The structure and 
handling of the data is not part of the protocol and has to be 
conducted at the application level. 

The payload structure of Data Transmissions is the same 
for both, reliable and unreliable transmissions and its layout is 
shown in Fig. 4. The Data Size contains the number of 
elements of the following byte array. The data byte array 
contains the actual data. 
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Requested Configuration
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Original Message Timestamp
8 bytes

Acknowledgment Type
1 byte

 
Fig. 4.  Summary of payload structures 

Data can be transmitted in a reliable or in an unreliable 
manner. Therefore, two message types are available for this 
purpose: reliable and unreliable Data Transmission. The only 
difference between these two types is that the receiver, when 
received successfully, will acknowledge the reliable Data 
Transmission. Though, the sender can resend a packet if it was 
lost or falsely transmitted. Unreliable messages will be dropped 
when received erroneous. 

3) Data Request 
For transmitting data with the request-response method, a 

Data Request message can be sent. This message triggers the 
receiver to execute an action and send data to the sender of this 
request. 

To assign the response to the according request, the 
responding data will be transmitted with a Data Response 
message instead of a normal Data Transmission. The Data 
Response message, which is following the request, will be sent 
asynchronously. In that way, the action, which has been 
requested, can take longer time than the normal 
acknowledgment. 

The payload of a Data Request has the same structure as in 
Fig. 4. The Data Size contains the number of elements of the 
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following Data Byte Array. This array contains the data that 
will be sent to the remote node. The structure of this array is 
not specified in this protocol. The data has to be parsed at the 
application layer. 

To ensure the request will trigger an action and a data 
response, Data Requests are reliable messages, which have to 
be acknowledged. 

4) Data Response 
The Data Response is used to send data back to a node that 

has sent a Data Request message. This message will be sent 
asynchronously after the action that was triggered by the 
request has been executed. 

The payload of a Data Response has also the structure 
shown in Fig. 4. The Request Time field contains the 
timestamp of the original Data Request that triggered this 
response. The Data Size contains the number of elements of the 
following byte array. The Data byte array contains the data that 
will be sent to the remote node. The structure of this array is 
not specified in this protocol. 

To ensure the request will trigger an action and a data 
response, Data Responses are reliable messages that will be 
acknowledged. 

5) Reconfiguration Request 
The Reconfiguration Request notifies all nodes in the 

network to switch to a certain configuration. Only the Master 
node is capable of sending these requests, as it is the only 
instance authorized to define the global state of the system. 
Every other node than the Master node shall only be able to 
receive this message, but not sending it. 

Reconfiguration Requests are always transmitted reliable. 
Nodes that are not responding to a Reconfiguration Request 
have to be disabled by a new reconfiguration. 

6) Message Acknowledgment 
The Message Acknowledgment is the central element in the 

reliability mechanism of this protocol. Reliably sent messages 
will be acknowledged with this message type. The 
acknowledgment can be either a positive acknowledgment, 
notifying that the message has been received successfully, or a 
negative acknowledgment to inform the sender of the original 
message, that it arrived erroneous. 

Acknowledgments are not transmitted reliable. When an 
acknowledgment packet is lost, the original message will be 
sent again. 

7) Heartbeat 
The Heartbeat is a message type, used to check if a certain 

node is responsive. The Heartbeat itself is a request for an 
acknowledgment message. This mechanism allows a 
verification of the bidirectional communication link. The 
management instance sends out these Heartbeat messages 
periodically. 

8) Error Notification 
The Error Notification is used to inform the Master of the 

distributed system about an error that occurred. As soon as a 
reliable connection is not acknowledged, after a certain amount 
of attempts, this notification will be sent to the Master node. 
This message can also be used to notify other nodes that an 
error has occurred. 

Error Notifications will be sent reliable. This enables the 
possibility to detect whether the sending node has lost the 
connection to the network, or the erroneous node is the source 
of the failure. If this error message cannot be delivered to a 
management node it can been assumed that the node itself has 
lost its connection to the rest of the distributed system. 

9) Large Message Transmission Packet 
SpaceWire itself does not limit the packet size. But to avoid 

long blocking of paths in the network, a restriction on packet 
size is defined in this protocol. Here, the Large Message 
Transfer mechanism offers a way to split a message into 
smaller packets, which then can be sent sequentially to the 
destination node. The receiver collects all parts of the messages 
and assembles them to the original message. 

The capability to send and receive Large Message 
Transmissions is optional, if a node sends a Large Message 
Transmission to a node not capable of this feature the receiver 
shall reply with an Error Notification Message. 

The Large Message Transmission is a special message 
inside the protocol. To keep the transmission size as small as 
possible, the complete header of the original message provided 
by the sending application will be integrated into the header of 
the Large Message Transfer with the modifications that the 
most significant bit of the message type field is set and the 
timestamp of each packet is independent from the timestamp of 
the original message. 

Large Message Transmissions are always reliable 
transmissions. Every segment of this transmission will be 
acknowledged individually (either positively or negatively) 
according to the timestamp of the segment. 

C. Behavior Description 
1) Reliability 

Central paradigms of the protocol are reliable messages and 
error detection and handling. The protocol provides guaranteed 
delivery services and timeout mechanism for reliable message 
transmission. The messages transmitted follow the reliability 
mechanisms that are described as follows. 

a) Single Packet Messages 
As every message is sent independently, the reliability 

mechanisms are also applied to every single message. 
Therefore, each message that is received and has a reliable 
message type has to be acknowledged. The reliability 
mechanism is divided into three phases: acknowledgment, 
resending and error notification phase. 

Acknowledgment Phase: 
Three different cases for a sent message have to be 

considered: 
When the message was received successfully, a positive 

acknowledgment will be returned to the sender and the 
transmission is complete. 

The second case is that the message has been received 
erroneous. With help of the checksum appended to every 
message, the receiver can check the integrity of the message. If 
it was received with errors, a negative acknowledgment will be 
sent, which triggers the sender node to switch to the resend 
phase. 
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The last possibility is the loss of the message on its way 
through the network. In this case, the receiver will not send any 
acknowledgment either positive or negative. Therefore, the 
sender waits a defined time for the acknowledgment to arrive 
and if this time passes, it will switch to the resending phase. 

Resending Phase: 
When a message was not transmitted successfully on the 

first try the sender will attempt to resend it. The number of 
attempts is configurable. The sender again expects a message 
acknowledgment. If, at a certain try, the message will be 
acknowledged the transmission is completed. If the limit of 
resending is reached the system will assume that the link to the 
receiver is faulty and switches to the error notification phase. 

Error Notification Phase: 
In this phase of a transmission, it is very likely that the 

receiving node has lost the connection to the network, as it 
does not respond, although the sender has repeatedly tried to 
communicate with it. Another error could be that the sender 
itself has lost the connection to the network and could not 
communicate to other nodes. 

To check which node lost the connection and to inform the 
Master in the network about the error an error notification 
message will be sent to the Master node. 

This error notification message is also a reliable message 
but it is handled differently. This message will only follow the 
process up to the resending phase. If that phase fails, most 
likely the sending node has lost its connection to the network 
and cannot even reach the Master node. At this point, the node 
should shut itself down, to save energy and not to interfere with 
the rest of the system. 

b) Large Messages 
Messages which are too large to fit into one packet should 

be treated as Large Message. For single messages transmitting 
segments of the Large Message Transmission, the reliability 
mechanisms work as they do for normal single messages. 
Additional to the reliability mechanisms for single segments, 
there are some extensions for the Large Message Transmission. 
When receiving the last segment of such transmission, the 
application has to check that no segment is missing. A Large 
Message Transmission is only successful when all segments of 
this transmission have been received. If segments are missing, 
a negative acknowledgment is sent to initiate retransmission. 

2) Push Transmissions 
Push Transmission are following the publish/subscribe 

pattern. A producer of data can have many consumers, which 
subscribe to it. Whenever new data is available, the producer 
will send the new data to all of its consumers. 

The central points of this transmission are the two Data 
Transmission messages. Whenever a producer of information 
has new datasets, it will create a Data Transmission message 
for each subscribed node and send it. 

Depending on the requirements to the delivery of the data, 
the application can send either a reliable or unreliable data 
messages. 

3) Pull Transmissions 

The Pull Transmission follows a request-response behavior. 
It can be used to either trigger an action on a remote node of 
the network or requesting specific data from it. 

To start a request the initiating node has to send a Data 
Request message to the destination node. The request will 
always be acknowledged, which tells the requesting node that 
the request will be handled. 

The response to these requests will be transmitted with a 
Data Response message. Additional to the normal Data 
Transmission, which is used by the push transmission, it carries 
the timestamp of the requesting message with it to assign the 
response to its requesting message. 

Data Requests will be sent asynchronously to enable long 
responding times for the requested action and data. 

4) Reconfigurations 
The ScOSA system is designed to have one global 

configuration for all nodes. Therefore, the protocol has to 
provide means to distribute reconfiguration information to all 
nodes, to maintain a concise system state. 

Reconfiguration can have several reasons. One reason is the 
change to a new mission phase of the system so that the nodes 
of the network can be assigned different tasks. Another reason 
can be the failing of a node so that another node has to take 
over the tasks of the failed node. Despite the reason, all 
changes of the configuration have to be initiated by the Master 
by sending a Reconfiguration Request Message. The other 
nodes in the network are not allowed to send this request 
message. 

On reception of this message the receiving node will 
change into the so-called “reconfiguration state”. When it 
reaches this state, it will send all pending messages but does 
not accept sending new messages. Messages received in this 
state will be handled as usual. With this method, it can be 
assured that most of the messages will not get lost during 
reconfiguration. 

After a certain timeout, which has to be configured 
mission-specifically, the node will delete all of its pending 
messages, switch into the new state and go back into running 
state. 

The reconfiguration only affects the endpoint nodes in the 
network. For other network components (e.g. routers and 
switches), a proper protocol for configuring those components 
has to be chosen. In a SpaceWire network one can choose the 
RMAP Protocol [2] to configure the Routing tables. Therefore, 
the SpaceWire-IPC is implemented in that way that it does not 
interfere with other protocols for reconfiguring other network 
components (e.g. using different protocol identifiers at the 
underlying protocol). 

5) Large Message Transmission 
The Large Message Transmission is a special mode for 

transmitting messages in the distributed system. This mode of 
transmission provides a way to send encapsulated messages 
that would otherwise exceed this size restriction. Every other 
message used in this system can be encapsulated into a Large 
Message Transmission. 

Sending of an oversized message is completely transparent 
to the application whatever transmission (normal or large 
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message transmission) is needed. The protocol implementation 
automatically determines if it is needed to send the message as 
Large Message Transmission depending on its size. 

The size of one single packet must be defined between all 
nodes in the network uniformly. The data itself will be handled 
as an array of bytes. 

The sender first assigns a unique transmission ID to this 
data and then separates the array into segments. These 
segments will then transmitted with the same Transaction ID 
and the corresponding sequence number. The sequence number 
is used to calculate the offset of this segment in the array. 

On the other end of the connection, the receiver will 
provide a special handling of incoming Large Message 
Transmissions. Instead of notifying the application for every 
received packet, the handler will collect all the parts belonging 
to this Large Message Transmission according to the same 
transmission ID and the same Sender ID. 

After receiving all parts of a transmission, the handler will 
reconstruct the encapsulated message and then send it to the 
normal handler where the original message will be handled 
transparently. 

D. Integration with SpaceWire 
The SpaceWire Specification allows custom protocols to be 

transported as payload. Therefore, a field in the header is 
reserved to specify the used protocol [1]. 

The SpaceWire Protocol supports two addressing modes, 
logical addressing and path addressing [3]. Both methods are 
possible with SpaceWire-IPC, but for simplicity, only logical 
addressing is supported by now. 

The Node ID will be mapped to a SpaceWire logical 
address with the following pattern. The least significant byte 
will be directly mapped to the SpaceWire Address. The most 
significant byte will then determine the service running on this 
node. This mapping limits the maximum addressable services 
to 256 services per physical node and 256 physical nodes 
connected to the SpaceWire Network. 

V. PROTOCOLS ASSESSMENT FOR RECONFIGURABLE 
DISTRIBUTED ENVIRONMENT 

In this section, SpaceWire-IPC and other SpaceWire based 
protocols mentioned in Section II are assessed focusing on IPC 
in distributed on-board computers. 

Although reliable communication in RMAP can be 
established by requesting acknowledgments, the protocol does 
not fit completely into the requirements for our distributed 
system. In detail the lack of distributing timestamps and 
especially heartbeats is a problem. Additionally, fragmentation 
of large data is not supported by RMAP. Besides this, a 
specific reconfiguration message type is required to modify the 
state of the distributed system. 

The CCSDS PTP only serves as a frame for more complex 
protocols without providing properties like data validity checks 
or reliable data transfers, which are required for our distributed 
system. 

Packet types of GRDDP are defined. However they are 
insufficient to cover all requirements given by ScOSA, such as 
the lack of error notification or reconfiguration handling. 

For STUP, data retransmission, segmentation of large 
messages and flow control need to be implemented explicitly 
by application users. Therefore this protocol does not cover any 
of our requirements related to IPC communication. 

Although SpaceWire-R supports reliable data transmission 
and heartbeat, it does not include any message types for error 
notification and reconfiguration. The pull request is not 
implemented within this protocol. SpaceWire-R can only send 
reliable data and lacks the unreliable data transmission. This is 
necessary for high-frequency transmissions, where new data 
will arrive quickly, and losing some packets is considered 
uncritical. Although, it shares some concept with the 
SpaceWire-IPC protocol, it is still not fully suitable for the 
ScOSA use case. 

TABLE II summarizes these SpaceWire based protocols 
and SpaceWire-IPC in terms of features of IPC. As it can be 
seen from TABLE II, RMAP, CCSDS PTP, GRDDP, STUP 
and SpaceWire-R are not targeting IPC services in SpaceWire 
networks. However, the IPC services are necessary for a pure 
COTS or hybrid reconfigurable distributed on-board 
computers. SpaceWire-IPC offers features for IPC, supporting 
monitoring, management and reconfiguration, which then can 
be implemented on higher level. 

TABLE II.  COMPARISON OF SPACEWIRE BASED PROTOCOLS 

Features 
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Data Correctness Check ×  × × × × 

Data Retransmission   ×  × × 

Multiplexing   ×  × × 
Segmentation / Large Message 
Transmission     × × 

Flow Control     ×  
Keep Alive / Heartbeat / Monitoring 
Support     × × 

Reconfiguration Support      × 

Error Notification to Manager      × 

Publish /Subscribe      × 

Request-Response ×   ×  × 

 
With SpaceWire-IPC, Data Request, Data Response or 

Data Transmissions can be used for application data exchange 
and to request or to publish state values for plausibility checks. 
Applications can set the timestamp for data transmission and 
let SpaceWire-IPC take care of the sending timestamp. 
Heartbeats can be used by the Master to monitor the whole 
distributed network and by Observers to monitor the Master or 
Observers of higher priorities. Message Acknowledgment is 
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for reliable data transmission and detecting failures of a link or 
no response of a node. Reconfiguration Request can be used 
for initial configuration, reconfiguration due to failures and 
reconfiguration for new-phase missions. Error Notification is to 
inform Master the error reason for FDIR. Large Message 
Transmission can meet the increasing demands of image 
processing on-board for earth observation activities by 
transferring raw large images to several nodes for parallel 
processing. 

VI. CONCLUSIONS 
In this paper we presented the SpaceWire-IPC for 

reconfigurable distributed on-board computers. With this 
protocol, SpaceWire networks can support IPC for distributed 
computing on a spacecraft. We highlighted the reconfiguration 
feature supported by the SpaceWire-IPC, which enables COTS 
hardware to be used on-board with reliability and fault 
tolerance. With COTS nodes, high performance demands can 
be enhanced for future applications. 

Because the SpaceWire network is not fully integrated yet, 
it will be part of the ScOSA project to address this issue and to 
embed the introduced SpaceWire-IPC. Besides the physical 
implementation of a SpaceWire network and the proposed IPC 
protocol, it is also required to provide software driver support 
for all peripheries depending on the selected operating system. 

After implementation, the measurement and performance 
analysis will be carried out. 
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Abstract—SpaceWire is a new bussing technology 

provided by European Space Agency. SpaceWire enhances 

the functions of error detection and error recovery 
[1]

. 

Considering the application background, the reliability of 

SpaceWire network must be guaranteed. The paper 

develops a new hot back-up method for improving the 

reliability of SpaceWire network. The method uses the one 

of the reserved bits of time-code in SpaceWire to shift 

working mode of the SpaceWire router to realize the hot 

backup function and enhance the reliability of the 

SpaceWire network. 
 

Index Terms—SpaceWire, SpaceWire router; reserved 

bits of time-code；reliability; hot backup;  

I. INTRODUCTION 

SpaceWire (referred as SpW) bussing technique has high 

speed (2MB/s-400MB/s), full-duplex and point-to-point serial 

data communication link and well EMC characteristics. It was 

applied to the project of Rosetta spacecraft and the project of 

Mars fast train. SpW router is an indispensable part of SpW 

network, every SpW node can communicate with another 

node through router 
[2]

. In a SpW network, SpW time-codes 

provide a means of distributing time information across a 

SpW system. Time can be distributed across a large network 

with relatively low jitter. According to SpW standard, not all 

time-codes are used, there are two bits reserved for the future 

applications if the standard needs further development. 

Due to the special application background of aerospace, 

the requirement for reliability of the link communication is 

very high. Hot backup redundant network is a direct and 

effective way 
[3] [4] [5] 

to guarantee reliability of network. In this 

paper, a method of hot backup function of SpW network 

redundancy with SpW router IP core is proposed by studying 

SpW standard and protocols. Based on one reserved time bit, 

the method can switch the SpW router working mode in the 

case of link failure. By doing so, the network can still ensure 

the normal communication function when the link failure 

occurs. 

II SPACEWIRE OPERATION MECHANISM 

A. Time-Code 

In the SpW standard, the time-code is defined and the 

transmission priority of time-code is the highest, which is used 

to guarantee the whole network time synchronization. The 

time code is used to distribute system time over a SpW 

network, which comprises ESC followed by a single data 

character holding six bits of the system and two reserved bits 
[6]

, as shown in Figure 1: 

 
Fig 1 time-code structure 

B. The relation between time-code and time-slot 

The time interval between the two valid time codes in the 

SpW standard is defined as a time-slot. 

The relation between time-code and time-slot is shown in 

Figure 2
[7]

:  

 
Fig 2 the relation between time-code and time-slot 

When the network is running, the main control node 

sends the time-code across the SpW network. SpW router 

receives an effective time-code, updates the internal time-code 

counter and sends to all the nodes connected to it. The node 

receives the time-code sent by the SpW router, which means 

the beginning of a time-slot. If the SpW schedule is assigned 
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to a node time-slot, and the value of the time-slot is the same 

as the value of the time-code, the device can send data 
[8]

. 

III RESEARCH AND IMPLEMENTATION OF 

REDUNDANT HOT BACKUP 

Due to the strict load requirements, the space mission is 

more suitable for the  high utilization of hardware resources of 

the hot backup. 

In the paper, the SpW network hot backup method is 

used to realize the redundancy, which makes the reliability of 

SpW network improved. The structure of the redundant 

scheme is shown in Figure 3
[9]

. 

 Fig 3 SpW redundancy hot backup network 

In Figure 3, SpW network contains two routers that are 

router 1 and router 2. Each node in the network has two SpW 

interfaces, A and B. Through the link between interface A and 

router 1, a sub network A is formed. Likewise, a sub network 

B is formed. When the network is operated, the two interfaces 

of each node and the two routers all are turned on the full 

function. 

The SpW router has link status register and time-code 

enable register 
[10]

. The link status register can record and store 

a real-time SpW link state. Time-code enable register in the 

router controls where the received time-code goes, so that the 

router can forward the specified time-code to the appointed 

node. At work, the SpW link state can be read by the router 

link status register. For example, when a port link of router is 

disconnected, the information will be recorded by the port link 

status register in real-time. 

A. Method for realizing SpaceWire network redundancy hot 

backup 

Based on the research of SpW router and SpW standard, 

a platform of System on Chip (referred as SoC) system is 

developed in order to realize the SpW network redundancy hot 

backup. The structure of SoC system is shown in Figure 4, 

including the AXI-Lite bus, MicroBlaze processor and chip 

RAM, etc. The SpW router link register and time code enable 

register are connected with the SoC system through the SpW 

interface controller. When they are connected to the SoC 

system, they can pass data information into the MicroBlaze 

processor through the AXI-Lite bus. By reading the link state 

recorded on the link register, the processor judges the link 

failure in real time. When the link failure is judged, the 

processor will find a way to solve the problem based on the 

pre-designed algorithm to eliminate the fault, thus to ensure 

the normal operation of the SpW network system. 
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 Fig 4 the structure of SoC system 

B. SpaceWire network redundancy hot backup operation 

mode 

In SpW standard, SpW time-code reserved bits T6 and T7 

are not used. The proposed method uses one of the reserved 

bits which could be T6 or T7. For discussion convenience, T6 is 

used.  

The operation mechanism is described as follows:  

The nodes on the SpW network are divided into two 

groups. Every node in each group only communicates with the 

node in the same group. As shown in Figure 3: node 1, node 2, 

node 3, node 4 are assigned to the sub network A, which 

receives the T6 for 1 of the time-code as valid; node 5, node 6, 

node 7 are assigned to the sub network B, which receives the 

T6 for 0 of the time-code as valid; There is no communication 

between the sub network B and the sub network A.  

When network is operated, the main control node 

broadcasts time-code to all nodes on the network through both 

A and B interface. When there comes a new time-slot, each 

interface sends a couple of time-code, which has same system 

time value (T0~ T5), but T6 are 1 and 0 respectively. While, 

router 1 forwards the time-code which T6 is 1, driving sub 

network A; router 2 forwards the time-code which T6 is 0, 

driving sub network B. The nodes in sub network A exchange 

data through router 1, and the nodes in sub network B 

exchange data through router 2. So far, network identification 

and the partition function can be achieved through the 

difference of time-code reserved bit T6. Two routers drive sub 

network A and B according to the mode setting, two sub 

networks work independently according to the pre-designed 

schedule. 

C. Failure diagnosis and solution 

To illustrate how the link failure is diagnosed and solved, 

the paper discusses three typical link failure cases.  

Case A: one or multiple effective link failures in the same 

sub-network occur, as shown in figure 5. The effective link 

here refers to a link with the same label as the network 

identified in the normal operation, such as the link A in the 

network A. 
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Case B: one of routers is broken or all link failures 

existing in the same sub network, or the link between the main 

control node and the router is broken, as shown in figure 6. 

Case C: there are both the effective link failures and the 

redundant link failures, but the failure doesn’t occur in the two 

links which are connected with the same node, as shown in 

figure 7. 
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Fig 5 link failure-case A 

For case A, assuming the link between the node 1 and the 

router 1 is broken. When such fault happens, the connection of 

node 1 with router 1 through interface A is broken, but the 

link between node 1 and router 2 through interface B is still 

normal. Under such a condition, to keeping the data 

transmission operates normally, the operation mode of each 

router is switched.  

The detailed operation mechanism is described as follows: 

the SoC system judge the fault through the link state register   

that is in the router 1, then it will change time code enable 

register, making router 1 send the time code in which  T6 is 0, 

and at the same time, router 2 send the time code which T6 is 1. 

By doing so, the operation mode of router is switched and the   

data flow can bypass the fault link, which will not affect the 

two sub networks.  

For case B, assuming the router 1 is broken. 
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Fig 6 link failure-case B 

When the fault status B appears, router 1 fault causes sub 

network A to be paralyzed, so any sub network could not 

continue to transmit data through router 1. To keep data 

transmission, router 2 must take the work of the router 1. Two 

sub networks integrate as one network. Under such a case, 

SoC system could not read the link state through the router 1, 

thus judge router 1 has something wrong. SoC system will 

change Router 2 operation mode, enabling router 2 can 

forward    for 0 of the time-code and    for 1 of the time-code. 

All nodes are in the sub network B and data exchange is 

carried out through the router 2. In this way, there are two sets 

of scheduling tables at the same time in sub network B. If two 

or more nodes need to send data in the same time slot, 

competition for the link bandwidth is required. This will result 

in router load increment, reducing the efficiency of the entire 

network.  
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Fig 7 link failure-case C 

For case C, assuming that link A between node 1 and 

router 1 is broken, and link B between node 4 and router 2 is 

broken. When such a fault occurs, the solutions for case A and 

case B could not be used to restore the data transmission 

between node1 and node 4. The method against this kind of 

fault is that SoC system reads link state through the related 

link status register of router 1 and router 2, diagnoses the fault, 

enables both router 1 and router 2 to forward time code with 

T6 is 1 or 0.  With this approach, nodes in sub network A can 

again receive the time code with T6 is 1, and so do nodes in 

sub network B again receive the time code with T6 is 0. 

IV SPACEWIRE ROUTER TRANSMIT TIME-CODE 

SIMULATION 

In order to verify if SpW router can transmit 

corresponding time-code according to link state register and 

time-code enable register state, some simulations were done. 

Considering the situation of two nodes connected with a 

router, a simulation is carried out. Where node a as the main 

control node that is responsible for sending the time-code to 

SpW router, node b as the slave node that is responsible for 

receiving the time-code, transmitted by SpW router. 

The simulation results are shown in figure 8, figure 9 and 

figure 10. 

 
Fig 8 Simulation result for transmitting T6 is 0 

 

Fig 9 Simulation result for transmitting T6 is 1 
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Fig 10 Simulation result for transmitting T6 is 0 or 1 

In figure 8, figure 9 and figure 10, control_flag_in_a are 

the reserved bits T7, T6, sending by the main control node. 

time_in_a is the time-code effective value T0-T5 sending by 

the main control node. time_in_b is the time-code effective 

value T0-T5 received by the slave node b through SpW router. 

control_flags_in_b is the reserved bits T7, T6 received by the 

slave node b. sum is SpW router time-code enable register. 

When sum is ‘00’, T6 is 0 can be transmitted through the SpW 

router, T6 is 1 could not be transmitted through the SpW router. 

When sum is ‘01’, T6 is 1 can be transmitted through the SpW 

router, T6 is 0 could not be transmitted through the SpW router. 

When sum is ‘10’, no matter T6 is 0 or 1 can be transmitted 

through the SpW router. 

As shown in figure 8, sum is always ‘00’, time-code can 

only be transmitted when control_flags_in_a is ‘00’. When 

control_flags_in_a is ‘01’, time-code did not be transmitted. 

As shown in figure 9, sum is always ‘01’, time-code can 

only be transmitted when control_flags_in_a is ‘01’.When 

control_flags_in_a is ‘00’, time-code did not be transmitted. 

As shown in figure 10, sum is always ‘10’, time-code can 

be transmitted when control_flags_in_a is ‘00’ or ‘01’. 

From this, it is proved that the method in this paper is 

feasible. 

V RELIABILITY ANALYSIS 

The combination of SpW redundancy hot backup 

network concept and the idea of application of a reserved 

time-code bit improve reliability of SpW network system. To 

prove this, some reliability comparisons are made among three 

operation modes: a SpW network without a hot backup, a 

SpW network with a cold backup, a SpW network with a hot 

back up. The result is shown in table 1. 

In order to facilitate the reliability analysis, it is assumed 

there is only the link failure in a SpW network. Suppose that 

there are 6 nodes in this network. Suppose a single link failure 

rate is P in the system, and the probability of all link having 

failure is 0. 

TABLE 1 RELIABILITY ANALYSIS 

 The number 
of Links 

One Link 
Failure 

Two Link 
Failure 

Three Link 
Failure 

No Backup 

Network 
6 Work 

un-properly 

Work 

un-properly 
work  

un-properly 
Cold Backup 

Network 
12  Still work 

properly 

Check  

Note 1 

Check  

Note 3 

Hot Backup 
Network 

12 Still work 
properly 

Check  
Note 2 

Check 
Note 4 

 

Note 1: there are two cases of link failure in cold backup 

network. (1) Failures occur on the working link or backup link. 

(2) Failures occur on the working link and backup link 

respectively. For the former, the system is not affected .For 

the latter, the system does not work properly. The network 

failure rate is calculated based on the above assumptions is 

  =
（  

    
    

 ）

   
     （   ）

  
=  

 

  
    （   ）

  
 

(1) 

Note 2: there are two cases of link failure in hot backup 

network. (1) Failures occur on the working link or backup link. 

(2) Failures occur on the working link and backup link 

respectively. For the former, the system is not affected. The 

network can work normally and can work under the dual 

network mode without damaging the performance. For the 

latter, two situations might happen: 1. Faults occur on 

different links of different devices. The network can work 

normally, but with sacrifice of the dual network performance. 

2. Fault occurs on the two links of the same nodes. The 

network could not work properly. The network failure rate is 

calculated based on the above assumptions is  

  =
  
 

   
   

  （   ）
  

=
 

  
    （   ）

  
 (2) 

Comparing the formula (1) and formula (2), a conclusion 

can be drawn that reliability of a SpW network with a hot back 

up is 6 times higher than the reliability of a SpW network with 

a cold backup. Figure 11 also shows the comparison result of 

reliability of the above operation modes. 

 
Fig 11 the comparison between P1, P2 

Note 3: There are three link failures but analysis is as 

same as note 1’s.  When a fault occurs on a working link or a 

backup link, the network can work properly. Otherwise, it will 

not work properly. The network failure rate is calculated based 

on the above assumptions is 

  =
（   

    
   ）

   
     （   ）

 
= 

 

  
    （   ）

 
 (3) 

Note 4: Similar to the note 2. When the fault occurs on 

the two links of the same device, the network could not work 

properly. Otherwise, they are able to work properly. The 

network failure rate is calculated based on the above 

assumptions is  

  =
（  

     
 ）

   
     （   ）

 
= 

 

  
    （   ）

 
 (4) 

Comparing the formula (3) and formula (4), it is obvious 

that reliability of a SpW network with a hot back up is 3 times 

higher than the reliability of a SpW network with a cold 

backup. Figure 12 also shows the comparison result of 

reliability of the above operation modes. 
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Fig 12 the comparison between P3, P4 

In conclusion, the hot backup network through the 

network switch has the better reliability than other two 

operation modes.  

VI COMPARING WITH OTHER SCHEMES 

Besides the method introduced in the paper, there is 

another one for realizing the SpW hot backup redundancy 
[11]

. 

That paper proposed that the main control node detects link 

fault in each sub network by sending RMAP package to read 

the link state of router, combined with the control of time-

code reserved bit, achieving SpW hot backup redundant 

network. There are some deficiencies in that approach: (1) 

there is an additional work for the main control node, reducing 

the efficiency of data link and it is easier to cause link 

congestion. (2) Network monitoring and network switching 

function is not achieve by the router. It will make the network 

more complex, which is not good for the implementation of 

improving reliability of network. 

The approach in this paper greatly reduce the workload 

of main control node since it does not require the main control 

node sending the RAMP packet to read the link state of router 

and determine the sending time-code. The removal of RMAP 

packets transmission also mitigates the burden of the main 

control node, improving the link utilization for network 

application.  

VII CONCLUSION 

The paper introduces a method to realize a hot back up 

redundant SpW network. It also improves the reliability of 

SpW network by combining the characteristics of SpW time 

code concept and SpW-D technology. Research and analysis 

show that the method is useful and effective and achieves the 

higher network usage efficiency in working state. When a fault 

occurs in the network, the system can respond to a variety of 

fault conditions through the corresponding measures, and 

recover the data transmission in the network, ensuring the 

accurate and reliable work of SpW network. 
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Abstract— JUpiter ICy moons Explorer (JUICE) is the first ESA 
large-class mission aiming at the exploration of Jupiter and three of 
its largest moons, Ganymede, Callisto and Europa. The JUICE 
payload suite counts 10 instruments, 9 of which are interfaced with 
the On-Board Computer (OBC) and Solid State Mass Memory 
(SSMM) using a SpaceWire (SpW) network both for science data 
and command & control traffic. JUICE requirements favor the 
adoption of SpaceWire ECSS protocol standards in a layered 
architecture fashion. With regards to the time synchronization and 
distribution, the “High Accuracy Time Synchronization over 
SpaceWire Networks” draft protocol specification (developed within 
the SpaceWire Working Group) has been analyzed and tailored to 
meet JUICE needs. The paper presents the rationale behind the use 
of the SpW TDP, it’s tailoring and concludes with lessons learned 
and recommendations towards an ECSS standard document. 

Index Terms—SpaceWire, Networking, Time Distribution 
Protocol, 

I. INTRODUCTION 

Jupiter ICy moons Explorer (JUICE) is the first L-class 
mission in ESA’s Cosmic Vision Programme foreseen in 2022. 
The objective of the JUICE mission is the investigation of 
Jupiter and its icy moons, Callisto, Ganymede and Europa. It 
will address the question of whether possible habitats of life are 
provided underneath the surfaces of the icy satellites and also 
probes Jupiter’s atmosphere and magnetosphere. 

 

 
Figure 1: Artist impression of the JUICE spacecraft (courtesy of Airbus 

Defence and Space) 

 

Ten instruments have been selected by ESA for the science 
JUICE mission. They can be gathered in three main categories: 
remote sensing instruments, geophysics instruments and in-situ 
instruments. Firstly the remote sensing instruments are focused 
on observation of Jupiter and its icy moons, their surfaces and 
the composition of their atmospheres. Then the geophysics 
instruments are dedicated to the restitution of the surface relief, 
the sub-surface composition and the gravity fields restitution. 
Finally in-situ instruments objective is to provide data on the 
Jovian environment mainly on the plasma and the fields 
surrounding the moons. 

This paper focuses on the data handling subsystem between 
onboard computer (OBC), mass memory (MM) and payload 
instruments (P/L). Reliable and accurate time distribution and 
synchronization is important not only for spacecraft command 
and control but also to time tag samples of the payload 
instruments in a consistent and accurate manner. In this paper 
we discuss how the time synchronization is carried out between 
OBC and instruments over the SpaceWire network and how the 
SpaceWire Time Distribution Protocol (TDP), in line with ECSS 
SpaceWire protocol stack, has been applied as opposed to 
traditional approaches based on packet utilization standard 
(PUS) [05] private services.  

 

Figure 2 – SpaceWire protocol layers 

 
The paper presents in section II how the time distribution and 

synchronization services are applied for the JUICE data 
handling system and in section III presents the detailed tailoring 
of the SpW TDP. In section IV a brief comparison is given 
between the traditional implementation based on the Packet 
Utilization Standard (PUS) custom made service 9 and the SpW 
TDP. Section V presents lessons learned and feedback from the 

ECSS-E-ST-50-12C (Links, nodes, routers and networks)

ECSS-E-ST-50-51C (protocol identification)

ECSS-E-ST-50-53C (CPTP)ECSS-E-ST-50-52C (RMAP)

Time distribution protocol

SpW Time-Codes

Instrument application

ECSS-E-71-40A (PUS services)
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instrument developers on suggest improvements of the draft 
standard. Section VI presents the conclusions.  

 

II. TIME DISTRIBUTION AND SYNCHRONIZATION  

Time distribution (and synchronisation) is a function required 
by any intelligent instrument or unit and it is a task independent 
of the application-specific functions implemented by the 
instrument SW [08]. 

Figure 3: Time distribution context 

The Command and Data Management Unit (CDMU) 
distributes periodically the On-Board Reference Time (OBRT) 
over the communication network, the instrument acquires the 
time and adjusts (i.e. resets) the local time to be in-synch with 
the on-board reference time of the CDMU. 
The on-board time distribution is managed by the CDMU, which 
is also the master of the OBRT and is in charge of : 

1. distributing to the instruments (users) on the SpW 
network the value of the On-Board Reference Time 
(OBRT) being applied at the next synchronization 
pulse; 

2. distributing to the instruments on the SpW network the 
synchronization pulse used to latch the OBRT, 
previously distributed, into the local timers of the 
instrument. 

As a worst case, the period between two time synchronisation 
events is determined by the stability of the local timer part of the 
instrument. The accuracy of the distributed time is determined 
by the jitter and latency of the synchronisation pulse (e.g. SpW 
time-code). 

In JUICE the draft standard “High Accuracy Time 
Synchronization over SpaceWire Networks” [10] has been 
adopted and tailored.  

III. PROTOCOL TAILORING  

The SpW TDP provides means to increase the accuracy of the 
system time by providing latency and time-stamp services that 
in principle achieves an accuracy of less than 100ns [14]. 

The accuracy for the telemetry timestamp of JUICE 
instruments, however, is not demanding. The requirements for 
JUICE in terms of jitter and latency is 0.5us and 5us 

respectively, henceforth there is no need to provide network 
latency compensation.  

These values are by far higher than what the SpW network 
in JUICE can provide only in its basic form i.e. without adding 
compensation services provided by the protocol. Henceforth the 
protocol implementation can be “lighter” based only on this fact. 
It should nevertheless be stated that to utilise the high accuracy 
features of the SpW TDP protocol the SpW CoDec’s themselves 
has to be able to accept and respond to distributed interrupts, a 
feature that will be introduced in the revision 1 of the SpW 
Standard. 

One important consideration to take in to account as well, is 
that not all instruments support SpW RMAP hardware (HW) 
implementation. This requires the SpW TDP protocol services 
to be implemented in software. Thus, it puts limitations on what 
protocol features are possible to implement.  

Many available LEON3 ASICs (GR712RC, EPICA-NEXT) 
include HW implementations of RMAP but don’t support SpW 
TDP. HW support of RMAP is beneficial as it avoids complex 
protocol functions related to the RMAP to be implemented in 
SW.  

Another consideration to take in to account when tailoring 
the protocol is that some platform units are FPGA-based i.e. not 
PUS terminals which allows the SpW TDP to be fully 
implemented in HW or SW.  

 
The above considerations gave the incentive to tailor the 

SpW TDP as follows:  
 
Mandatory services: 
• Time Command Service (clause 5.2.4, [10]) 
• Initialization/Synchronization Service (clause 5.2.6, 

[10]) 

Figure 4: Time Command sequence  

Figure 5: Time Synchronization sequence 

 
 
 
Optional services: 

CDMU 
Time Distribution 

Initiator 

OBRT SpW 

Instrument 1 
Time Distribution 

Target 

Local 
Timer SpW 

Instrument N 
Time Distribution 

Target 

Local 
Timer SpW 

SpW Network 
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• Status Service (clause 5.2.3, [10]) 
• Datation Service (clause 5.2.5 [10]) 
 

Hardcoded functions of the timing service:  
• SpW time-codes are mapped on the LSB of CCSDS 

Unsegmented Code - Coarse Time 
• SpW time-code distributed every second from OBC 

Figure 6: Format of the CCSDS CUC code. 

 
In relation to the RMAP protocol, which the SpW TDP uses 

as foundation, the following minimal RMAP services are 
required:  

• Write non-acknowledged, non-verified to target 
(clause 5.3, [03]). 

• Read command to target (clause 5.4, [03]). 
 

IV. SPW TDP AND PUS 9 

Prior to JUICE, some ESA missions customised ECSS-E-
ST-70-41a [05] (PUS) service 9 for the implementation of a 
SpW time distribution protocol. This choice was also dictated by 
the lack of a dedicated sub-network protocol [08] that defined 
time distribution over the SpW network. 

The current section provides a comparison between the 
custom PUS 9 “protocol” used in previous missions and the 
SpW TDP tailored for JUICE. 

 
Flight heritage: At present only reference implementations 

of SpW TDP[13] exists, but no SpW TDP implementation has 
yet been applied in any space mission so far. Different flavors of 
PUS 9 have been used in previous science missions. Thus, from 
the perspective of flight heritage the adapted PUS service 9 
could be considered to have more of an advantage. 

Communication architecture: SpW TDP is in-line with 
recommended practices in terms of onboard data 
communication [11], [12], [13] and also provides adequate 
communication layering. While time distribution using PUS 9 
mixes application layer (TC execution) and SpW protocol layer 
(time-code). From the perspective of communication 
architecture the SpW TDP is more advantageous.  

Implementation complexity: SpW TDP requires one 
periodic RMAP write command (Time Command) and one 
periodic SpW time-code (initialization / synchronization). PUS 
9 requires one periodic PUS TC (9, 132) and one periodic SpW 
time-code. From the perspective of implementation complexity 
they are considered equivalent. 

Robustness: SpW TDP control field identifies which SpW 
time-code qualifies the distributed onboard reference time value 
(OBRT). With PUS 9, there are limited mechanisms to ensure 
that the OBRT received is not latched on the wrong time-code. 

This means the OBRT value in a particular time slot is latched 
anyway at the next received SpW time-code. From the 
perspective of robustness the SpW TDP is more advantageous.  

Timing constrains: SpW TDP Time Command and SpW 
time-code can be processed immediately, typically right above 
the SpW SW driver. The PUS 9 TC has to be processed within 
the TC queue, which means its execution time depends on the 
instrument Application SW architecture. In relation to timing 
constraints the SpW TDP has a clear advantage.  

HW implementation: SpW TDP is compatible with non-
PUS terminals as it can both be fully implemented in HW and 
SW or a mix between the two, while PUS 9 can only be 
implemented in SW. From the perspective of HW 
implementation the SpW TDP is more advantageous. 

Validation effort: SpW TDP requires “new” test procedures 
and validation tests to be developed, however there are less error 
conditions to verify as opposed using PUS 9. PUS 9 can rely on 
legacy test procedures and validation tests, but there are more 
error conditions to verify. From the perspective of validation the 
effort required is perceived as being equivalent. 

 
The two protocols can be considered equivalent with regards 

to implementation complexity and validation effort. The custom 
PUS 9 has advantages in terms of heritage, however SpW TDP 
is more robust, it poses less time constrains for its execution, and 
it reflects an adequate layering of the instrument SW 
architecture. SpW TDP can also be adopted by both PUS and 
non-PUS unit on-board. 

 
 
To summarise, the SpW TDP is advantageous if compared 

to the custom PUS 9 implementation and it should be the 
preferred choice in future missions where platform and payload 
units are connected by a SpW network. 

 

V. LESSONS LEARNED & RECOMMENDATIONS  

In this section we present the lessons learned that have been 
collected so far as part of the JUICE development, aiming at 
providing suggestions for the improvement of the protocol 
document in anticipation of an ECSS standardisation. 

1. The  current draft protocol specification [10] lacks of a 
non-normative introduction that clarifies various use 
cases as well as provides architectural information about 
the protocol. Due to the missing non-normative part it is 
challenging to put the normative section in the right 
context 

2. Only the essential bit fields are described in the draft 
protocol specification [10] and a number of TBD is  still 
present. This fosters scepticism about the maturity of the 
protocol by the new adopters (e.g. instrument teams). 

3. Mandatory and optional services are not identified in the 
draft protocol specification [10]. Because the full 
implementation of the protocol with all its features is 
unnecessary complex for missions where time 
requirements are not demanding, it is recommended to 
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better clarify which services and features that can be 
considered optional. 

4. The protocol relies on SpW RMAP for the transport of 
commands and replies, without restrictions. Thus, 
although unlikely, the instrument memory integrity 
could potential be at risk in case an event causes an 
erroneous RMAP write command (used for Time 
Command) is sent and accepted by the instrument while 
in Science Mode. 

 
Henceforth, the following recommendations should be 

considered included in the writing of the future ECSS standard 
document: 

a. A non-normative section should present the context for 
the protocol to be used, use cases and a description of 
the services. 

b. The bit fields and registers defining the protocol target 
memory should be fully specified. 

c. A set of mandatory core services covering Time 
Command and Synchronization services should be 
clearly identified, leaving the latency compensation as 
optional. 

d. While keeping the RMAP structure for the 
commands/replies, it is essential to limit the required 
commands to the bare minimum and to assign to the 
SpW time distribution protocol a dedicated Protocol Id, 
in order to confine the targets accessible 
memory/register area to the Time Distribution Protocol 
registers only. 

 

VI. CONCLUSIONS 

This paper has given an overview on how the SpW TDP has 
been adopted for the JUICE mission and also given the rationale 
behind the tailoring of the draft protocol description to fit the 
needs of the mission and the constraints the instrument 
developers are faced with. The simplification/tailoring allows a 
mixed HW/SW implementation. 

 
The current draft protocol specification specifies no 

restrictions on the use of SpW RMAP for commands/replies and 
it has been strongly criticized by the users community 
(instrument teams). It is recommended that during the ECSS 
standardization process, this point is given particular attention, 
by e.g. constraining the use of RMAP for the SpW TDP protocol 
by assigning a dedicated PID. 
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Abstract—To satisfy more and more complicated requirements 

on information recording, processing, exchange etc. in newly 

developed intelligent satellites, a distributed storage system is 

designed based on SpaceWire network in satellite platform. In 

this distributed storage system, a SpaceWire router unit serving 

as the core device of star network connects several nodes, 

including onboard computers, namely, satellite management unit 

(SMU), data interface units (DIU) and other nodes like attitude 

and orbit sensors, space environment monitor instruments and 

payload controllers, etc. A certain number of standard flash 

memory modules are separately incorporated into SMU and 

DIUs to provide comprehensive data recording and exchange 

service for all nodes in the network. All memory modules are 

centrally controlled by SMU software to store authorized data in 

specific type files and retrieve data according to policies set by 

remote memory access protocol commands. Memory modules 

that can run in parallel in the distributed storage system produce 

very high data throughput, which boosts satellite platform 

capability to a great extent. Backup mechanism among memory 

modules is deployed and any module can be replaced by others 

when it meets failure, this makes the storage system robust and 

reliable. Testing and verification work performed on the 

distributed storage system shows that the system works quite well 

and also reveals its attractive effect on improving satellite 

platform efficiency. 

Index Terms—SpaceWire, network, distributed storage, 

satellite platform, memory module, throughput. 

I. INTRODUCTION 

SpaceWire constitutes switched fabric with wormhole 

routing routers, and is widely used in spacecraft programs [1-2]. 

With flexible topology and simple interface, it offers network 

expansion and devices integration lots of conveniences. SpW 

data rate in range of 2Mbit/s-400Mbit/s as well as bidirectional 

full-duplex technology covers most transmission needs 

onboard except for some very high speed sensors. Thus 

SpaceWire is of notable advantage on satellite platform 

speedup and strengthening. As processing ability of onboard 

electronics grows quickly in the past few years, newly designed 

intelligent satellites deploy more complicated functions such as 

autonomous health management, mission planning and system 

reconfiguration [3-4], which demand satellite platform to 

support concurrent and deterministic data record and retrieval 

service for mass and miscellaneous onboard data. Conventional 

mass memory unit specializing mainly in high speed payload 

data recording and downlink data transmission with dedicated 

interface and protocol, can hardly adapt to the complex satellite 

platform applications. Nowadays modular avionics technology 

has been applied in spacecraft platform and flash memory 

modules are incorporated in onboard computers e.g. satellite 

management unit (SMU) and data interface units (DIU). Since 

the rate and capacity of single memory module is limited, a 

distributed storage system is designed based on SpaceWire 

network in this paper. In this newly-designed system, SMU, 

DIUs and other nodes such as attitude and orbit sensors, space 

environment monitor instruments and payload controllers, etc. 

are connected to the central router unit of star shape SpaceWire 

network, which provides real-time data transmission paths for 

all nodes in the network. A certain number of standard flash 

memory modules are separately incorporated in SMU and 

DIUs to provide comprehensive data record and exchange 

service for all nodes in the network. SMU software configures 

routing tables of SpaceWire network and controls work mode 

of all memory modules by remote memory access protocol 

RMAP commands [5], in this manner the network data flows 

are appropriately routed to and from memory modules based 

on balance and deterministic principle. Multiple memory 

modules in the storage system working together provide large 

capacity and high data throughput performance, and that is 

configurable in wide range by incorporating certain number of 

memory modules and setting flash chip number on single 

memory module. The backup and replacement strategy among 

memory modules make the distributed storage system robust 

and reliable, suitable for harsh space environment application.  

II. ONBOARD DISTRIBUTED STORAGE SYSTEM  

A. Drawbacks of Conventional Mass Memory 

In satellites platform single solid state mass memory 

(SSMM) equipment is ubiquitously deployed. It connects to 

scientific payloads and onboard computer with dedicated input 

and output ports, through which high rate scientific data and 

low rate housekeeping data are collected. All recorded data is 
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Fig. 1.  Distributed storage system architecture 

only sent to formatter and encoder unit for downloading to 

ground station. The architecture and interfaces are designed to 

work in fixed mode without openness, which makes the system 

hardly accommodate different mission requirements with 

simple configuration, but often a large amount of redesign 

work. And because all recorded data can only be sent to ground 

for processing, onboard data indexing, retrieval and utilization 

cannot be supported, thus advanced onboard data processing 

and analysis tasks in new satellites are constrained.  

As onboard processing ability has been enhanced in new 

satellites, the platform is required to provide more efficient and 

flexible data record services to support new tasks. In mass 

memory device aspect, standard interfaces and comprehensive 

functions are mainly concerned. And high speed bidirectional 

communication network that connects mass memory and user 

nodes together is expected at system level.  

B. Distributed Storage System Architecture 

SpaceWire has been widely adopted in satellite data 

management system to provide universal communication 

standard among onboard computer, solid state mass memory, 

payload instrument, etc. Many SpaceWire data system includes 

one SSMM equipment to fulfill all data record functions which 

indeed achieves high integration level, but on the other hand 

increases the equipment complexity. Multiple users’ accessing 

to the common mass memory device also produces low 

efficiency problem. Furthermore, with one SSMM will take 

high single point failure risks such as power module 

breakdown, which may greatly affect the whole satellite 

mission. 

The distributed data storage system is constructed based on 

SpaceWire network as shown in Fig. 1. Several onboard 

computers and other data processing nodes are all connected 

onto SpaceWire network and SpaceWire routers provide 

dynamic data transfer channels for all nodes. General mass 

memory modules are integrated in each onboard computer, and 

all memory modules on SpaceWire network form distributed 

storage architecture. This architecture achieves a number of 

advantages: 1) since onboard computer is designed in avionics 

modular manner, memory modules can be easily added into 

computer and communication between processor and Flash 

mass memory is simply accomplished on backplane bus. 2) 

Multiple memory modules in the system can work in parallel 

mode, this provide higher data throughput than single mass 

memory equipment. 3) Total memory capacity in the 

distributed system can be well customized by changing 

memory module number and memory capacity on each module 

without influence on other parts. 4) Single point failure is 

eliminated by distributing memory modules in different 

computers, making the system more robust. 

C. Integrated Data Services 

Storage system in satellite platform works as an 

infrastructure, providing interactive data service, downlink data 

service and uplink data service to satisfy diverse data recording 

and utilization needs onboard. Interactive data is recorded in 

mass memory modules after generation and transferred to 

onboard processing nodes on demand through SpaceWire 

network. Downlink data includes experiment data, engineering 

telemetry, event report, etc. These data are written into 

different mass memory modules with high resolution and 

downloaded to ground station for further analysis and health 

diagnosis. Uplink data including application images and 

patches, algorithm datasets, model library, etc., are sent to 

satellite from ground station through high speed upward 

channel. These data are firstly recorded in mass memory 

module installed in SMU and then forwarded to target user 

nodes in packet format through SpaceWire network. Due to the 

general interface of storage system, other data application 

mode can also be supported, e.g., downlink data being 

transmitted to onboard processor for preprocessing, uplink data 

being transferred on to 1553B bus for remoter terminal 

updating. When data is transmitted to low speed node, mass 

memory module in distributed system can tune packet interval 

to adapt, avoiding blockage in routers.  

D. Data Transfer Protocol 

Data transferred in the distributed storage system is 

categorized into two types. The main type is user application 

data that user nodes write into or read from mass memory 

modules. The other type is management data used for mass 

memory modules work mode control and state management, 

including commands of file operation like creation, deletion, 

close etc., or file write pointer, read pointer and other file 

information. 

i) User Data Transfer Protocol 

User data transfer protocol is designed by taking into 

account various factors: 1) Onboard data is primarily recorded, 

transferred and processed according to frame format defined by 

CCSDS standard. 2) Data write and read operation is based on 

flash page size in mass memory modules for high efficiency 

and low complexity. 3) Data flow in SpaceWire network is 

encapsulated into packets. Short packets reduce transfer 

efficiency, while very long packets increase network latency. 

Taking all these issues into account, the simple serial transfer 

universal protocol (STUP) is used to transfer user data in 
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Fig. 2.  User data transfer protocol packet format 
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Fig. 3.  Modular onboard computer hardware architecture 

distributed storage system [6]. Protocol packet format is shown 

in Fig. 2. 

The three bytes length packet header consists of target node 

logical address, STUP protocol identifier and source node 

address, each occupies one byte. Packet cargo is composed of 

two bytes length data type identifier and a complete AOS 

transfer frame defined in CCSDS advanced orbiting system 

standard [7]. The fixed AOS transfer frame length is restricted 

below 1020 bytes and should be shorten when error correction 

encode is applied. Data type identifier is a tag for data cargo 

and is always recorded and transferred with AOS transfer 

frame. First byte of data type identifier is used to distinguish 

data according to main attribute, including scientific data, 

telemetry data, software image data, etc. Second byte is used as 

subtype identifier for each class of data. It is defined by data 

source node according to application needs. When a packet is 

received at a node, node application chooses data processing 

method according to data type identifier in the packet. In mass 

memory module data can be recorded in different files based 

on type identifier. At the end of protocol packet is an EOP 

character. 

ii) Management Data Transfer Protocol 

Management and configuration of mass memory modules 

and SpaceWire network is of significance in distributed storage 

system. Configuration and polling of SpaceWire router 

registers is implemented with general remote memory access 

protocol (RMAP), providing CRC verification and reply 

acknowledgement to assure reliable communication. 

Considering data reliability and commonality of application 

software design, the interface of mass memory module 

controller is similarly designed according to RMAP protocol. 

Data files management and access control are realized with 

RMAP command. File management commands include open, 

read, write, append, seek and close, etc. File access service 

support indexing data based on time or type, replaying data to 

SpaceWire node with specified logical address, inquiry of file 

information, etc. When mass memory module receives a 

RMAP command from SpaceWire network, command is 

verified and execution state is returned to source node, the 

result is also included in module telemetry. 

III. MODULAR ONBOARD COMPUTERS  

A. Hardware Architecture 

Onboard computers are designed based on avionics 

modular architecture and a whole computer is assembled with 

standardized modules, such as processor module, mass 

memory module, telemetry module, pulse command module, 

etc. SMU and DIU are generated by integrating different group 

of modules according to functional demand. Modules in a 

computer communicate with each other through CPCI bus on 

backplane. Processor module acts as master node and is in 

charge of bus communication management, mode control and 

heath care of other modules. Processor module and mass 

memory module in a computer are regarded as independent 

smart node because both of them need to communicate with 

other SpaceWire nodes in the distributed system. Relying on 

the high speed backplane bus the two modules are designed to 

share one SpaceWire interface controller (AT7910), as shown 

in Fig. 3. SpaceWire controller is placed on mass memory 

module and directly connected to the FPGA with two extern 
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Fig. 4.  Distributed storage system prototype for test 

port EXT_9 and EXT_10. The FPGA interfaces with 

backplane CPCI bus and provide a bridge for processor 

application to access SpaceWire network. As CPCI runs at a 

rate of 32bit by 33MHz, it completely covers the demand from 

processor to SpaceWire network. This architecture enhances 

hardware efficiency and assures commonality of processor 

module, giving convenience to computer upgrade.  

B. Communication Protocol 

Processor module and mass memory module are 

independent nodes in SpaceWire network and each of them is 

assigned a unique logical address for packet addressing. 

Packets transferred between processor module and other nodes 

far in the network have to be forwarded by mass memory 

module FPGA controller. FPGA also deal with packets that 

processor applications write into or read out from FLASH 

memory on the module. To manage the four direction data 

flows, a simple small router is implemented in FPGA base on 

logical addressing principle, complying with SpaceWire 

standard. When FPGA receives packet from SpaceWire port it 

analyses the first byte logical address and direct packet to 

processor module through backplane bus interface or to 

internal control logic base on address matching result. If logical 

address is invalid, then the packet is discarded. The packets 

FPGA received from CPCI backplane bus are compatibly 

designed in SpaceWire packet format. When the first byte 

address points to mass memory module self, then packet is 

move to FPGA internal control logic or it is forwarded to 

SpaceWire port. With the uniform design of protocol format on 

backplane bus and distributed network, processor applications 

can easily access mass memory resources in or out the 

computer through one standard interface. 

IV. FAULT TOLERANT APPROACH 

Since storage system for satellite platform is required to be 

with high reliability, multilevel fault-tolerant approach is 

supported in this distributed storage system. By distributing 

several mass memory modules in different computers, namely, 

SMU and DIU, failure risks in the system are reduced. Each 

modular computer can accommodate more than two mass 

memory modules and provide redundancy and expansion 

ability, and multiple module parallel work mode produces 

better throughput and latency performance. Each mass memory 

module provides standard interface and is able to be substituted 

by other mass memory modules in case of failure or to replace 

any other faulty mass memory module. By dynamic 

configuration of SpaceWire network routing tables, data 

transfer channels to mass memory modules can be redirected, 

and specific RMAP command is design to update the logical 

address of mass memory module online, these approaches 

make the module replacement task easy to be accomplished. 

SpaceWire network is the backbone of distributed storage 

system, all nodes, links and routers in the network are dual 

redundant. Network controller is implemented in SMU 

processor application to monitor network heath state and 

realize fault detection, isolation and recovery (FDIR). 

SpaceWire network routing tables are designed based on 

network physical topology and stored in application library. At 

startup, network controller initializes all routers in the network 

using data in the library. In operation period, it checks routing 

tables and other control registers in the network periodically. 

When a single event upset fault is detected, then the impaired 

register is scrubbed immediately. If a SpaceWire port is found 

abnormal it is firstly reset for recovery, if the abnormal state 

cannot be mended then the port will be disabled to avoid 

sending babbling data which may block the network. Watch 

dog timer is also enabled at each port on routers with a timeout 

setting of one micro second to prevent blockage caused by 

faulty nodes. The network controller is designed in cold spare 

mode and centralized control scheme based on network 

controller greatly strengthens robustness of the distributed 

storage system. 

V. TEST AND VERIFICATION 

A distributed storage system prototype is built based on star 

topology SpaceWire network in a remote sensing satellite 

platform upgrade program for test and verification, as shown in 

Fig. 4. The system includes three onboard computers, a SMU 

and two DIU, each computer is equipped with two mass 

memory modules, with 256Gbits capacity of each module and 

total capacity is 1.5Tbits. Other user nodes in the network 

include two payload simulator, a payload data processing unit 

(PDPU) and a data formatter and encoder unit (FEU). The 

whole network architecture is dual redundant and data rate is 

normalized to 100Mbps. SMU takes responsibility of network 

configuration and management. Engineering telemetry, 

housekeeping data and software images received from uplink 

channel are also recorded in SMU and SMU application 

commands these data to user nodes through SpaceWire 
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network. Two payload simulators work in parallel mode and 

generate experiment data at rate of 60Mbps and 40Mbps 

separately. The experiment data is sent to mass memory 

modules in the two DIUs separately. High speed payload data 

processing unit read experiment data from both DIU and 

request auxiliary data such as attitude parameters and orbit 

position, etc., from SMU to perform calculation and analysis. 

Then the result is written back into SMU mass memory module 

and downloaded to ground station with other recorded data in 

the storage system. 

Data transfer protocol introduced in II (D) is implemented 

in the system, command and data are sent by applications 

simply based on target node logical address regardless of 

physical position of storage elements. The testing process and 

results have shown notable advance in system reconfiguration 

and expansibility. The distributed storage architecture well 

satisfies the needs of simultaneously processing of multiple 

high rate data flows, and the data transfer and processing 

ability of satellite platform is greatly boosted with SpaceWire 

network. The system is now planned to be applied in new 

remote sensing satellite missions. 

VI. CONCLUSIONS 

A distributed storage system is designed for intelligent 

satellite platform based on SpaceWire network, by 

incorporating flash memory modules in onboard computers. 

Central control scheme is used to provide concurrent, regular 

and balanced data record and retrieval service. Memory 

modules parallel operation and backup mechanism achieve 

high throughput, robustness and reliability. Verification result 

in a satellite program indicates the distributed storage system 

satisfies onboard data processing requirements quite well. Next 

step work will focus on more intelligent file transfer protocol in 

the system. 
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Abstract— In satellite systems, triple modular redundancy 

(TMR) method with interconnected 3-CPUs is widely used to 

improve fault tolerance for the SEU/SET. Fault Detection, 

Isolation and Recovery (FDIR) functionality is also used to 

improve robustness of the system which isolates a faulty CPU 

and switches to a redundant CPU automatically. However, the 

FDIR does not work correctly in the following cases. First, SEU 

and SET may cause an unnecessary link occupation on the 

SpaceWire network. In this case, the voting mechanism and the 

fault detection mechanism work incorrectly due to the 

communication failure. Second, it is difficult to classify the cause 

of the fault combined with more than 1 failure mode by the 

master CPU. This paper proposes a novel FDIR method to 

overcome examples described above. The proposed method 

masks output signals of the SpaceWire interface with the error 

signal outputted from the voter. It enables the system to reset the 

link and notify the faults automatically. Furthermore, the CPUs 

notify each other the signal applying exclusive-OR (XOR) 

operation to the calculation results and a Timecode. This 

mechanism improves granularity of the fault classification. 

Finally, this paper clarifies the recovery time of the system in 

case of the double-fault including the link occupation by 

computer simulation. The simulation results show that the 

proposed method recovers the system with the same speed of the 

method which only uses a timeout mechanism. 

Index Terms—FDIR, SpaceWire, Timecode, Triple modular 

redundancy 

I. INTRODUCTION 

The satellite payloads are required to ensure reliability and 

fault tolerance to the failure caused by SEU and SET. In 

general, TMR method is employed to them because it can 

reduce functional error with simple structure. For example, 

SpaceWire routers which uses majority voting with 

interconnected 3 CPUs through the network are proposed in 

[1],[2]. While, the multiplexing components through the 

network maintains the design flexibility, the network failure 

affects the FDIR functionalities. Because the notification of the 

faults and switching the redundancy depend on the network 

performance. In addition, it is difficult to classify the cause of 

faults only using the simple TMR mechanism. As a result, 

these systems cannot select appropriate recovery procedures 

based on the type of failure. 

The SpaceWire is a standard considering an usage in the 

space environment and some works evaluated the effects of the 

SEU/SET in [3],[4]. These works targeted the faults of the 

single component. However, the report in [5] summarized 80% 

of the SEU in the satellite cause single-bit errors and the 

remained 20% cause multiple-bit errors to the SRAM in the 

space environment. This report suggests that the SEU causes 

failure in multiple components at the same time. In particular, 

if the components synchronize to the same Timecode (e.g. 

SpaceWire-D), whole system are affected by missing and 

delaying Timecode caused by the SEU/SET. 

To deal with above mentions, this paper addresses high-

reliability SpaceWire network by selecting the appropriate 

recovery method according to type of faults even if the 

multiple faults are occurred. This paper proposes the novel 

classification method which improves granularity of the fault 

classification for double-fault by embedding Timecode in the 

messages. Additionally, our proposal disconnects the 

SpaceWire links according to the classification result so as to 

enable each component to notify the faults to the other 

components. As a result, this mechanism can operate normally 

under the network failure. Finally, we clarify the classification 

granularity of proposed method by using failure mode and 

effect analysis (FMEA) considering the 15 types of the faults 

(e.g. occurring the SEU/SET, undeliverable Timecode). In 

addition, we evaluate the recovery time of the FDIR 

mechanism under the link occupation by using the computer 

simulation [6]. The evaluation result shows that the FDIR 

mechanism recovers the system with the same speed as an only 

using a timeout mechanism. 

II. EMBEDDED TIMECODE 

This section describes how to embed the Timecode to 

exchanging messages. Figure 1 shows the block diagram of the 

proposed system. One of the 3 CPUs in the system operates as 

a master. The master collects the calculation results from the 2 

other CPUs through the SpaceWire network then selects the 
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majority of the results. The voting mechanism is implemented 

in the Voter block. The Failure Mode and Effect Analysis 

(FMEA) block classifies the faults by analyzing the output 

signals from the Voter and the Update checker. The other 2 

CPUs operating as a slave send the own calculation result with 

the CRC that is embedded a Timecode. Table 1 shows the 

encoding of the embedded Timecode. Each Timecode is 

encoded to the binary pattern either A or B. The CPUs select 

the binary patterns not to match previous result of the XOR 

operation. For example, the CPU selects the binary pattern B in 

case of the Timecode 4 because the previous XOR operation 

 

Fig. 1.  The block diagram of the proposed system 

TABLE I.  THE BINARY PATTERNS OF EACH TIMECODE 

Input Timecode Pattern A Pattern B Result 

00000000 1 00000001 11111110 00000001 

00001001 2 00000010 11111101 00001011 

00001100 3 00000011 11111100 00001111 

00001011 4 00000100 11111011 11110000 

01000001 5 00000101 11111010 01000100 

: : : : : 

 

 

Fig. 2.  The schematic of the voter 

result is same as that of the pattern A. As a result, this 

mechanism detects an updating failure of the calculation results 

from the slaves by a simple comparison. Furthermore, the 

master can detect the difference of the Timecode between the 

other CPUs by checking the CRC which is recovered by 

applying XOR operation with the current Timecode. 

Meanwhile, even though the master does not know 

Timecode pattern, not only Timecode patterns but also the 

CRCs decoded by each patterns have a relationship of bit 

inverting respectively. Therefore, the master can select the 

majority result using the circuit shown as Figure 2. 

III. GRANULARITY OF THE FAULT CLASSIFICATION 

This section shows granularity of the fault classification 

using the proposed method. The master CPU knows the 

information about the embedded Timecode and the comparison 

result of the corresponding calculation results from the other 

CPUs. These information improves the granularity compared 

to the simple TMR mechanism. Figure 4 shows that the 

number of failure modes combined with maximum 3 faults 

described in Table 2 are consisted in each input signal pattern 

of the FMEA block. The vertical axis indicates the input signal 

pattern whose meaning is shown in Figure 3. For example, it 

indicates that the result of the CPU1 and 2 is different with the 

result of the CPU2 and 3. 

The result shows that the consisting failure modes in each 

pattern are increased with increasing of the combination of 

faults. If it considers the combination of 2 faults, the number of 

consisted failure modes is 5 at most except the one case (the 

input signal is “111000”). On the other hand, the number of 

consisted failure modes reaches nearly 30 if it considers the 

combination of 3 faults. These results shows that the proposed 

method is appropriate for the analysis considering the 

combination of 2 faults in maximum. 

IV. THE FDIR METHOD 

This section presents the FDIR method based on the 

analysis described in Section 3. We designed the FDIR method 

by defining the recovery operations using the FMEA tree 

considering the combination of maximum of 2 faults based on 

the analysis in Section 3. Figure 5 shows the FMEA tree. 

According to the FMEA tree, the failure modes colored 

with gray (the input signal is “100000”) mean the CPU1 or 2 

might be failed. In this case, it is difficult to change the master 

to the CPU3 even though it is appreciate to recover the system 

when the CPU1 does not operate correctly. The FDIR method 

force disconnects the link between CPU1 and 3 in this case. 

This mechanism also releases the occupied SpaceWire link. 

 

1 0 1 0 0 0

Indicates that the result of the CPU3 isn’t updated

Indicates that the result of the CPU2 isn’t updated

Indicates that the Timecode of the CPU1 isn’t updated

Indicates that the results are different between CPU1 and 3

Indicates that the results are different between CPU2 and 3

Indicates that the results are different between CPU1 and 2
 

Fig. 3.  The meaning of the FMEA input patterns 
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TABLE II.  THE FAILURE MODES CONSIDERED IN THE ANALYSIS 

Mode Description 

cpu1 CPU1 returned an invalid result. 

cpu2 CPU2 returned an invalid result. 

cpu3 CPU3 returned an invalid result. 

time0 Timecode distribution failed 

(e.g. stopped the global Timecode distributor) 

time1 CPU1 returned an invalid Timecode. 

time2 CPU2 returned an invalid Timecode. 

time3 CPU3 returned an invalid Timecode. 

lost2 The result of the CPU2 was not delivered. 

lost3 The result of the CPU3 was not delivered. 

diff1 The updating checker for the Timecode in CPU1 

returned a wrong signal. 

diff2 The updating checker for the result of the CPU2 

returned a wrong signal. 

diff3 The updating checker for the result of the CPU2 

returned a wrong signal. 

voter1 The voter returned a wrong signal related to CPU1 

and CPU2. 

voter2 The voter returned a wrong signal related to CPU2 

and CPU3. 

voter3 The voter returned a wrong signal related to CPU1 

and CPU3. 

 

The failure modes indicated with bold box (input signal is 

“000010”) means the failure of the detection circuit for 

updating results from the other CPUs and Timecode. In this 

case, CPU1 can notify the fault to the other CPUs using 

communication. Besides, the FDIR only stops the system ether 

when 2 or more CPUs failed or when the Timecode 

distribution failed in the most part of the system. 

V. THE EVALUATIONS 

This section shows the recovery time of the FDIR method 

described in Section 4 using the simulator based on NS-3. We 

evaluate the recovery time in case that both the link occupation 

described in [6] and the operation failure of the CPU are 

occurred simultaneously. The evaluation conditions are shown 

in Table 3. We compare two FDIR methods described in the 

following sections. 

A. The Target Systems 

1) The Conventional System 

The system uses a simple TMR mechanism and the RMAP 

reply timeout for fault detection. The master CPU detects the 

faults including it self’s one by the TMR mechanism. Then, it 

resets the SpaceWire link triggered by the RMAP replay 

timeout. The other CPUs take a master if it detects the 

disconnection of the link. 

2) The proposed System 

The system uses the FDIR method described in Section 4. 

The FDIR functionality in the master CPU recovers the system 

according to the FMEA tree shown in Figure 5 if it detects the 

failure. The other CPUs take a master if it detects the 

disconnection of the link same as the conventional system. 

B. The Evaluation Result 

The simulated packet trace of the proposed system is shown 

in Figure 6. The packet trace shows that the CPU2 operates as 

a master after the link disconnection which is generated by the 

FDIR functionality. The comparison of the recovery times is 

shown in Table 4. The results show that the recovery time of 

the proposed FDIR method is same as the conventional system. 
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Fig. 4.  The number of failure modes matched to each FMEA input pattern 
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Fig. 5.  The FMEA tree of the proposed system 

TABLE III.  THE EVALUATION CONDITIONS 

Parameters Conditions 

Simulator NS-3 with SpaceWire-D protocol[6] 

Failure mode Combination of following 2 faults. 

(1) A link occupation caused by SEU[6] 

(2) A calculation failure of CPU3 

Slot Interval time: 100 µs 

Number of slots: 8 

Timing of 

counting votes 

The next slot of collecting the calculation 

results of other CPUs 

RMAP reply 

timeout 

100 µs (equal to the interval time of a slot) 

Data rate 10 Mbps 

Network 3 CPUs, 1 Router and 4 sensor nodes 

TABLE IV.  THE SYSTEM RECOVERY TIME 

Parameter Conventional System Proposed System 

Recovery time 103µs 103µs 

 

Because, the timing of counting votes in the proposed 

system is same as the end of the time for waiting the RMAP 

reply in the conventional system. 

VI. CONCLUSION 

This paper proposed the fault detection and classification 

method to improve granularity of the fault classification in the 

case of a double-fault by embedding the encoded Timecode to 

the exchanging messages between the 3 CPUs in the TMR 

system. We evaluated the classification granularity of the 

proposed method with considering the 15 types of faults. The 

evaluation result showed that the proposed method could 

classify the most part of the failure modes combined maximum 

of 2 faults into maximum of 5 failure modes. Furthermore, the 

proposed method can notify the faults to other components by 

disconnecting the SpaceWire links even if the link occupation 

is occurred. 

In addition, we evaluated the recovery time of the FDIR 

method. The evaluation result showed the recovery time of the 

proposed method is same as the FDIR method using the simple 

TMR mechanism and the RMAP reply timeout. 
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Abstract— Airbus Defence and Space Electronics have 

developed in last recent years a modular and scalable concept for 

Instrument Control Units (ICU) which has been used with high 

success in several missions as EUCLID and MetOp-SG. 

SpaceWire communication is a key element with this concept. 

This paper presents the Generic ICU architecture and its 

application in the MetOp-SG instruments. 

Index Terms— ICU, MetOp-SG, SpaceWire 

I. INTRODUCTION 

The purpose of this paper is to present the Generic ICU 

concept developed by Airbus Defence and Space Electronics, 

the main constituents and the concept application to the 

different MetOp-SG instruments. SpaceWire is a key element 

in the architecture of the MetOp-SG satellite and it is widely 

used within the different instruments. 

 

During the years 2013 and 2014 Airbus Defence and Space 

Electronics has conducted and internal R&D programme where 

the Generic ICU concept has been developed. The concept 

covers all the aspects related to a space electronics unit as 

modularity, scalability, mechanical and thermal design and 

electrical interfaces, both internal and external. 

 

Variants of this concept have been applied in several units 

for EUCLID mission, as the Instrument Control Units for the 

NISP instrument or the Electronic Unit for the Fine Guidance 

Sensor Instrument. However, the full application of the Generic 

ICU concept has been performed in the MetOp-SG instrument 

with high success where 5 Instrument Control Units have been 

awarded to ADS Electronics during 2015. 

 

II. GENERIC ICU CONCEPT 

The electrical architecture of the Generic ICU is conceived 

as a cold-redundant one supplied by independent Main and 

Redundant Power Busses powering independent electrical 

chains, and managed by independent Main and Redundant 

TM/TC/Science SpW Interfaces with the platform. 

 

The Generic ICU is composed by two sections with two 

main groups of functions/modules: 

 A set of core modules which implements basic functions 

common to all ICUs, as processing functions, standard 

interfaces and power conditioning functions as Service 

DC/DC converter and Thermal control interfaces. 

 A set of specific modules which implements very specific 

functions of the instruments as power distribution, especial 

interfaces and processing not covered by the core modules. 

 

All these modules are connected together by means of a 

backplane and enclosed in a common mechanical housing. 

 

The Figure 1 shows this concept: 

Fig. 1.  Generic ICU architecture 

A short description of each of the modules composing the 

general architecture is the following: 

A. Generic Processing Module (GPM) 

The GPM includes all the processing electronics (processor 

with its associated memory banks), the interfaces with the 

platform (SpaceWire interfaces with a router function, 

Equipment switch-off line –EQSOL- and synchronization 

interfaces), the interfaces with the downstream units 

(synchronization distribution, SpaceWire and UART links), 
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the interface to the internal backplane and the test interface. 

This module is based on a MDPA System-On-Chip ASIC 

(which includes a LEON-2FT microprocessor) and a 

RTAX2000 FPGA. The other ICU modules are controlled by 

the GPM by means of internal point to point SpW links, SPI 

links and discrete LVCMOS input/output lines. 

 

B. Generic Interface Module (GIM) 

It implements standard discrete I/O functions, such as 

generation of HLC discrete commands for power supply 

configuration of instrument downstream units as well as the 

acquisition chains of the thermal monitoring sensors (NTC & 

PTC types), voltages and bi-level status TMs provided by the 

units. This slave module is based on the Airbus DS’s SECOIA 

ASIC (a general purpose board control ASIC) and is controlled 

by the GPM through an internal SPI link. 

 

C. Generic Power Conditioning Module (GPCM) 

It provides the power resources required by internal use of 

the unit (service DC/DC converter) and the thermal control 

support function, which in in charge of supply and control of 

the heater switches for the instrument operational thermal 

control function. Similarly to the GIM, this slave module is 

based on the same SECOIA ASIC and is controlled by the 

GPM through an internal SPI link. 

 

In addition to these core modules, the ICU is completed by 

specific modules that implement all the functions and 

interfaces not covered by the core modules. The nature of this 

specific modules can diverse ranging from digital processing 

modules (for those instruments requiring data processing of 

digital video), or power conversion and distribution modules 

(for instrument requiring secondary power distribution to 

down-stream units), or a combination of functions of different 

nature in the same board. 

 

All this modules are connected by means of a Backplane 

(BP), which provides basic power and interface services as 

follows: 

 

 Secondary Power lines: the Service and Distribution 

DC/DC Converters in GPCM drive +28V/±15V/+8V/+5V 

secondary voltages towards the BP. The remaining modules 

use these secondary power rails for their internal needs and 

in case of additional voltages are required, they are 

generated by means of local regulation. 

 

 SPI busses: the FPGA in the GPM manages two SPI 

busses through the MB, the SPI-1 for the TM/TC access to 

generic modules (GPCM and GIM), and the SPI-2 for the 

TM/TC access of specific modules, if needed. These buses 

are oriented to slave modules requiring low throughput (in 

the range of 1 to 10 Mbps) 

 

 SpW links: the GPM provides two point-to-point SpW 

links through the BP for those modules requiring high data 

throughput (from 10 to 100Mbps). These SpW are 

connected to the SpW router in the GPM module which 

allows direct downloading of scientific data without 

software intervention. 

 

 Discrete lines: they are managed by the FPGA in the GPM 

to transmit synchronization and command and control 

signals to the remaining slave modules. 

 

The ICU is an intelligent unit with on-board software 

running on it. The GPM is in charge of hosting the Basic SW 

and the Application SW. The Basic SW has two main 

components: 

 

 Boot and Service Mode Software (BSSW): It provides 

basic services for GPM board monitoring and control (e.g. 

memory and registers load and dump…). It is also able to 

load and activate the instrument application software. 

 Execution Platform Software Package (EPSW): contains 

elements to build the instrument application software. This 

includes libraries to be linked to the application software 

(e.g. real-time kernel, standard PUS services, low level I/O 

drivers) and the associated tools (e.g. compiler, linker…). 

 

The Generic core architecture is supported by two key 

ASICs developed by Airbus Defence and Space and available 

as recurrent products: 

 

 MDPA ASIC. The MDPA ASIC is a System-On-Chip 

designed by Airbus Defence & Space GmbH and 

manufactured by ATMEL using the ATC18RHA 

technology. It embeds a LEON2FT microprocessor, which 

executes the processor’s embedded SW, and interface 

control buses used on satellite – SpaceWire, 1553, UART – 

and with state of the art utilities for processor such as 

floating point unit, AHB bus, debug function, memory 

controller, etc. The MDPA ASIC is flight proven (TRL-9) 

on Alphasat Payload Controller since July 2013. 

 

 SECOIA ASIC. The SECOIA ASIC (SErial COntrol 

Interface ASIC) is a general-purpose ASIC intended for 

communicating a slave electronic module with a master one 

in order to command and control their different internal 

functions (command generation, Bi-level / Relay status 

acquisition, Analogue Acquisition and serial interfaces). 

This ASIC has been developed by Airbus Defence and 

Space - CRISA and manufactured by Aeroflex using the 

ATC18RHA technology. This ASIC is widely used in 

many other Airbus DS products The device has been 

submitted to full qualification at component level and it has 

achieved TRL-8 

 

In order to raise the TRL level of the Generic ICU concept, 

the most important modules of the ICU Core were developed 

through an internal R&D programme: The GPM (including 

HW design and Boot and Service Mode Software) and the 

GIM modules.  

 

Next pictures show the EM models of the GPM and the 

GIM boards. 
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Fig. 2.  GPM EM model 

 

Fig. 3.  GIM EM model 

III. GENERIC ICU APPLICATION IN METOP-SG INSTRUMENTS 

The Generic ICU concept has been applied in the following 

MetOp-SG instrument control units. 

 

 Sentinel-5 Instrument Control Subsystem (S5 – ICS). 

 Microwave Sounder Instrument Control Unit (MWS – 

ICU). 

 Multi-viewing, Multi-channel, Multi-polarization Imager 

Instrument Control Unit (3MI - ICU) 

 MetImage Main Control Electronics (MetI – MCE) 

 Scatterometer Digital Control Unit (SCA – DCU) 

 

Main characteristics of the instrument and their ICUs 

configuration are provided following. 

A. Sentinel-5 Instrument Control Subsystem (S5-ICS) 

The Sentinel-5 instrument is a spectrometer covering the 

UV1, UV2/VIS, NIR, SWIR1 and SWIR2 ranges. The mission 

of the instrument is to detect the presence and local distribution 

of various gasses and aerosols in the earth atmosphere. 

 

The ICU for Sentinel-5 is composed of the generic core 

(GPM + GIM + GPCM) plus 3 additional specific boards: 

 Specific Interface Module (SIM). This module is in charge 

of providing interfaces with the instrument calibration 

subsystem. 

 Specific Processing Module (SPM). This module is in 

charge of the acquisition and processing of the 5 

spectrometer channels. Data generated by the SPM are 

routed to the P/F SpW link directly through the routers 

implemented in the GPM. 

 Specific Thermal Control Module (STCM). It implements 

the thermal control function of the instrument for Survival 

and LEOP. 

 

B. Microwave Sounder Instrument Control Unit (MWS – 

ICU). 

The Microwave Sounder (MWS) is a 24 channel self-

calibrating Microwave Radiometer. MWS provides the 

operational microwave humidity sounding capability for the 

METOP-SG meteorological satellites. 

 

The ICU for MWS is composed of the generic core (GMP 

and GIM) arranged in a single board plus 3 specific boards: 

 Signal Processing Electronics module (SPE). This module 

is in charge of providing high linearity video acquisition 

channels. Data are collected by the GPM, processed and 

formatted by the software for further transmission via the 

P/F SpW link. 

 Rx power and Rx 54GHz secondary voltage switching 

Module (RxM). It provides a distribution DC/DC converter 

and switching matrix to the 54 GHz radiofrequency 

receivers 

 Service Power and Rx non-54GHz switching module 

(PRx). It provides a second distribution DC/DC converter 

and switching matrix for the non-54 GHz radiofrequency 

receivers 

 

C. Multi-viewing, Multi-channel, Multi-polarization Imager 

Instrument Control Unit (3MI - ICU) 

The 3MI instrument is a wide-field of-view spectro-

radiometer that is designed to acquire sequential images of the 

same ground target which are combined with multiple spectral 

views in both un-polarized and polarized channels in the VNIR 

and SWIR spectral ranges. 

 

The ICU for 3MI is composed of the generic core (GPM + 

GIM) plus 1 additional specific board implementing the 

Service DC/DC CV and one additional distribution Converter 

for Front End power supply. 

 

Front End data are acquired directly through the SpW links 

available in the GPM, processed and formatted by the software 

for further transmission via the P/F SpW link 

 

D. MetImage Main Control Electronics (MetI – MCE) 

MetImage is a passive imaging spectro-radiometer, capable 

of measuring thermal radiance emitted by the Earth and solar 
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backscattered radiation in 20 spectral bands from 443 to 13.345 

nm (VNIR, SMWIR and VLWIR). The instrument achieves 

global coverage with 500 m square pixels. 

 

MetImage Central Electronics (MCE) is composed of the 

generic core (GPM + GIM + GPCM) plus 2 additional specific 

boards: 

 Rotation Control Module (RCM). In charge of controlling 

the instrument mechanisms, including position sensors. 

Encoder position telemetry is provided via an internal 

Spacewire link. 

 Data Formatter Module (DFM). It is charge of generation 

of the rotation synchronisation of the instrument, 

acquisition of the video data from the Front End 

Electronics. Data are processed, packetized and transmitted 

to P/F SpW link directly through the routers implemented 

in the GPM. 

 

E. Scatterometer Digital Control Unit (SCA – DCU) 

The SCA is a real aperture C-band (5.355 GHz) radar with 

6 slotted waveguide antennas, comprising 2 dual (H- and V-) 

polarised plus 4 single (V-) polarised antennas, which are 

accommodated on three roof-top-shaped antenna assemblies. It 

has to illuminate two at least 645 km wide measurement 

swaths on each side of the sub-satellite track. 

 

The DCU for Scatterometer is composed of the generic 

core (GPM + GIM + GPCM) plus 1 additional specific board 

implementing the specific radar functions, including the radar 

timing signal generation, the chirp generation, mission data 

reception, A/D-conversion, processing, formatting and 

forwarding to the P/F SpW link directly through the routers 

implemented in the GPM. 

 

The MetOp-SG ICU mechanical configuration ranges from 

small units composed by 4 boards assembled in a single 

housing with nominal and redundant sections in separated 

boxes (SCA-DCU), up to large units assembling 12 boards 

(N+R sections) in a single enclosure (Sentinel-5 ICS). 

 

Fig. 4.  MetOp-SG ICUs (S5-ICS –left- and SCA DCU –right-) 

IV. USE OF SPACEWIRE IN METOP-SG SATELLITE 

 

The MetOp SG Payload Data Handling System and 

Instrument communications are based on SpaceWire. MetOp-

SG SpaceWire communications is based on the CCSDS Packet 

Transfer Protocol (CPTP) layered on the SpaceWire standard. 

 

In addition, a Time Synchronization protocol based on 

SpW time-codes and CPTP packets is used to update the local 

time in each unit on the network. 

 

Each OBC Processor Module is connected to the Mass 

Memory and Formatting Unit (MMFU) via two SpaceWire 

interfaces. All TC and TM data packet transfer to and from the 

MMFU is done via one of this SpaceWire interface. 

 

All Instrument ICUs are connected by SpaceWire interfaces 

to the MMFU. Each Instrument has a dedicated (dual-

redundant) SpaceWire interface for communicating mission 

data as well as monitoring & control data. The TM/TC packet 

routing and multiplexing is centralized within the MMFU. 

 

The following picture shows the MetOp SG SpaceWire 

Network topology. 
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Fig. 5.  SpaceWire Network topology in MetOp-SG 

The SpW network is used for the following tasks: 

 Command & Control (C&C) task from OBC to the MMFU 

routers and Payload Instrument based on CCSDS Packet 

Transfer Protocol. 

 Transmission of the Central On-Board Time over the 

Spacewire network via a combination of SpaceWire time-

codes and a PUS time update packet. 

 Transmission of the scientific data from Instruments to 

MMFU for further downloading to ground. 

 

V. USE OF SPACEWIRE IN THE GENERIC ICU 

Management of the SpaceWire links in the GPM is 

performed by means of the MDPA ASIC. The MDPA 

processor incorporates two SpaceWire Modules with 4 ports 

each. Routing capabilities can be used within each module 

 

The SpaceWire network at instrument level is depicted in 

Figure 6. Only one section of the ICU/instrument is shown. 

 

Two network topologies can be implemented in the Generic 

ICU:  

 

 Common network. Used for those applications where there 

the data processing and generation of the scientific data is 
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performed in real time with no intervention of the Software. 

Both SpaceWire Modules of the MDPA are connected 

together in such a way that a single network is 

implemented. Data volume generated by the instrument is 

very high and routing to the MMFU is performed by HW 

means. One of the links is used for Platform (P/F) 

connection; other link is connected to an FPGA. The other 

4 links are available for external units and internal modules 

connection (slave modules within the ICU). 

Fig. 6.  SpaceWire Network topology at instrument level 

 

 Two separated networks. Used for those applications where 

direct routing to the platform link is not required. Data 

processing and generation of the scientific data is 

performed by the instrument software. In some cases 

special management of the SpW link is needed, as 

generation of SpW time codes for synchronization 

purposes. 

 

This topology is configured simply by not initializing the 

inter-routers links. 

 

The ICU internal/external functions managed through the 

SpaceWire network are described following; 

 

A. RMAP client in BSSW 

The SpaceWire controllers in the MDPA don’t support 

Remote Memory Access Protocol (RMAP) protocol by HW. A 

RMAP client has been implemented instead in the Boot 

Software which provides means for patch, dump and check the 

Boot EEPROM Memory through the P/F SpaceWire link 

without using the CCSDS Packet Transfer Protocol. Memory 

writing can be performed at ground level only. 

 

B. Communication with the OBC (C&C, HK data) 

The ICU is controlled and monitored via the P/F SpW link 

following CCSDS Packet Transfer Protocol layered on the 

SpaceWire standard. 

Communication with platform is performed following an 

end-to-end data flow logical addressing scheme. The ICU is 

able to: 

 Receive telecommand from the OBC 

 Transmit housekeeping telemetry to the OBC 

 Transmit ancillary data and housekeeping telemetry to the 

MMFU 

All these transmissions are controlled at ICU level by the 

software embedded in the unit. 

C. Instrument Local On-Board Time management  

The ICU implements in the GPM FPGA a Local On-Board 

Time (LOBT) compliant with the CCSDS Unsegmented Code 

specification and is based on a default 32 bit LOBT Coarse 

Time field (indicating the number of seconds) and a 24 bit 

LOBT Fine Time field (indicating the sub-seconds).  

The LOBT value is synchronized each a time tick message 

is received in the SpW port implemented in the FPGA. The 

datation function supports both LOBT direct and smooth 

synchronization methods. 

Direct synchronization consists on LOBT setting upon 

reception of a SpW time tick with the COBT content which has 

been received via of a PUS time update packet.  

Smooth synchronization is based in the same principle than 

Direct Synchronization but instead of a direct load of the 

LOBT, a computation of the LOBT drift with respect to the 

COBT is performed. This drift is used in the next 1 second 

counting cycle to compensate the excess or lack of count. In 

this mode, the Fine Time counter of the LOBT is never 

updated abruptly. This method allows also compensating the 

jitter and latency induced by the transmission of the SpW Time 

codes through the Spacewire network in the platform. 

 

D. Scientific data transmission 

Mission data are generated by the ICU either by specific 

HW processors implemented in the ICU or by Instrument’s 

Application SW after acquisition from either external units or 

internal modules. Transmission of data to platform (either OBC 

or MMFU) is performed following a logical addressing 

scheme. 

 

In case of HW generators internal to the ICU, the data are 

formatted as CCSDS TM packets, encapsulated into SpW 

packets and transmitted to the internal router where the node is 

connected to. The transmission to platform in this case is 

performed following a combination of path and logical 

addressing in order to route the information through the MDPA 

routers. First characters in the packet header are removed as 

long as the packet passes through one router to the other, in 

such a way that the first character at the P/F link is the logical 

address information. 

In case of mission data generated by Application SW, the 

formatted packets are sent directly over the P/F link with the 

logical address at the packet header. 

VI. CONCLUSIONS 

The use of SpaceWire technology is a key element in the 

architecture of the Generic ICU. High speed data throughput as 

well as routing capability is an enabling factor for this high 

performant unit. 

Simplicity of interfaces also allows offering a compact 

design from mechanical point of view with the consequent 

saving in mass and volume. 

 

207



Deterministic Communication and Distributed 

Control of Avionics Based on SpaceWire-D 
SpaceWire Missions and Applications, Short Paper 

 

Liu Weiwei, Niu Yuehua, Cheng Bowen, Wang Luyuan 

 Institute of Spacecraft System Engineering 

China Academy of Space Technology(CAST)  

Beijing, China 

akinglw@163.com 

 

 
Abstract—As a switched network, SpaceWire can easily 

connect SpaceWire nodes together to realize parallel data 

communication, which can not only contain spacecraft 

interconnection between independent equipment, can also be 

used as “virtual backplane” to achieve mutual connection and 

communication between avionics internal hardware modules. 

However, SpaceWire nodes using asynchronous parallel 

operation mode are prone to causing network congestion, which 

is not conducive to the balance of network bandwidth. In this 

paper, a method of using the driver table between existing all-

purpose interface controller of hardware module and SpaceWire 

node controller is implemented based on the SpaceWire-D 

protocol, to achieve deterministic SpaceWire network 

communication management. SpaceWire node send data to or 

receive data from the allowed nodes within the predefined time 

interval according to the information in the driver table, 

reaching the goal of deterministic communication and network 

flow optimization. In addition, through global communication 

time planning, when the processor module in certain avionics 

equipment fails while other hardware modules is still functioning, 

only the routing table in the SpaceWire router need to be 

reconfigured to complete the takeover of hardware module inside 

faulty equipment, without changing communication driver table 

information, thereby achieve the goal of distributed control.  

Index Terms—SpaceWire, Time-Code, driver table, virtual 

backplane, deterministic communication, distributed control.  

I. INTRODUCTION 

With the continuous development of space technology, the 

electronic network interconnection technology from traditional 

low speed bus interconnections between subsystems gradually 

evolved in the direction of high-speed switched network [1]. 

SpaceWire provides extremely simple communication 

protocols, and its link rate can be tuned within the range of 

2400Mbps, adapting to most of the instruments and equipment 

in spacecraft communications requirements. With the 

deepening of research and continuous improvement of the 

protocol, SpaceWire has been adopted by more and more 

spacecraft as the backbone of the data communication network, 

as the basis of implementing distributed avionics [2]. However, 

it is a pity that SpaceWire asynchronous parallel work between 

nodes and wormhole routing mechanism, makes the SpaceWire 

network’s ability to adapt to the sudden data transmission is not 

strong, especially in the case of multiple link routing to the 

same destination, more prone to causing problem of network 

congestion and uncertain transmission delay [3]. Therefore, 

based on the SpaceWire-D, this paper implements a 

mechanism that all SpaceWire nodes are equipped with driver 

table for network communication management, and SpaceWire 

network is divided into multiple communication windows 

according to the information within driver table, which controls 

each node send to and receive from allowed nodes with 

specified length and within specified window. As a result, 

SpaceWire can mutually parallel communication without 

influence each other in one time window through global time 

planning. The communication driver table is executed and 

parsed by SpaceWire-D controller, which is increased table 

processing logic based on the original SpaceWire Codec core 

and RMAP core. According to the Time-Code values, 

SpaceWire-D controller can distinguish communication 

window and gets the corresponding control information in the 

driver table. If the communication window at this moment for 

receiving window and data updates, the all-purpose interface 

controller of hardware module will be notified for data reading 

and processing, if the communication window for sending 

window and data updates, data will be sent to the designated 

SpaceWire node. In addition, when avionics hardware module 

failure occurs in certain equipment, with the aid of the routing 

table of SpaceWire network reconfiguration and different time 

window planning for different hardware modules, the failed 

equipment can be taken over by other equipment, achieving 

smooth and seamless switching of data transmission and 

multitasking. This can also be adapted to the management and 

control of the equipment that without processor essentially. 

II. DESIGN OF SPACEWIRE-D CONTROLLER 

Figure 1 illustrates the structure of SpaceWire-D controller, 

which is composed by SpaceWire-D core and SpaceWire 

Codec core and RMAP core, and SpaceWire-D core is 

responsible for the management of communication window in 

SpaceWire network. 
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Fig. 1.  Structure of SpaceWire-D controller 

SpaceWire-D core not only able to communicate with the 

RMAP core, also can communicate with SpaceWire Codec 

core directly, to realize the RMAP packets and user-defined 

data packets transmission in SpaceWire network at the same 

time. By configuring different kinds of driven table in 

SpaceWire-D core can achieve communication window 

management, and can decide whether the SpaceWire network 

resources can be accessed and which packet type to be sent 

according to the information in table.  

In order to guarantee the certainty of the parallel 

communication of SpaceWire network, all contents in the 

driver table are determined at the system design stage, cannot 

be changed during system operation, and cannot be accessed 

by user application. However, the whole SpaceWire system is 

allowed to carry different versions of driver table, used for 

system reconstruction and fault recovery.  

There are two main driver tables in the SpaceWire-D core, 

which are ADDR_TABLE and SCHEDULE_TABLE as 

shown in Fig. 2.  

The ADDR_TABLE is used to define the destination logic 

address of SpaceWire node that is allowed to access and the 

total length of sending and receiving data. The destination logic 

address and total data length can be obtained through 

simulation and calculation according to the time-slot and 

communication plan of whole SpaceWire network and the 

processing capacity of destination node. Besides, the table is 

divided into 64 segments that are corresponding to 64 time-

slots respectively, and each segment contains LOGIC_ADDR 

field and TOTAL_DATA_LEN field. 

 The LOGIC_ADDR field in each segment of the 

ADDR_TABLE is the destination logic address that is 

allowed to access. In each time-slot, the maximum 

destination logic address every source node allowed to 

access is up to six, and the six destination logic 

addresses within different SpaceWire nodes cannot be 

overlapped. If the actual number of destination logical 

address is less than six, the later corresponding 

position in the table is set to all zeros.  

 The TOTAL_DATA_LEN field is the total length 

including sending and receiving data length, and is 

constrained by the node with the lowest processing 

performance, so in order to obtain higher efficiency of 

data communication, the destination node with 

different performance largely should be putted into 

different time-slot.  

The SCHEDULE_TABLE is used to define the type of bus, 

multi-slot, the base address of the user memory space and the 

time-slot duration. This table is also divided into 64 segments 

corresponding to 64 time-slots in the same way, and each 

segment contains BUS_TYPE field, MULTI field, 

BASE_ADDR and SLOT_DURATION field. 

 The BUS_TYPE field contains 3 bits. The value from 

1 to 4 represents the static bus, dynamic bus, 

asynchronous bus, and packet bus respectively, while 

the value from 5 to 7 represents user-defined bus and 

protocol type, to send and receive data packets through 

the SpaceWire-D core communicate directly with the 

SpaceWire Codec core. 

 The MULTI field is used to indicate whether using 

multi-slot. It contains 2 bits and the value represents 

the number of included time-slot of multi-slot.  

 The SLOT_DURATION field contains 16 bits, which 

is used to define the duration of the time-slot. Each 

SpaceWire node use local time counter to divide time-

slot and use the Time-Code to synchronize with global 

time of SpaceWire network. 

 The BASE_ADDR field contains 11 bits, and is 

responsible for addressing the stating address of user 

control memory. Once obtaining the base address, the 

data in user data memory can be sent in the time-slot 

according to the information in user control memory 

just as whether or not the data is updated. The data 

format of user control memory as shown in Fig. 3. 
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Fig. 2.  Driver table in SpaceWire-D controller 
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Fig. 3.  Structure of user control memory 

The user control memory contains 64 segments, each 

segment is actually an information queue to support transaction 

group, and the head of each segment provides the reading and 

writing information of TX information queue. In addition, each 

segment is divided into accessible spaces and inaccessible 

spaces; the accessible space in the Fig. 3 is represented by 

white areas, while the inaccessible space is represented by the 

shaded area. The accessible space mainly provides the 

information of data update flag (TX_EN), priority, bus type, 

destination node logical addresses, and the memory address 

pointer and data length and other information that RMAP core 

or user-defined protocol required.  

When a certain time-slot comes, SpaceWire-D controller 

get the information in user control memory, and judge whether 

the data is updated, the bus type is same as indicated in 

associated index of SCHEDULE_TABLE, the logic address 

exist in ADDR_TBLE, and finally, whether the total data 

length is less than the specified maximum length in the 

ADDR_TBLE. When meet the above conditions, the RMAP 

core or SpaceWire-D core itself start data transmission 

depending on the bus type and address pointer. If there are 

multiple data update region in TX information queue, the static 

bus and dynamic bus read user control memory sequentially to 

transfer data, while the asynchronous bus read information in 

accordance with the highest priority.  

It is important to note, SpaceWire-D controller does not 

distinguish between current transaction group and next 

transaction group for the reason that each time-slot corresponds 

to a separate base address. The current transaction group and 

the next transaction group can be associated with different base 

address, and the user application can choose to visit which base 

address of user control memory according to the current 

transaction group and next transaction group. For example, the 

time-slot 0 and time-slot 10 are all assigned to dynamic bus 1, 

the base address of time-slot 0 and time-slot 10 are set 

differently, and the current transaction group and the next 

transaction group can be realized by access two base addresses 

by turns. The base address associated to time-slot 0 and time-

slot 10 can also be set to the same, and only the current 

transaction group is realized. 

III. CONSTRUCTION OF SPACECRAFT AVIONICS 

COMMUNICATION NETWORK BASED ON SPACEWIRE-D 

The SpaceWire-D controller is used as the bus interface 

unit of the hardware modules to connect with the SpaceWire, 

and realize the data communication between the host controller 

(all-purpose interface control or CPU) of hardware and 

SpaceWire network. 

A. The Composition of Spacecraft Avionics 

The design of spacecraft avionics follows module and open 

structure [4]. Based on the analysis and abstract of system 

function, the nine standard and generic hardware modules with 

independent design and test capacity and a series of software 

component have been designed, as shown in Fig. 4. These 

hardware module and software components as the underlying 

fundamental support and under the framework of avionics 

standard bus architecture, the avionics equipment (management 

unit) with specific features can be designed by assembling 

different hardware module through internal communication bus, 

and to establish a complete avionics by aid of connecting every 

management unit through external bus [5].  
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Fig. 4.  Hierarchy of spacecraft avionics system 

210



B. Application of SpaceWire-D Controller in Avionics  

SpaceWire has been adopted as the internal communication 

bus between hardware modules within avionics management 

unit, and the SpaceWire network as the “virtual backplane” of 

equipment, to realize the interconnection between each 

hardware module through SpaceWire-D controller. In addition, 

besides the general CPU module, other hardware module 

configures all-purpose interface controller to control 

SpaceWire-D controller and as the communication bridge 

between SpaceWire-D controller and functional circuit. The 

all-purpose interface controller and SpaceWire-D controller are 

the uniform configurations of hardware module, while 

functional circuit is varied depend on the function of hardware 

module. 

The external communication bus between management 

units also chooses SpaceWire. This makes the avionics with 

the same structure and interface, internal and external bus with 

the same communication protocols and access mechanisms. As 

a result, there is no level and grade difference and can achieve 

distributed and parallel operation between avionics equipment, 

and more important, this makes the avionics has the capacity of 

task migration, system reconstruction, coordination and 

cooperation among different equipment. The schematic 

diagram of the avionics communication network based on 

SpaceWire-D is shown in Fig. 5. 
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Fig. 5.  Example of avionics communication network based SpaceWire-D controller 

IV. DETERMINISTIC COMMUNICATION AND DISTRIBUTED 

CONTROL OF AVIONICS BASED ON SPACEWIRE-D 

Relying on the time planning of SpaceWire-D and unify 

interface of the hardware module, makes it easy to realize 

deterministic communication and distributed control of 

avionics. 

A. Realization of Deterministic Communication in SpaceWire 

Network 

The communication network based on SpaceWire-D with 

global time planning characteristics, SpaceWire node and 

packets according to the arranged time-slot for transmission, 

there is no link resource competition and conflicts to ensure 

packet transmission latency and deterministic communication. 

In order to ensure no link resource competition and 

collision in any time-slot, any target node only allows one 

initial node to access. Take the avionics communication 

network in Fig. 5 for example; each management unit contains 

seven hardware module, and two management units through 

port 1 and port 2 of SpaceWire router for connection. Each 

hardware module is numbered by the connection port of the 

router, and the number of target node that initial node allowed 

to communicate is six in one time-slot. The time-slot planning 

schematic is shown in Table 1. 

TABLE I.  EXAMPLE OF TIME-SLOT LAYOUT 

Time-Slot Initial Node Target Node 

0 1-1 

2-1 

1-2,1-3,1-4,1-5,1-6,1-7 

2-2,2-3,2-4,2-5,2-6,2-7 

1 1-2 

2-2 

1-1,1-3,1-4,1-5,1-6,1-7 

2-1,2-3,2-4,2-5,2-6,2-7 

2 1-3 

2-3 

1-1,1-2,1-4,1-5,1-6,1-7 

2-1,2-2,2-4,2-5,2-6,2-7 

…… …… …… 

7 1-1 2-2,2-3,2-4,2-5,2-6,2-7 

8 2-1 1-2,1-3,1-4,1-5,1-6,1-7 

9 1-2 2-1,2-3,2-4,2-5,2-6,2-7 

10 2-2 1-1,1-3,1-4,1-5,1-6,1-7 

…… …… …… 

Because of the demand to avoid competition of link 

resources, the hardware module that directly connect a router 

can communicate simultaneously (such as time-slot 0, 1, 2), but 

when the hardware module needs to communicate cross the 

router, the communication have to be done in different time-

slot (such as time-slot 7, 8, 9, 10). 

Compared to traditional SpaceWire network, SpaceWire-D 

not only can improve the deterministic communication, and 

data package is no collision and competition between each 

other, also can according to the time-slot where packet error, to 

realize SpaceWire network fault location, isolation and 

restoration expediently. 
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B. Distributed Control in SpaceWire Network 

Thanks to the internal bus and external bus of avionics 

equipment also use SpaceWire, breaks the boundaries between 

equipment on the logic, SpaceWire network as “virtual 

backplane”, each hardware module can be seen as independent 

SpaceWire node, this makes the communication within and 

between management unit can be unified to design. 

During the normal operation of the avionics system, 

different management units can operation independently and 

concurrently, and the data interaction between different 

management units is the processed data rather than the original 

data and only through general CPU module, reducing data 

traffic and improving the efficiency of communication. 

When a failure occurs in general CPU module within 

certain management unit, the general CPU module within other 

management unit can directly take over the task and function of 

faulted general CPU module, to control and communicate with 

the hardware module within faulted equipment for task 

migration and system reconfiguration.  

During the system reconfiguration and task migration, there 

is no need to change the configuration of driver table, but just 

reconfigure router table to make the logic address of fault 

general CPU module can be routed to the migrated general 

CPU module. However, there may appear a plurality of 

hardware modules to transmit data to a general CPU module in 

the same time-slot and need to reserve bandwidth when design 

SpaceWire network and SpaceWire-D driver table. There is 

another way to replace the destination logic address of the 

RMAP packet from the fault general CPU module to the 

migrated general CPU module directly, this need to provide 

corresponding mechanism to control all-purpose interface 

controller using new logic address when generating RMAP 

packet. This mechanism maybe implemented in sequent design. 

V. FOLLOW-UP WORK 

Although the SpaceWire-D can bring more benefits for the 

network communication, it still faces some difficulties in the 

process of network design, which will be optimized and 

improved in the following work. 

 The time-slot planning is mainly dependent on manual 

work at present, which is very difficult and even 

cannot be completed when network contains more 

SpaceWire node, so it must to design simulation or 

calculation software to achieve the optimal timing 

planning. 

 In the current design, the Time-Code have to be 

broadcasted frequently when time-slot duration is 

small, and cause the waste of network resources. 

Therefore, the future design will use local clock to 

generate multiple time-slot between two Time-Code, 

and Time-Code only to synchronize local time with 

global time.  

VI. CONCLUSIONS 

Through the SpaceWire-D realized the deterministic 

communication and distributed control, not only reduces the 

difficulty of avionics controller real-time multitasking, and 

enhances the system’s ability to tolerate failure with the help of 

distributed control and faulty recovery. This advances the 

utilization of fault equipment hardware modules and the 

realizability of task migration, the robustness of switched 

network data communication and processing also be improved 

significantly. 
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Abstract— The Lightweight Advanced Robotic Arm 

Demonstrator (LARAD) is a state-of-the-art, two-meter long 
robotic arm for planetary surface exploration currently being 
developed by a UK consortium led by Airbus Defence and Space 
Limited under contract to the UK Space Agency (CREST-2 
programme). LARAD has a modular design, which allows for 
experimentation with different electronics and control software.  

As ESA is drafting plans to address the design of sample return 
missions from key locations such as a Mars or Phobos, a number 
of technology developments are being undertaken across Europe 
to raise the maturity of key enabling systems, such as sample 
handling and robotic manipulators. One of these technologies is a 
high-TRL, SpaceWire-based control system for robotic arms 
currently being investigated by Airbus Defence and Space. This 
paper presents the results of a worst-case latency analysis of the 
fully SpaceWire-based control system currently being developed 
for LARAD. Some of the results are general enough to be 
extended to other robotics applications. 

Index Terms—SpaceWire, Latency, Robotics, Robotic Arm, 
Planetary Exploration. 

I. INTRODUCTION 
The control system of the Lightweight Advanced Robotic 

Arm Demonstrator (LARAD) is currently based on a 
combination of two communication protocols, Ethernet and 
CAN. The bandwidth limitations of the CAN protocol 
(maximum 1 Mbps, half duplex) have led to the need for the 
development of a new control system architecture for LARAD 
fully based on the SpaceWire protocol. The higher bandwidth 
provided by the SpaceWire protocol will allow for the adoption 
of advanced control schemes potentially based on multiple 
vision sensors and for the handling of sophisticated end-
effectors that require fine control, such as science payloads or 
robotic hands. A feasibility assessment study has been 
performed recently. Preliminary system-level results have been 
presented at the Data Systems In Space (DASIA) Conference 
in 2015 [1]. Here, final and more detailed results regarding 
latency analysis are presented, including implications in terms 
of reliability and predictability of the behaviour of the LARAD 
control system. 

SpaceWire has a technology development roadmap towards 
the support of Command & Control on board spacecraft [2]. 
The analysis performed in this study contributes and supports 
such roadmap by providing inputs from the space robotics 
domain. 

In the remainder of the paper, the latency analysis is 
structured as follows. First, timing requirements of the 
LARAD OBC-JE interface (On-Board Computer – Joint 
Electronics) are established. Second, worst-case analysis 
related to the current CAN implementation is presented. 
Finally, a worst-case analysis for a SpaceWire implementation 
of the full control system is introduced and compared to the 
CAN version, covering the analysis of nominal and fault 
conditions, with and without the end-effector (EE). 

II. TIMING REQUIREMENTS 
The nominal rotation rate of the LARAD joint motors is 

around 9000 rpm. At this rate, full motor revolution happens at 
the frequency of 150 Hz, taking approximately 6.7 ms to 
complete. Design of the control system envisions that, in the 
worst case (i.e. when motion profile computation is performed 
by the OBC), motor control commands, consisting of position 
and rate demands for the PID controller, would have to be 
transmitted to the JE with 10 Hz frequency, i.e. at 100 ms 
intervals. Ten Hertz is also the frequency at which JE telemetry 
is acquired. 

The above figures allow concluding that in order to achieve 
smooth motion, JE must receive and process the position/rate 
demand within 100ms after the previous one. In order to 
provide sufficient margin for the delays connected with 
processing, it may be concluded that the worst-case latency 
resulting purely from communication should be kept within 
one order of magnitude less that the deadlines discussed above, 
i.e. it should not exceed 10 ms. 

III. WORST-CASE LATENCY ANALYSIS – CAN 
CAN has a bus architecture with a well-defined frame 

sizing and medium arbitration; the mechanism of prioritization 
is a key determinant for the communication delays. These 
features simplify worst-case latency analysis. 
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Table I shows the packets prioritisation in the current 
version of the LARAD Data Communication Definition 
between the OBC and Joint Electronics. Lower values take 
priority. “JE-X” designates a specific JE module (X can take 
values 0-5), “*” indicates broadcast. 

TABLE I.  PACKETS PRIORITISATION OF THE LARAD OBC-JE PROTOCOL 

Message 
priority Message name Sender Recipient 

0 Emergency Stop OBC JE-X or * 
1 Non-emergency Stop OBC JE-X or * 
2 Position Control OBC JE-X 
3 Torque Control OBC JE-X 
4 Start Motion OBC JE-X 
5 Brake Control OBC JE-X 
6 Parameter Update OBC JE-X 
7 Error Message JE-X JE-X 
8 Telemetry JE-X JE-X 

 
Considering message size, frame overhead due to the CAN 

standard and bit stuffing mechanism [3], the worst-case 
estimates shown in Table II are calculated for LARAD, 
assuming the bit rate of 1Mbps and extended frame format. 

TABLE II.  WORST-CASE SINGLE PACKET TRANSMISSION LATENCIES 
(CAN, EXTENDED FRAME FORMAT, 1 MBPS BIT RATE, 6-BIT INTER-FRAME 

DELAY) 

Message 
name 

Worst-
case 

stuffing 
bits 

Worst-
case frame 
size [bits] 

Worst-
case single 

frame 
delay [s] 

Worst-
case total 

packet 
delay [s] 

Emergency 
Stop 17 105 105.0E-6 105.0E-6 

Non-
emergency 

Stop 
17 105 105.0E-6 105.0E-6 

Position 
Control 25 153 153.0E-6 153.0E-6 

Torque 
Control 22 134 134.0E-6 134.0E-6 

Start 
Motion 19 115 115.0E-6 115.0E-6 

Brake 
Control 19 115 115.0E-6 115.0E-6 

Parameter 
Update 25 153 153.0E-6 630.0E-6 

Error 
Message 20 124 124.0E-6 124.0E-6 

Telemetry 25 153 153.0E-6 630.0E-6 
 
The analysis of all possible combinations of messages with 

the features showed in Table II yields a worst-case sequence of 
messages potentially leading to the worst-case latencies for the 
messages transmitted over CAN bus given in Table III. 

TABLE III.  WORST-CASE OBC-JE TRANSMISSION LATENCIES (CAN, 
EXTENDED FRAME FORMAT, 1MBPS BIT RATE, 6-BIT INTER-FRAME DELAY) 

Message name Worst-case transmission delay [s] 
Emergency Stop 105.0E-6 

Non-emergency Stop 105.0E-6 
Position Control 153.0E-6 

Torque Control 134.0E-6 
Start Motion 115.0E-6 

Brake Control 115.0E-6 
Parameter Update 630.0E-6 

Error Message 7.0E-3 
Telemetry 10.2E-3 

 
Table II reveals that the worst-case latency upper bound for 

the Telemetry message meets the timing requirements 
discussed in Section II. However, values are close to the 
established acceptability threshold (10 ms). The future use of 
more sophisticated end effectors and control strategies 
involving additional sensors requires higher bandwidth, beyond 
the possibilities offered by CAN. 

IV. WORST-CASE LATENCY ANALYSIS METHOD FOR 
SPACEWIRE 

The SpaceWire protocol allows for the setup of networks 
with arbitrary topology and traffic. Therefore, calculating 
worst-case latencies in this kind of networks is not trivial. A 
pessimistic upper-bound method to calculate the actual worst-
case latency values has been proposed [4], which inherently 
over-estimates the figures to a certain extent, similarly to what 
was done with the analysis for CAN presented in the previous 
section. 

Unlike the current CAN-based control system, the LARAD 
SpaceWire control system will have to be able to host an 
exchangeable End Effector (EE). As a result, the resulting 
packet flows are summarised in Table IV. 

TABLE IV.  PACKET FLOWS IN THE LARAD CONTROL SYSTEM 
SPACEWIRE NETWORK 

Packet 
Flow Source Destination Packet size 

Tf 
fOBCJE-X OBC JE-X for X = 0..5 24 

fJE-XOBC JE-X for X = 0..5 OBC 24 

fOBCEE OBC EE TOBCEE 

fEEOBC EE OBC TEEOBC 

 
The End Effector is intended to be exchangeable. 

Therefore, the properties of the flows fEEOBC and fOBCEE 
cannot be fixed at this point. They will be treated as additional 
variables in the analysis. This leads to the following parameters 
on which worst-case network latencies depend: 

• Spacewire network topology and packet routing; 
• Link bit rate; 
• Maximum sizes of the packets transmitted between 

the EE and the OBC in both directions. 
A parametric analysis focusing on these three factors is 

presented in the next sections. 

V. SPACEWIRE LATENCIES ANALYSIS – NO END EFFECTOR 
In a configuration with no end effector, EE and JE traffic 

do not interact. This case provides a baseline for comparison 
with the CAN-based design (Section III), in which the EE is 
controlled via a dedicated bus. Furthermore, this will cover the 
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nominal scenarios for those network topologies which allow 
routing motor control flows independently of the End Effector 
data flows (i.e. doubly-linked chain and ring topologies); note 
that all the network topologies allowed in LARAD are 
discussed in details in a previous publication [1]. 

Assuming a link bit rate C of 1 Mbps, the method of 
Ferrandiz et al. yields, for the chain, ring, interleaved ring, and 
doubly-linked chain topologies, the worst-case latency upper 
bounds shown in Fig. 1. 

The method of Ferrandiz et al. [4] provides what can be 
argued to be very pessimistic latency figures. In order to get a 
better idea about the expected performance of the SpaceWire 
implementation of the LARAD control system, let us consider 
an optimistic scenario in which packets do not delay one 
another. In this case, network latency is simply the time 
necessary to transmit the longest packet between the furthest 
JE node and the OBC. This results in latency and 
corresponding maximum achievable control loop frequency 
figures shown in Table V. 

Figure 1a shows the obtained upper-bounds on worst-case 
latencies for the flows fOBC→JE-X (telecommand), and Fig. 1b 
for the flows fJE-X→OBC (telemetry). 

Note the considerable (one order of magnitude) disparity 
between the pessimistic and optimistic estimates obtained for 
the chain topology for the 1 Mbps link bandwidth. The 
behaviour of the network in practice will be somewhere 
between these figures. 

 
(a) 

 
(b) 

Fig. 1. Worst-case SpaceWire network latencies without the EE data flows  
(C = 1 Mbps) for Joint Electronics telecommand (a) and telemetry (b) 

TABLE V.  OPTIMISTIC SPACEWIRE NETWORK LATENCIES WITHOUT THE 
EE DATA FLOWS FOR JOINT ELECTRONICS TELECOMMAND AND TELEMETRY 

C [Mpbs] 1 10 200 

Topology Latency 
[s] 

Freq. 
[kHz] 

Latency 
[s] 

Freq. 
[kHz] 

Latency 
[s] 

Freq. 
[kHz] 

Chain 195.00 
E-06 5.13 22.20E-

06 45.05 3.96E-06 252.53 
Ring / I-Ring / 

D-Chain 
193.50 
E-06 5.17 20.70E-

06 48.31 2.46E-06 406.50 

Calculations presented so far in this section assume that the 
End Effector is either not present, it does not communicate 
with the OBC during the arm movement, or its data flows are 
routed separately from the JE data flows. The latter is 
achievable in the doubly-linked chain and ring topologies. In 
this case, these become equivalent to the chain topology 
without the EE traffic and thus are expected to offer the same 
performance. In the case of the remaining SpaceWire network 
topology options (chain and interleaved ring), for the analysis 
to be more representative, the interaction between the motor 
control and End Effector traffic needs to be taken into account. 
The same applies for the doubly-linked chain and ring 
topologies when some of the links are lost due to failures. We 
investigate these scenarios in the next sections. 

VI. SPACEWIRE LATENCIES ANALYSIS – CHAIN AND 
INTERLEAVED RING TOPOLOGIES WITH EE TRAFFIC 

The LARAD End Effector is intended to be exchangeable. 
Therefore, a parametric analysis is proposed here, assuming 
different maximum sizes of the End Effector traffic packets 
(for both telecommand and telemetry). 

Assuming that the ranges of realistic telecommand sizes is 
covered by the values of TOBCEE of 128, 256, 512, and 1024 
bytes, and of realistic telemetry sizes by the values of TEEOBC 
equal to 1, 16, 128, and 1024 KB, the upper bounds on worst-
case latencies of the OBC-JE communication in the chain 
network with link speed of 10 Mbps are as shown in Fig. 2. 

The overall conclusion from the latency analysis for the 
network with chain topology is that, should it be adopted, 
careful attention would have to be paid to the properties of the 
End Effector protocols: End Effector communication shall not 
disrupt the operation of the LARAD control system. 

 

 
(a) 

 
(b) 

Fig. 2. Worst-case SpaceWire latencies in a network with chain topology  
(C = 10 Mbps) for JE telecommand (a) and telemetry (b) 
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More optimistic conclusions can be drawn in the case of the 
Interleaved Ring network topology. Although End Effector and 
Joint Electronics data flows cannot be routed completely 
independently in this topology, it is possible to set up packet 
routing in such a way that End Effector telemetry does not 
interfere with any other data flow [1]. 

The upper bounds on worst-case latencies for a network 
with such routing, calculated under the same conditions as for 
the chain topology, are shown in Fig. 3. EE telecommand data 
flows introduce increased latencies on the data flows of the JE 
modules which they share communication links with. 
However, the interference is at acceptable levels for all 
considered packet sizes. Maximum obtained latency bounds 
are 0.992 ms for JE telemetry and 1.68 ms for JE telecommand 
(both for JE-1). Note that in the case of JE telemetry, latency 
values do not depend on the EE telemetry maximum packet 
size, as the flows do not interact. Increased latencies in the case 
of JE-1, JE-3, and JE-5 are caused by the fact these telemetry 
flows interact with their own telecommand flows, as they are 
all transmitted in the same direction along the ring. 

 

 
(a) 

 
(b) 

Fig. 3. Worst-case SpaceWire latencies in a network with interleaved ring 
topology (C = 10 Mbps) for JE telecommand (a) and telemetry (b) 

 
The qualitative conclusion from the analysis in the presence 

of the EE is that EE telemetry traffic, due to its large packet 
sizes, can be very disruptive in terms of latency performance to 
the data flows it shares communication links with. In order to 
guarantee that motor control communication meets the 
assumed deadlines at the link speed of 10 Mbps, the maximum 
allowable size of the EE Telemetry packet in the case of the 
chain topology is only around 16 KB. The case of the 
interleaved ring topology demonstrates that if EE telemetry 
traffic can be isolated, much more optimistic latency estimates 

are obtained. Even if sophisticated routing set-up is needed, 
figures indicate it is worth the effort. 

VII. SPACEWIRE LATENCIES ANALYSIS – CONTINGENCY 
SCENARIOS 

The distinct advantage of the doubly-linked chain, ring, and 
interleaved ring topologies in comparison to the chain topology 
is the resistance of the former three to link failures. For the first 
two topologies, a failure of any of the SpaceWire links (except 
for the internal links between JEs and their built-in SpW 
Switches) means that EE messages cannot be routed 
independently from the motor control messages any more. The 
extent to which link loss affects worst-case latency estimates 
for each of these three topologies is assessed in this section. 

Multiple different points of failure are possible for doubly-
linked chain, ring, and interleaved ring topologies. Here the 
analysis focuses on the representative cases shown in Fig. 4. 

 

 
Fig. 4. Example failure points (red crosses) chosen for the doubly-linked 

chain topology (a), ring topology (b) and interleaved ring topology (c) 
 
For telecommands, the estimated latencies are all well 

within the assumed acceptable range (10 ms). The largest 
figures have been obtained for the doubly-linked chain 
topology – about 2.6 ms for TOBCEE of 1 KB, and about 1.4 ms 
for TOBCEE of 512 B; in all other cases the estimated worst-
case latencies are below 1 ms. The reason behind increased 
estimates for the doubly-linked chain topology is that in this 
case the interaction between the JE and EE data flows may be 
indirect, and therefore the delay caused by EE packets may be 
inflicted multiple times (e.g. flow fOBCJE-0 is potentially 
delayed by flows fOBCJE-3, fOBCJE-4, and fOBCJE-5, each of 
which can be delayed on the link between JE-2 and JE-3 
routers by packets belonging to fOBCEE). In situations depicted 
in Fig. 4b and in Fig. 4c, according to the calculation method 
[4] adopted, the delay caused by the EE packets may be 
inflicted only once, in the OBC node, in which all interacting 
packet flows originate. As the result, figures obtained for 
telecommands sent over ring and interleaved ring topologies 
are identical. As may be expected, they are also equivalent to 
the performance of the simple chain topology without failures. 

Upper-bounds on the worst-case network latencies 
calculated for the three scenarios for both telecommands and 
telemetries are shown in Fig. 5, Fig. 6 and Fig. 7. 
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(a) 

 
(b) 

Fig. 5. Worst-case SpaceWire latencies for the JE telecommand (a) and 
telemetry (b) data flows in the doubly-linked chain network topologies with 

failures as per Fig. 4a 

 
(a) 

 
(b) 

Fig. 6. Worst-case SpaceWire latencies for the JE telecommand (a) and 
telemetry (b) data flows in the ring network topologies with failures as per Fig. 

4b 
The general conclusion from the analysis of the worst-case 

latencies in the fail-over scenarios is that although the 
considered network topologies offer resistance to failures in the 
sense of network connectivity, the resulting jitter in 
communication timings may cause it to be challenging to 
guarantee reliable operation of the LARAD control system in 
parallel with the End Effector payload. 

 
(a) 

 
(b) 

Fig. 7. Worst-case SpaceWire latencies for the JE telecommand (a) and 
telemetry (b) data flows in the interleaved ring network topologies with failures 

as per Fig. 4c 

VIII. CONCLUSIONS 
A system-level evaluation of a new SpaceWire version of 

the LARAD control system has revealed a number of benefits 
compared to the current CAN-based version [1]. The following 
SpaceWire network topologies have been taken in 
consideration for LARAD: star, chain, doubly-linked chain, 
ring, interleaved ring.  

The latency analysis results presented in this paper 
contribute to the general conclusion that the interleaved ring 
topology provides the best trade-off in terms of performance 
and reliability of the overall control system. 

The SpaceWire-based version of the LARAD control 
system was analysed with asynchronous communication 
because of assumptions on the functioning of the End Effector; 
this has the by-product of high jitter. Further analysis should 
consider the use of SpW-D 2.0 which will provide a mix of 
synchronous and asynchronous communication services, hence 
reducing jitter to very low values for critical communications 
(LARAD control). 
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Abstract—Cobham Gaisler presents the SpaceFibre Port IP 
Core implementation GRSPFI. A fully validated VHDL imple-
mentation is readily available. 

Index Terms— ASIC, FPGA, Networking, SpaceFibre 

I. INTRODUCTION 
SpaceFibre is a new high-speed serial data link specifically 

designed for spaceflight applications that incorporates several 
Quality-of-Service (QoS) techniques. Independent communica-
tion channels can be combined into a single network stream by 
means of virtual channels. The virtual channels are multiplexed 
based on reserved bandwidth, priorities, time-slots, or a 
combination of these mechanisms. Integrated Fault Detection, 
Isolation and Recovery (FDIR) support guarantees fault-free 
communication. Comparable to other modern intercommunica-
tion architectures like Serial RapidIO, Serial ATA or PCI 
Express, SpaceFibre communicates over a Serialiser/De-
serialiser (SerDes) device and can therefore reach throughput 
rates of several Gigabits Per Second (Gbps). However, due to its 
native support of the SpaceWire packet format, its small area 
overhead and its high performance, SpaceFibre is particularly 
well suited for future high-speed on-board communication. 

Cobham Gaisler closely follows the standardization efforts 
of the European Cooperation for Space Standardization (ECSS), 
which will soon publish the SpaceFibre Specification E-ST-50-
11C. Already now, Cobham Gaisler can provide a draft single-
lane SpaceFibre IP core that can easily be implemented on 
modern FPGA devices like Xilinx Virtex-5 or Microsemi 
RTG4.  

II. SPACEFIBRE 
SpaceFibre is a high-speed serial link mainly designed for 

payload data processing applications on board spacecraft. Like 
many other modern network architectures, SpaceFibre utilises a 
SerDes circuit at its physical layer, allowing data rates of 2 Gbps 
and more. The SerDes can either be part of the chip design or a 
standalone device can be used. 

Interfacing a SpaceFibre port from the user application is 
simple as it closely follows the procedure known from 
SpaceWire. A SpaceFibre port has one or more pairs of transmit 
and receive buffers, referred to as virtual channels, and each 
virtual channel acts like a single SpaceWire interface,  

 
Fig. 1. Simplified block diagram of the GRSPFI SpaceFibre Port IP Core. 
 
i.e. several SpaceWire network streams can be multiplexed 

into one SpaceFibre network stream. The multiplexer is called 
medium access controller and is choosing the active virtual 
channel according to a number of Quality-of-Service rules. 

Data is always transferred in frames with a size of 256 bytes 
or less. While such a data frame is passed to the physical link, it 
is also stored in an error recovery buffer. It remains in this buffer 
until the destination node acknowledges the correct reception of 
the frame, which is detected by checking a CRC checksum at the 
end of the frame. However, if the destination node sends a 
negative-acknowledgement (NACK) word instead, the frame is 
re-transmitted from the error-recovery buffer. 

Aside from data frames, SpaceFibre also supports broadcast 
frames, which are multi-purpose high-priority messages. These 
messages are comparable to SpaceWire time-codes but in 
addition to a simple sequence number they also comprise a data 
payload of 8 bytes. Broadcast frames are stored in the error 
recovery buffer just like the data frames, i.e. they are 
automatically retransmitted after a link error. 

On the receive side, incoming data from the physical link is 
processed continuously, i.e. one 32-bit word is processed every 
clock cycle. To avoid buffer overruns in the virtual channel 
receive buffers, the communication between a virtual channel 
transmit buffer in the local node and the virtual channel receive 
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buffer in the destination node is flow-controlled by means of 
Flow Control Token (FCT) words. Just like the data and 
broadcast frames, the FCT words are stored in the error recovery 
buffer and are therefore retransmitted in case of errors. 

III. GRSPFI – SPACEFIBRE PORT IP CORE 
A simplified block diagram of the SpaceFibre IP core can be 

seen in Figure 1. As described in [1], the SpaceFibre IP port 
comprises a data link layer and lane layer. Internally, the data 
link layer is further divided into the so-called broadcast layer, 
virtual channel layer and retry layer, which are responsible for 
the transmission and reception of broadcast frames, for the 
transmission and reception of data frames and for the error 
recovery mechanism, respectively. 

A. Hard Configuration Options 
Instantiating the GRSPFI IP Core is straight-forward. The 

following configurations options are available at compile time 
through VHDL generics: 

 
1) Virtual Channels 

• The number of virtual channels. 
• The depth of the receive buffers. 
• The depth of the transmit buffers. 
• Width of the data bandwidth credit counter. 
• Bandwidth idle time limit in clock cycles. 

 
2) Broadcast Channel 

• Width of the broadcast bandwidth credit counter. 
• Minimum bandwidth credit threshold limit. 

 
3) Error-Recovery 

• Depth of the data error recovery buffer. 
• Depth of the FCT error recovery buffer. 
• Depth of the broadcast error recovery buffer. 

 
4) SerDes Interface 

• With internal 8B/10B coding: 20-bit or 40-bit 
interface, without internal 8B/10B coding: 18-bit or 
36-bit interface. 

• Enable/disable internal 8B/10B coding. 
• Use a separate transmission clock: This feature is 

mandatory if the 18-/20-bit SerDes interface is used 
and optional in case of the 36-/40-bit interface. 

 
5) Technology 

• Use asynchronous or synchronous reset. 
• Memory technology: enables the automatic 

instantiation of technology-dependent internal 
RAMs, including fault-tolerant versions, for 
different ASIC and FPGA families. 

B. Soft Configuration Options 
The following options can be set during runtime: 

• Lane Start & Autostart. 
• Internal loopback. 

• Enable/disable data scrambler. 
• Expected broadcast bandwidth value. 
• An expected virtual channel bandwidth value for 

each virtual channel. 
• A timeslot vector for each virtual channel. 
• A priority value for each virtual channel. 

 

C. Status Registers and Flags 
The GRSPFI IP Core implements all status registers and 

flags as required by [1]. They indicate the current state of the 
lane (e.g. lane state and RXERR word counter) and data link 
layer (e.g. error-recovery retry count, sequence errors, CRC16 
errors, virtual channel bandwidth over- and underuse). 

 

D. Interfacing the SerDes 
Connecting the GRSPFI IP Core to a SerDes is done through 

an interface logic that allows various clocking and data width 
schemes, supporting a wide range of available on-chip and off-
chip SerDes circuits. On the transmit side, it comprises the 
optional 8B/10B encoder and an optional asynchronous FIFO 
used for data width conversion and clock domain crossing. On 
the receive side, it comprises the optional 8B/10B decoder, the 
optional data path with conversion logic, the word 
synchronisation logic and the elastic buffer. 
 
Example 1: A Xilinx RocketIO GTX transceiver [2] with its own 
8B/10B coding logic can be interfaced through a 36-bit 
interface. Then, only one transmission clock is needed for both 
the GTX transceiver and the GRSPFI IP Core.  
 
Example 2: The SerDes of a Microsemi RTG4 device [3] must 
be interfaced through its 20-bit wide EPCS interface and does 
not include its own 8B/10B coding logic. In this case, the 
GRSPFI IP Core can be configured to implement the 8B/10B 
encoder and decoder and the asynchronous FIFO on the transmit 
side. Then, two transmission clocks are required, one for the 
SerDes and one derived clock for the GRSPFI IP Core at half 
the frequency. For instance, to achieve an effective link speed of 
2.5 Gbps, the SerDes would need to be clocked at 125 MHz and 
the GRSPFI IP Core at 62.5 MHz. 
 

IV. VERIFICATION AND VALIDATION 
The IP core is fully verified by means of a VHDL testbench 

system and validated in hardware.  
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Fig. 2. Block diagram of the GRSPFI SpaceFibre Port IP Core testbench. 

 

A. Verification 
The default testbench setup comprises a SpaceFibre port 

with four virtual channels as depicted in Figure 2. Four data 
generator and data sink processes are connected to the virtual 
channel interface as well as one broadcast generator and 
broadcast sink process to the broadcast interface. The signals to 
the SerDes can either be looped back to the SpaceFibre port 
through a link monitor process or directly fed into the testbench 
process, allowing two basic operation modes:  

 
• The SpaceFibre port is operated in (external) loopback 

mode, i.e. data and broadcasts transmitted by one of the 
generator processes arrive in the corresponding sink 
process and the link initialisation handshake is done 
automatically between the transmit and receive side of 
the SpaceFibre port. 

• The SerDes signals are directly stimulated, i.e. data and 
broadcasts transmitted by one of the generator 
processes arrive in the testbench process and the link 
initialisation handshake is managed by the testbench 
process. 

 
The first operation mode is well suited for testing most 

Quality-of-Service features of the port whereas the second 
operation mode is particularly useful for driving the port into 
states, which are rarely hit during normal operation.  

The testbench executes 45 tests altogether, including tests 
covering all aspects of the lane layer, the virtual channel data 
communication and flow control, the virtual channel QoS 
mechanisms (bandwidth allocation, priorities, timeslots, 
babbling idiot protection), the reception and transmission of 
broadcasts, the correct behaviour of the error-recovery 
mechanisms and the data scrambler and de-scrambler. 

The IP core was verified according to guidelines of the 
European Space Agency (ESA). Full code coverage was 
achieved, i.e. 100% statement coverage, 100% branch coverage 
and 100% FEC condition terms coverage. 

B. Validation 
The SpaceFibre IP has been successfully verified in a 

hardware testbench as depicted in the block diagram in Figure 
3. The IP is configured to have four virtual channels and one 
data test block is connected to each of these channels. A data test 
block is able to send and receive SpaceWire packets through its 
virtual channel with maximum bandwidth. On the receive side, 
incoming data is checked for correctness by means of a sequence 
number as well as detectors for EOP and EEP characters. In 
addition, a timer is running throughout the reception of data, 
allowing the calculation of the average data throughput rate. 
Similarly, a broadcast test block is connected to the broadcast 
interface of the SpaceFibre IP that is able to send and receive 
broadcast frames at a configurable frequency. Again, received 
broadcasts are checked for correctness and a timer allows the 
calculation of the throughput rate. In addition, a counter keeps 
track of the number of broadcasts that were received with a Late 
flag set to 1. The configuration and status registers of the data 
and broadcast test blocks are accessible through an APB bus 
interface.  

 

 
Fig. 3. Block diagram of the hardware validation setup. 
 
 
A link analyser is placed between the SpaceFibre IP and the 

RocketIO GTX transceiver, allowing the monitoring of 
incoming and outgoing traffic. The link analyser block can 
trigger on specific SpaceFibre control words or specific word 
content. A trace buffer is then filled with 8192 values, which can 
later be read out through an APB interface.  

Communication with the hardware testbench is done through 
a UART block that is connected to the APB bus. On the host PC, 
GRMON [4] is responsible for setting and reading the 
configuration and status registers. Within GRMON, a TCP 
server listens for commands. A graphical user interface has been 
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designed that allows a quick and easy validation of the hardware. 
A brief overview of its functionality is given in the next sections.  

 
1) Test Software 

a) Port Configuration 
 

 
Fig. 4. Screenshot of the GUI: Port configuration. 
 
The following functions are available on this first tab, see 

Figure 4: 
 
• Lane Layer: The 'Start', 'Autostart' and 'Internal 

Loopback' control flags can be toggled. All status flags 
and values are displayed.   

• Retry Layer: The 'Scrambler Enabled' flag can be 
toggled. All status flags and values are displayed.   

• Broadcast Channel: The expected bandwidth value can 
be chosen (1% to 95%).   

• Virtual Channels: The expected bandwidth value can 
be chosen (1% to 95%), the priority level can be chosen 
(0 to 15) and a timeslot vector can be defined as hex 
value.   

• A warm reset and SpFi system reset can be triggered.   
 

b) Data and Broadcast Tests 
The following functions are available on the second tab, see 

Figure 5: 
 
• Data Tests: Up to 4 SpaceWire addresses, the packet 

length as well as the number of packets can be defined. 
The transmit and receive side can be enabled separately 
and an auto-repeat function allows the continuous 
generation of packets. Important status information is 
shown, including the average throughput rate for the 
last block of packets. 

• Broadcast Test: The number of broadcasts, the 
broadcast channel as well as the transmission delay 
between each broadcast can be defined. Similarly to the 
data test blocks, the transmit and receive side can be 
enabled separately and an auto-repeat function allows 
the continuous generation of broadcasts. Important 

status information is shown, including the average 
throughput rate for the last block of broadcasts. 

 

 
Fig. 5. Screenshot of the GUI: Data and broadcast tests. 
 
c) Link Analyser 

 

 
Fig. 6. Screenshot of the GUI: Link analyser. 
 
On this tab, see Figure 6, link traffic to/from the SerDes can 

be analysed. It is possible to trigger on either the receive or 
transmit side on the following words: Any, Data/Broadcast 
Payload, SKIP, IDLE, INIT1, INIT2, INIT3, STANDBY, LOS, 
ACK, NACK, FULL, RETRY, SDF, EDF, SBF, EBF, FCT, SIF 
and RXERR. Depending on the word, further trigger conditions 
can be added. For instance, the SDF word allows the triggering 
on a specific virtual channel number or the EBF word allows the 
triggering on a specific sequence number or late flag. In 
addition, a sample trigger point can be defined. Once the core is 
armed, the software is waiting for the trigger condition to 
become true. Then, the 8192 values are transferred to the host 
PC and displayed in a table. The table displays the raw data 
word, the corresponding K-flags as well as information about 
control words. On the receive side, the RX error flags and the 
byte alignment flags of the SerDes are displayed as well. 
Multiple rows of the table can be selected and exported as a text 
file. 

 
  

Doc. No: SPFI-VVR-0001

Issue: 1 Rev.: 0

Date: 2016-02-29 Page: 41 of 47

Status: Approved

6.1.1 Port Configuration

The following functions are available on this tab:

• Lane Layer: The 'Start', 'Autostart' and 'Internal Loopback' control flags can be toggled. All 

status flags and values are displayed.

• Retry Layer: The 'Scrambler Enabled' flag can be toggled. All status flags and values are 

displayed.

• Broadcast Channel: The expected bandwidth value can be chosen (1% to 95%).

• Virtual Channels: The expected bandwidth value can be chosen (1% to 95%), the priority 

level can be chosen (0 to 15) and a timeslot vector can be defined as hex value.

• A warm reset and SpFi system reset can be triggered.
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Figure 4: SpaceFibre IP Core Demonstrator Software: Port Configuration

Doc. No: SPFI-VVR-0001

Issue: 1 Rev.: 0

Date: 2016-02-29 Page: 42 of 47

Status: Approved

6.1.2 Data and Broadcast Tests

The following functions are available on this tab:

• Data Tests: Up to 4 SpaceWire addresses, the packet length as well as the number of packets

can be defined. The transmit and receive side can be enabled separately and an auto-repeat 

function allows the continuous generation of packets. All important status information is 

shown, including the average throughput rate for the last block of packets.

• Broadcast Test: The number of broadcasts, the broadcast channel as well as the transmission 

delay between each broadcast can be defined. Similarly to the data test blocks, the transmit 

and receive side can be enabled separately and an auto-repeat function allows the continuous

generation of broadcasts. All important status information is shown, including the average 

throughput rate for the last block of broadcasts.
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Figure 5: SpaceFibre IP Core Demonstrator Software: Data and Broadcast Tests
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6.1.3 Link Analyser

On this tab, link traffic to/from the SerDes can be analysed. It is possible to trigger on either the 

receive or transmit side on the following words: Any, Data/Broadcast Payload, SKIP, IDLE, INIT1, 

INIT2, INIT3, STANDBY, LOS, ACK, NACK, FULL, RETRY, SDF, EDF, SBF, EBF, FCT, SIF 

and RXERR. Depending on the word, further trigger conditions can be added. For instance, the 

SDF word allows the triggering on a specific virtual channel number or the EBF word allows the 

triggering on a specific sequence number or late flag. In addition, a sample trigger point can be 

defined. Once the core is armed, the software is waiting for the trigger condition to become true. 

Then, the 8192 values are transferred to the host PC and displayed in a table. The table displays the 

raw data word, the corresponding K-flags as well as information about control words. On the 

receive side, the RX error flags and the byte alignment flags of the SerDes are displayed as well. 

Multiple rows of the table can be selected and exported as a text file.

© Cobham Gaisler AB
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Figure 6: SpaceFibre IP Core Demonstrator Software: Link Analyser
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2) Test Setup, Cases and Results 
The testbench uses a RocketIO GTX transceiver tile 

available on the Virtex-5 device, which is connected to Serial 
ATA connectors on the Xilinx ML510 development board. The 
internal data width of the SerDes is 20 bits with a target line 
frequency of 2.5 Gbps. The internal 8B/10B encoder/decoder is 
enabled and the interface data width is 32 bits. The reference 
clock is 100 MHz and provided by the system clock of the 
ML510 board.  

The GTX transceiver's PLL provides a 125 MHz clock 
(TXOUTCLK), which is used to feed both the TXUSRCLK and 
RXUSRCLK. For the 32-bit wide interface and the SpaceFibre 
IP core a 62.5 MHz clock is needed, however, and therefore 
TXOUTCLK is first fed into a DCM that generates this phase-
aligned divided clock.  

Standard settings for pre-emphasis and differential swing are 
used, however, RX equalization is enabled. The receive side is 
terminated with a termination voltage of 2/3 * VTTRX. The 
comma detection is set up to detect and align on positive and 
negative K28.5 commas. Clock correction for the elastic buffer 
is enabled and set up to use the SKIP word as clock correction 
sequence. 

Near-end PMA loopback was enabled in the RocketIO 
Transceiver, i.e. the transmitted data was serialised, looped 
back, de-serialised and fed back to the receive side of the 
SpaceFibre IP core. This configuration allowed in-depth testing 
of all cases listed in Table I. They cover all aspects of SpaceFibre 
and were partly conducted over the course of days or even weeks 
to ensure data integrity and that the logic is driven in all possible 
states. 

TABLE I.  HARDWARE VALIDATION TEST CASES 

Test Case Description Result 
Link initialisation handshake test (link start and auto start 
mode). Passed 

Transmission and reception of data frames. Passed 

Data frames interrupted by link resets are resent correctly. Passed 

Transmission and reception of broadcast frames. Passed 
Broadcast frames interrupted by link resets are resent 
correctly. Passed 

Scrambled data frames transmitted/received correctly. Passed 
Broadcast transmissions do not exceed maximum allowed 
bandwidth value. Passed 

Priority mechanism for virtual channels works as expected. Passed 

Timeslot mechanism for virtual channels works as expected. Passed 

Bandwidth limitation of virtual channels works as expected. Passed 

Internal loopback mode works as expected. Passed 

 

V. IMPLEMENTATION RESULTS 
Example post-P&R results for Virtex-5 FX130 are given in 

Table 2. A typical implementation with 4 virtual channels (1024-
words deep transmit and receive buffers) was chosen. 

TABLE II.  IMPLEMENTATION RESULTS ON VIRTEX-5 FX130 

Max. Throughput Rate: > 6.25 Gbps (ƒ = 156.25 MHz) 

Slice LUTs: 4318/81920 (5%) 

Slice Flip-flops: 1892/81920 (2%) 

Block RAMs: 11/298 (3%) 

 
As can be seen from the results, the pipelined structure of the 
GRSPFI IP Core allows high throughput rates while keeping 
the resource utilisation low. Similar results can be expected for 
Microsemi’s RTG4 device and preliminary experiments 
showed that small configurations (e.g. with 2 virtual channels) 
can also be implemented on older devices like Microsemi’s 
RTAX2000. 

VI. CONCLUSIONS 
Cobham Gaisler offers with the GRSPFI SpaceFibre Port IP 

core a fast and easy to implement single-lane implementation of 
SpaceFibre with low area and power overhead. It is fully verified 
in a complex VHDL testbench environment and validated by 
means of a FPGA prototype system that also includes a versatile 
test and debug software. 
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Abstract - SpaceWire is integrated networking technology 

where the data packets and control traffic in the form of hard 

real-time signals are transmitted throw the same links of 

communication network. Last decades for hard real-time signals 

transmission in onboard networks the specialized buses like 

CAN and MIL-STD 155b and sideband signals were used. All 

buses have the property that the signal from the source node to 

all other nodes propagates simultaneously, so there is no jitter 

for signal delivery. When the industry moves to a common 

communication medium for control and data traffic 

transmission through network with routing switches and point-

to-point connections, there is a problem of synchronization hard 

real-time signals delivery from the source to all other nodes  

because of different distance (number of switches and link 

speeds in a path) between source and receiver.  

There are many different algorithms and methods for the 

system time synchronization. In this paper we consider the 

questions of delivery synchronization of distributed interrupts 

which intended to control and inform the devices about critical 

system events in hard real-time.  

Index Terms—hard real-time signaling, Distributed Interrupts, 

synchronization 

INTRODUCTION 

SpaceWire standard has developed specially for aerospace 

applications, [1]. For every onboard system the important task 

is the control signal transmission in hard real-time.  

The SpaceWire standard for hard real-time signal 

transmission uses the mechanism of time-codes transmission 

and the distributed interrupts mechanism. The distributed 

interrupts mechanism can work in two modes: with or without 

acknowledges. They can be used for: 

 for control signal transmission in hard real-time 

(distributed interrupts in mode with 

acknowledges); 

 for notification signals transmission in hard real-

time (distributed interrupts in mode without 

acknowledges); 

 for synchronization of distributed actions 

(distributed interrupts in mode without 

acknowledges). 

In this paper we consider the use case of distributed 

interrupts mechanism for distributed actions synchronization.   

FORMULATION OF THE DISTRIBUTED ACTIONS 

SYNCHRONIZATION TASK 

Assume that it is necessary to synchronize the certain 

actions in the group of devices. We use the distributed 

interrupts in the mode without acknowledge. The source of 

the interrupt is the one pre-known node, which sends the 

distributed interrupt when: 

 particular event appears and the time between 

events can be different, or,  

 by timer, and the time between events is the 

same.  

The recipients of these interrupts are pre-defined group of 

the devices in which some distributed action should be 

synchronized. The devices of this group could be concentrated 

at one part of the subnetwork/region, or could be distributed 

between different parts of network. The propagation time of 

the distributed interrupt code from the source to all recipients 

might be different, even though small, therefore there is the 

task of distributed interrupts delivery synchronization from 

the known source to the group of recipients which are known 

in advance, at system design stage. This task requires that 

jitter of interrupt code propagation time from the source to all 

recipients should be minimized.  

The paper [2] describes the time characteristics of 

distributed interrupts in general and was basically aimed for 

estimation of maximum propagation time and timeouts values. 

Let consider the interrupt-code propagation time from the 

point of view of our problem.  

The maximum propagation time of an interrupt code 

between most distanced nodes by the shortest path is defined 

in the paper [3]: 

ccccbitwtcccQueue TDNTTDTLT  ))1(()1(max
, (1) 

where  LQueue – the worst case of queue length with 

interrupts/acknowledges codes, D – the number of edges 

(links) in the shortest path between the most distanced nodes,  

Twtc – interrupt-code propagation time through the router 

without taking into account the latency of previous codes 

transmission, Tcc – control code  propagation time through the 

link, Tbit – propagation time of one bit through the link. In our 

task we are interested in the mean interrupt-code propagation 

time. 
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The Interrupt-code from the known source node to each of 

the known handler nodes propagates through the shortest path. 

Let P – a set of paths from the source node to the n handler 

nodes: 

P = {P1, P2, …, Pn}     (2) 

Every path P has a length LP of edges (links): 

LP = {LP1, LP2, …, LPn}    (3) 

The mean propagation time of the interrupt-code through 

the LPk path we could write as (4): 

),(
1

11 i

Buf
L

i

wtc

L

i i

CC
L

S

N
T

S

N
T i

P

i

P

kP
 





  (4) 

where the first sum defines the transmission time through 

the links and Si - is a speed in i-th links of LP path, the second 

sum defines the interrupt-code propagation time  through the 

routers in the path, where the first summand Twtci defines 

interrupt-code propagation time without taking into account 

the waiting time for transmission of previous codes in every 

router, the second summand defines the transmission time of 

symbols which are the previous to the interrupt-code, where – 

NBufi the number of bit waiting for transmission in buffer of 

output port. For every port we get its value of mean 

propagation time TLp (5): 

},...,,{
21 nP LPLPLPL TTTT    (5) 

From the equation (4) is seen that jitter depends on the 

number of links in the path, the speeds in these links, and if 

the network contains the routers of different versions the Twtc 

parameter can be different too. Also the value NBufi at each 

interrupt-code transmission at every router can be different. It 

is obvious that the task of interrupt-codes delivery 

synchronization is dependent on the specific structure of 

network, their parameters and interposition of the interrupt 

source and handlers (nodes which are necessary to 

synchronize). Therefore it is hardly ever possible to find the 

universal solution of this problem. Further we consider the 

different variants of solving this task. 

SYNCHRONIZATION OF INTERRUPTS CODE DELIVERY IN A 

STATIC SYSTEMS 

Under a static system we mean a system with known in 

advance topology, links speed, interposition of the interrupt 

source and all its handlers – group of nodes, which it is 

necessary to synchronize some actions in. For such a system 

at the stage of its design it is possible to determine 

theoretically the set of paths and their length. By the equation 

(4) it can be estimated the value of interrupt-code propagation 

time from the source to every handler, because links speed 

and the interrupt-code are known and the value of Twtc is 

defined by the device manufacturer. It remains to determine 

the values NBuf  for every output port of every router from the 

set of paths. These values depend on the flow intensity of 

time-codes and distributed interrupts of other types on the 

paths of propagation interrupt-codes for synchronization and 

its value can be calculated accurate. Therefore these values 

can be chosen by the system designer only approximately, 

based on presumptive control code flows in a particular 

system.     

Then we should calculate all values of the set TLp (5). 

Choose the maximum interrupt code propagation time from 

the set TLpMAX. Further, based on this maximum value it is 

necessary to calculate the correction values TCorr  for all other 

recipient nodes.  

 

},...,,{
21 nMAXMAXMAX LPLPLPLPLPLPCorr TTTTTTT  (6) 

 

The corresponding value of TCorr should be written in 

every recipient node. Then, when the interrupt code for 

synchronization is received, the node should wait during a 

time TCorr before starting the action TCorr, (7):    

 

TAct = TReceive + TCorr  (7) 

 

SYNCHRONIZATION OF INTERRUPTS CODE DELIVERY IN 

DYNAMIC SYSTEMS  

Under a dynamic system we mean a system in which 

during the operation devices or channels can be connected or 

disconnected, can be changed the link speeds and as 

consequence of this the traffic flows may be redistributed.  

Interrupt-codes are broadcasted from the source to all other 

nodes, so if occurred any changes, under which the network 

remains connected, the interrupt-codes would be delivered to 

all nodes in the network, but the paths of interrupts-code 

propagation could be changed in dependence with network 

state in transmission moment. That is why we can not 

calculate corrections before restarting the network and then 

use it during network operation. The variants of solving the 

interrupts-code delivery synchronization task in dynamical 

systems can be different, we consider them further.   

 

The theoretical method of interrupt-code delivery 

synchronization 

 

In current on-board networks methods of Plug and Play  

are actively developing and applying , which allow defining 

automatically network structure, including all connections and 

links speed, to configure and monitor the network state during 

the operation, [4, 5]. If the Plug and Play methods are used in 

the network, than the special node (or several nodes) – 

network manager, gets and contains all information about 

changes of link speed, in including/excluding devices and 

channels. In this case calculation of correction values could be 

done by a separate application on a node, which has the access 

to Plug and Play manager’s data.  

The interrupt-code source and handlers are known in 

advance; the shortest codes propagation paths and corrections 

for every recipient are calculated before network starting or 

during initialization. Further, when any changes in the 

network occur, the network manager checks whether these 

changes relate to the considered interrupt-code propagation 

paths. Next, for all paths where have been changes, the 
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application calculates new values of TLp, and check if the 

TLpMAX value has changed or not. If TLpMAX value has not 

changed, then it is required to recalculate the correction value 

TCorr only for nodes, which signal propagation path has 

changed. If the maximum value TLpMAX  has changed, it is 

required to recalculate the correction values TCorr for all 

recipient nodes. To provide possibility for changing correction 

values TCorr during the network operation, they should be 

stored in registers or some memory area, which allow access 

for writing by the RAMP protocol, [6].  

This method does not required large overheads for the 

traffic transmission of statistics, and require only existence of 

Plug and Play methods which monitor the changes in a system 

and some processing resources in one of the nodes, for 

example in the source node of in the manager-node of Plug 

and Play.    

 

  The statistical methods of interrupt-code delivery 

synchronization 

 

In the statistical method, in contrast to the theoretical, the 

interrupt-code delivery time to every recipient node should be 

estimated by experiments. Statistics should be collected based 

on the which the correction values could be calculated. For the 

statistic calculation it is required to measure the interrupt-code 

propagation time from the source to the recipient, which in 

itself is a difficult task because it requires that the time in all 

devices in the network should be synchronized. There are 

different time synchronization algorithms [7, 8], but all of 

them for synchronization use the time-codes (or packets), 

which propagate through the same links and have the same 

time delivery jitter as the interrupt-codes have.         

If the time in a system is not synchronized then for 

measuring of interrupt-code propagation time it is required to 

allocate the additional testing interrupt-code types with 

acknowledges. Sending the testing interrupt-code and get 

acknowledge it is possible to estimate the interrupt-code 

propagation time to the recipient. For collecting the statistics it 

is necessary to send such tested interrupt-codes many times 

that will create a significant additional load of the network 

and also takes one or more interrupt-codes types. 

These ways for solution of the interrupt-code delivery time 

synchronization task will be difficult and expensive in 

resources; It does not give the required accuracy also. 

Therefore it does not make sense to solve the interrupt-code 

delivery synchronization task by statistical methods.     

 

SYSTEMATIC APPROACH TO THE INTERRUPT-CODE 

DELIVERY SYNCHRONIZATION 

 

As was mentioned earlier and shown in equation (4), the 

interrupt-code delivery jitter is very dependent on network 

structure and links speed. The jitter will be greater if the 

recipient nodes are placed from the source at different 

distance, separated by a different number of routers, and if the 

speeds in links differ significantly. So if for some particular 

tasks in the network accuracy of interrupt-code delivery 

synchronization are important, then this task it should be 

solved at the system design stage.    

The system structure should be chosen in a way to reduce 

difference in distances between the source node and other 

recipient nodes of interrupt-codes. All onboard networks for 

reliability and fault tolerance have redundancy. This 

redundancy should be added in a way, that when some device 

(routers or links) fail, t the length of the interrupt-code 

propagation path due to its broadcast would not change, or 

change insignificantly. It allows minimizing changing of 

interrupt-code delivery jitter.  In the paper we considered the 

problem of interrupt-code synchronization delivery and 

described the ways for its solving: 

 At the stage of system design we recommend to 

choose the network structure in a way, that when 

some routers or links fail,the length of the interrupt-

code broadcasting propagation paths due to its are 

not changed, or changed insignificantly. Further, if it 

necessary, the correction values could be calculated 

theoretically for every recipient.   

 If the the network changes during its operations 

insignificantly, than it is sufficient to use only static 

method of interrupt-code delivery synchronization 

with the pre-calculated correction values. 

 If during the network operation its structure is 

changed significantly and the Plug and Play 

mechanisms are used, than we recommend to use 

data about all changes in the network from the 

manager of Plug and Play and, basing on these data, 

recalculate the correction values as for a static 

system and transmit new values to the recipients by 

RMAP command.  

  

To use the methods with statistic collection in onboard 

networks is not rational. For a small network with the 

interrupt-code time delivery jitter will not be great because of 

paths length and speeds will not be differ significantly. If the 

network size is big then the process of statistic collection will 

be very complicated and recourse-intensive in terms of 

memory, traffic and processing consumption that is 

unacceptable for onboard applications; furthermore statistical 

methods may not to give better accuracy in comparence to 

static methods.  
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Abstract—The data transmission rate required for the earth 

observation satellites is in the order of Gbps because of the 

enhanced performance of the observation sensors. However, the 

data transmission rate is approaching to the capable limits due to 

the issues of increased loss caused by the connectors or wires 

connected. In addition, there is another issue of the transmission 

irruption due to the vibration during the satellite launch. The 

transmission technology using the non-contact connector which 

has high vibration tolerance against the lossy wire connection 

systems is proposed and this paper describes the advantages of 

the non-contact connector, consisting of Transmission Line 

Couplers (TLC). With the transmission characteristics analysis 

of the connector and the design concepts, analysis of actual 

measurement results reveal that 15 m cables transmission of 

2.5Gbps and BER less than 10-12 is feasible. 

 

Index Terms—Transmission line coupler, Non-contact 

connector, WizardLink, Cable, Comparator.  

 

I. INTRODUCTION 

Data processing components that are mounted in satellites 

must be small and light, having high data transfer rates, and 

high storage capacity [1]. The next generation of earth 

observation satellites will require data transmission rates to a 

maximum of 20 Gb/s and at least one terabyte of storage 

capacity [2]. However, the data transmission rate is 

approaching to the capable limits due to the issues of increased 

loss caused by the connectors or wires connected. These 

connections consequently have the mismatch of impedance and 

complication of systems ensued by the increase in parts and 

wires of wired connections. In addition, there is another issue 
of the transmission irruption due to the vibration during the 

satellite launch. 

Transmission Line Coupler (TLC)

Tx

Cable Hysteresis

Comparator

Rx

Phase.1

TxData

Phase.2

TLC

Phase.3

Cable

Phase.4

RxData

Time

TLC

Tx Component

Rx Component

Threshold

of Comparator

 
Fig. 1.  High-speed space cable transmission system 

In order to conquer the above problems, we focused our 

efforts on the new high-speed data transmission methodology, 

which is using the non-contact connector, consisting of 

Transmission Line Couplers (TLC) [3][4][5]. This method has 
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been known to enable high speed transmission up to 12.5Gbps 

and have high tolerance for vibrations during the satellite 

launch to the space. Moreover, it is considered that the 

transmission with the non-contact connector includes the 

potential to reduce the inter symbol interference (ISI) [4]. Thus 

our study suggested the transmission technology with non-
contact connector for lossy wire connection system and this 

paper describes the advantages of that. With the 3D EM 

simulations and measurements with test boards, it could be 

possible that the proposed system could expand the length of 

cable transmission system up to 15 m of 2.5 Gbps and BER 

less than 10-12 is feasible with the tolerance for the vibration. 

II. CABLE TRANSMISSION SYSTEM WITH NON-CONTACT 

CONNECTOR 

The space cable transmission system with the non-contact 

connector is described in this chapter, shown in Fig. 1. Using 

the TLC as the non-contact connector in this system is the most 

important. Signals sent from the transceiver get into each TLC 

<phase.1>. After going through the TLC, the signals are shifted 

differential pulses because the TLC should behave the series 

capacitance which cuts dc components of the signals <phase.2>, 
and get into the cable, as lossy transmission line. Due to the 

conductivity loss of the long cable transmission, the pulses 

might be attenuated terribly when pulses reach the component 

where the receiver is mounted on <phase.3>; nevertheless the 

pulses could be reshaped to rectangle signals by the hysteresis 

comparator <phase.4>. A hysteresis receiver recovers the 

original data by retrieving them [5]. The recovered data signals 

are transferred to the receiver. Therefore, the receiver could get 

the high integrity data signals depended on the characteristics 

of the comparator however attenuated pulses might be. In 

addition, this system must be unrelated to the jitter caused by 
the ISI if the width of the pulse stays in a unit interval (UI), in 

principle.  

III. DESIGN CONCEPT OF NON-CONTACT CONNECTOR 

A. Transmission Line Coupler as Non-Contact Connector 

The design concept of the TLC as the non-contact 

connector is described by the view of EM/transient simulations 

in this section. 

When a differential data signal is transmitted from a 

transceiver to the other module, its shape has to be changed to 

1st order differentiated pulse shape in this system [5]. 

Therefore, it is necessary that the non-contact connector has 
low-cut characteristics. In order to satisfy the above 

characteristics, the differential TLC might be suitable and 

proposed in recent studies [3][4][5]. The TLC is made by use 

of simple board patterns without any connector components. 

The coupling range meets a dual constraint: not too long for ISI, 

and not too short for received amplitudes. The ac coupling is 

needed to be bilaterally symmetric, so that the signals and I/O 

circuits in both directions are the same [4]. The coupling 

distance is supposed that it could be adjusted by the thickness 

of the spacer whose dielectric constant is close to the 

substrate's dielectric constant. The TLC has been known to 

have the strong horizontal offset tolerance, which is about the 

same as the width of the coupler [5]. 

B. 3D Electromagnetic(EM) Analysis 

3D EM model of the proposed TLCs in this study are 

shown in Fig. 2. The mixed s-parameters of this model are 

evaluated. The differential pulse is generally created by the 

backward coupling between the upper and the lower TLCs. 

Therefore, the mixed s-parameter from differential port 1 to 

differential port 2 (SDD21) is the critical parameter for the 

transmission characteristic of the pulse created by the TLCs.  

The coupling gain of the TLC is known to be determined 

by the ratio of the electrode width (W) and the connection 

distance (H). The bandwidth and the amplitude are also known 

to be determined by the electrode length (L). The value of W is 

fixed to 3 mm, and H is fixed to 1.34 mm, as the typical design. 

The value of L is shifted from 6 mm to 10 mm by 2 mm steps 

in this section.  

The result of 3D EM analysis is shown in Fig. 3. From the 

results, each TLC has the low-cut characteristics and broad 

bandwidth less than 10 GHz. Moreover, it is confirmed that the 

more L is longer, the lower the frequency at the peak level of 
the SDD21. These characteristics suggest that the TLC of 

which L=10 mm which has the largest gain at 1.0 ~ 5.0 GHz 

could generate a pulse whose shape has the largest amplitude 

and the pulse width.  

C. Transient Analysis 

Transient analysis model of the proposed TLCs are shown 

in Fig. 4. Transceiver’s output parameters are set as 

TLK2711A, in order to compare the waveform of the pulse 
generated by the TLCs. The TLC model is the mixed s-

parameter obtained in the preceding chapter. The data 

transmission rate is set 2.5Gbps as WizardLink transmission. 

As shown in Fig.5 (a) ~ (c), it is confirmed the conventional 

rectangle signals are certainly shifted to the 1st order 

differential pulses by the TLCs. In particular, it is clear that the 

pulse amplitude and width are the largest when the value of L 

is 10 mm. In this study, the TLCs of L=10 mm is accordingly 

selected from the perspective of the influence of the attenuation 

in the cable transmission system, and used for measurement 

works.  

Transmission line coupler (TLC)

Length：L

Width：W (=3mm)

Height：H (=1.34mm)

H

 
Fig. 2.  3D EM model of TLC 
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Fig. 3.  Transmission characteristics of TLCs 
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Fig. 4.  Transient analysis model of TLC 

IV. CABLE TRANSMISSION MEASUREMET 

In order to confirm the availabilities of the proposed 
transmission system with the TLC, 15 m space cable 

transmission measurement is evaluated in this section. From 

the results of measurements, the validations of the design of the 

TLC and the signal integrity of the proposed system are 

discussed. 

A. Measurement System 

There are two measurement systems in this study, shown in 

Fig. 6. Time domain measurements were made with an Agilent 

DSO81304A oscilloscope at every probe point. Figure 7 shows 

the view of the measurement. 

One is the proposed non-contact connector system, shown in 

Fig 6 (a). The TLC whose L is 10 mm was selected for this 
measurement because of its amplitude superiority for the lossy 

cable transmission. 1480 mVp-p signals sent from transceiver, T 

LK2711A, get into non-contact connector, and are shifted to 

the differential pulses. The data transmission rate of this system 

is set 2.5 Gbps as the WizardLink transmission. Tx/Rx 

components are connected by the space cable whose length is 

15 m. This cable called MW311 is made by Junkosha Co. The 

attenuation of this cable is defined 0.91 dB/m@1GHz. Then, 

differential pulses are reshaped to rectangle pulses by the 

hysteresis comparator. The levels of hysteresis thresholds are 

set ±70 mV, which could be estimated from the gain of the 

non-contact connector and the quantity of the decrement of the 

space cable. 

. 

 
(a). L=6 mm 

 
(b). L=8 mm 

 
(c). L=10 mm 

Fig. 5.  Calculated waveform of pulse created by TLC 

The other is the conventional system without the TLC in 
order to compare the transmission characteristics, shown in 

Fig.6 (b). Except the TLC and the comparator, it is the same 

setup with the non-contact connector system. 

B. Results of Measurement 

Fig.8 shows the results of the measurement at each probe 

point. 

Probe.1 shows the eye pattern of the output data signals 

from TLK2711A. It is indicated that the output signals have 

approximately 1480 mVp-p and 80 ps jitter. Thus, it could be 

said that the tendency of the waveforms of the transceiver 

model used in the transient analysis should be valid with that in 

this measurement system. 
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(a). Non-contact connector system 
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(b). Conventional system for comparison (without non-contact connector) 

Fig. 6.  System of evaluation for cable transmission 

 

Fig. 7.  View of measurement system 

Probe.2 is the waveforms of the differential pulses created 

by non-contact connector. Shown in Probe.2, the differential 

pulses of about ±400 mV amplitude and less than 250 ps pulse 

width were obtained by the proposed TLCs. It suggests that the 
width of obtained pulses could be within less than UI [ps] at 

2.5 Gbps.  

Probe.3 shows the waveforms of the differential pulses 
after transmitted through the 15 m cable. Due to the loss of the 

cable, the amplitude of the differential pulses were certainly 

attenuated by less than ±100 mV. Even though they might be 

attenuated by the lossy component, it is note that the 

comparator can reshape them to the rectangle pulse if the 

thresholds of the comparator are set properly. However, it is 

obvious that the width of differential pulses was force to be 

expanded to more than 400 ps because of the increase of the 

RC component of the cable. This width of the differential pulse 

might be over the UI at 2.45Gbps when it reaches to the 

comparator. Thus the waveform of Probe.3 seems to be 

affected by ISI, but it should be too small to cause the 

transmission irruption. 

 
(a). Probe.1 [Txdata] 

 
(b). Probe.2 [Pulse created by TLC] 

 
(c). Probe.3 [Pulse attenuated by cable] 

 
(d). Probe.4 # TLC [Rxdata reshaped by comparator] 

 
(e). Probe.4 # Conv. [Rxdata without TLC] 

Fig. 8.  Measured waveforms 
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Finally, the eye pattern of the rectangle pulses reshaped by 

the comparator is shown in Probe.4#TLC. In order to confirm 

the availabilities of the non-contact connector system, the eye 

pattern of the conventional system is shown in probe.4#Conv. 

From these results, in the proposed non-contact connecter 

system, this clearly shows the differential pulses were reshaped 
well by the comparator and the signals transmitted at 2.5Gbps 

to the receiver. It suggests that the parameter of L of the TLCs 

and the hysteresis thresholds should be set properly taking the 

amount of attenuation of the cable into consideration. On the 

other hand, in Probe.4#Conv., it is confirmed that there is too 

many jitters to achieve the cable transmission in the 

conventional system. This is because the bulk conductivity and 

the loss tangent of 15 m cable simply influenced the eye 

opening. 

C. Communication Test 

Using embedded test function of TLK2711A, bit error 

checks were proceeded in order to confirm the integrity for the 

communications in the proposed system. Fig.9 shows the 

configurations of this test. The effective data transmission rates, 

is actually up to 2.0 Gbps, was transmitted. Consequently, It 

was confirmed that no signal bit failure occurred during the 

period of launch (1 hour). Therefore, the BER less than 10-12 

for the WizardLink transmission was confirmed in the 

proposed system. On the other hand, it was observed that the 

communication test was end in failure continually in the 
conventional system. From the above, it could be said that the 

proposed non-contact connector system could have the 

availability for extending length of the transmission line, such 

as space cable, and so on. 

V. CONCLUSION 

The cable transmission system at 2.5Gbps with non-contact 

connector was presented in this paper. The detailed design 

methodology of the non-contact connector was described at 

first. The analysis suggests that the parameter of L of the TLCs 

determines the pulse amplitude and it should be set taking the 

amount of losses of the cable into consideration. In addition, 

analysis of actual measurement results reveals that the 15 m 

cables transmission of 2.5 Gbps and BER less than 10-12 is 

feasible with non-contact connector. It also means that the 

flexibility in the arrangement of the satellite components could 
be improved by using the proposed scheme. There is still room 

for improvement of broad band transmission characteristics for 

the shape of the differential pulse on the TLCs. Thus the 

alternative solutions to generate the more edged pulse with 

larger amplitude are needed, as the further study. 

 
Tx

<TLK2711A> TLC

Tx

<TLK2711A>

Hysteresis Comparator

<ADCMP580>

Cable<15m>

Cable
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(a). Proposed system           (b). Conventional system 

Fig. 9.  Configurations of Bit error check 
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Abstract— this paper will describe high performance interface 
building blocks, compare their networking features and show 
how they may be used in small and large systems especially as 
they apply to SpaceVPX modules. Emphasis will be placed on 
their SpaceWire and other networking capabilities.1 

Index Terms—SpaceWire, Networking, Spacecraft Electronics, 
SpaceVPX, RapidIO, Endpoint, Router 

I. INTRODUCTION 
Future spaceborne systems will require additional onboard 

processing and much greater interface connectivity. Many 
efforts worldwide are starting to address these needs. 
SpaceVPX, a recently released ANSI/VITA standard, was 
created to provide the structure and definition for interoperable 
modules that will be created to meet these needs. It provides a 
multi-layer set of fabrics using SERDES, LVDS and 
LVCMOS devices to provide interconnects in a scalable and 
fault tolerant way. Initial fabrics used by SpaceVPX are 
RapidIO, SpaceWire and I2C. Provisions are provided for 
heritage or user defined interfaces to interact with these within 
the structure. SpaceWire is setup as both a control plane for 
command and data handling throughout the box as well as a 
medium speed data plane. 

Building on previous SpaceWire network elements such as 
its SpaceWire ASIC and its application specific standard 
products (ASSP) SpaceWire Endpoint ASSP (RADNET™ 
SpW-EP) and Golden Gate ASSP (RADNET™ SpW-RB4), 
BAE Systems is creating a set of silicon ASSP devices to 
provide power efficient general purpose building blocks for the 
creation of scalable SpaceVPX modules across these three 
fabrics. These building blocks are key to a new family of 
SpaceVPX processing and network modules being developed 
for a wide variety of space applications. 16 SpaceWire ports 
and a router are provided on the RAD5545™ multi-core 
system on a chip (SoC) and the RAD5515™ single core SoC 
while four SpaceWire ports and a router will be provided on 
the RapidIO Endpoint and the RADSPEED™ Host Bridge 
devices. These complement the higher performance four four-
lane RapidIO ports on the SoC and Host Bridge devices, the 

1 Approved for public release ES-ISR-080916-0097 ATR 467 

one redundant four-lane RapidIO port on the RapidIO 
Endpoint (RADNET™ SRIO-EP), the 16 lane SERDES cross-
point switch ASSP (RADNET™ 1616-XP) and the 48 
RapidIO lanes on the RapidIO packet switch ASSP 
(RADNET™ 1848-PS). 

II. INTERFACES 
SpaceWire is a versatile interface fabric and now has over 

seven years of flight experience [1].  It was the first extendable 
standard fabric interface for spacecraft onboard processing and 
interconnection.  It may be easily created out of space-worthy 
FPGA or ASIC components that support LVDS interfaces and 
thus has seen widespread usage as highlighted at six 
SpaceWire conferences.  Its 200-400 Mbps bandwidth per link, 
enables high performance command and data handling as well 
as medium speed data movement.  In future systems it is likely 
to continue to supplant PCI as a medium speed backplane 
interface.  It is complemented by SERDES-based fabrics such 
as SpaceFibre and RapidIO, providing an order of magnitude 
bandwidth improvement per lane when needed.  Taken 
together these support flexible and scalable heterogeneous 
systems and spacecraft. 

III. HERITAGE SPACEWIRE ASSPS 
In March of 2003, the first SpaceWire router ASIC [3] was 

started as a joint development project of BAE Systems and 
NASA Goddard Space Flight Center (GSFC).  The four port 
SpaceWire router core as designed by GFSC was attached to 
the BAE Systems On-Chip Bus (OCB) through a router 
interface (RIF) block with two interfaces to the bus.  The 
radiation-hardened by design (RHBD) ASIC in 250nm CMOS 
technology included on-die low-voltage differential signaling 
(LVDS) drivers and 64 deep FIFOs on each transmit and 
receive port.  The ASIC included a BAE Systems 32-bit RISC 
microcontroller [4] called the embedded microcontroller 
(EMC) that can be used to program or interpret SpaceWire 
operations, two 16KB on-die SRAM blocks, a memory 
controller for external memory, and dual peripheral component 
interface (PCI) buses for connections to the rest of the module 
or system.  The EMC is supported by a C compiler, and a 
software development environment that includes an assembler, 
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linker, debugger, and simulator.  The “SpaceWire ASIC” was 
first flown on the NASA Lunar Reconnaissance Orbiter (LRO) 
mission, launched in 2009 [1] [2]. 

This device was followed by the decision to further 
integrate components in 150nm radiation-hardened CMOS 
technology, combining the standard bridge ASIC for the 
RAD750® radiation-hardened PowerPC™ processor [5] with 
both a four port SpaceWire router and a MIL-STD-1553 port 
as shown in Figure 2.  Called the “Golden Gate” bridge, this 
RHBD application specific standard product (ASSP) 
introduced new features to the SpaceWire core, including four 
internal RIF interfaces allowing bypass of the router by all four 
ports if desired and the remote memory access protocol 
(RMAP) providing direct network access to the entire 4 GB 
address space of the device.  An enhanced version of the EMC 
processor was incorporated with additional instructions, four 
32 KB SRAM blocks, allowing for more on-die code and 
greater scratchpad memory storage. An enhanced memory 
controller was also included.  This enhanced product is now 
being delivered with the newest generation of RAD750 
processor flight modules.  The ASSP is also available 
separately as part of BAE Systems RADNET™ family of 
products, where it is designated the RADNET SpW-RB4. 

With the use of SpaceWire routers established and interest 
in the community to extend the SpaceWire standard to more 
parts of the system, a smaller SpaceWire endpoint ASSP was 
designed to allow existing instruments and peripheral functions 
to move to the emerging SpaceWire standard [6].  With a 
single redundant RMAP-enabled SpaceWire link, the 
SpaceWire endpoint offers a variety of alternative parallel and 
serial connections to existing designs, including I2C and SPI. 
The EMC processor is included along with a 32 KB SRAM 
and external memory controller.  The RADNET SpW-EP is 
built in 150nm radiation-hardened technology using a RHBD 
circuit library. 

IV. RAD55XX™ SOC ASSP VARIATIONS 
The next generation of technology, a leap to RHBD 45nm 

silicon-on-insulator (SOI) CMOS known as RH45™ 
technology, offered the opportunity to develop a massively 
integrated high performance processor system-on-chip (SoC) 
as shown in the die layout in Figure 1.  Based on Power 
Architecture® and leveraging the NXP (formerly Freescale) 
QorIQ® multicore communications processor family, an entire 
series of products was defined built on a platform RAD55xx™ 
ASSP [7] that can be configured into multiple personalities.  
The RAD55xx platform uses licensed intellectual property (IP) 
from the NXP P5020 and P5040 processors and other IP.  

Supporting up to four 32/64-bit RAD5500™ processor 
cores, three levels of on-die cache memory, hardware 
encryption accelerator, dual interleaved DDR3 DRAM 
memory controllers, an SRAM/EEPROM controller, a Flash 
memory controller, up to four four-lane (x4) RapidIO ports @ 
5 Gbaud/lane, and more, the RAD55xx platform also 
incorporated a 16-port SpaceWire router with RMAP and up to 
eight internal ports as shown in the block diagram in Figure 3.  
The sixteen port SpaceWire router is supported by the currently 

announced RAD5545™, RAD5515™, and RAD5510™ 
processors.  A fourth product variant known as the 
RADSPEED™ HB processor, a host/bridge matched with the 
BAE Systems RADSPEED DSP [8], offers a 4-port SpaceWire 
router.  Low speed interfaces including both I2C and SPI are 
also provided.  The RAD55xx products have completed first 
hardware and are currently in test and characterization.  

 

 
The large SpaceWire router supports the ability to use these 

processors as the hub of a large SpaceWire data network or as 
the system controller of a high performance on-board 
processing subsystem based on the new VITA 78 SpaceVPX 
standard [9] [10] [11].  The SpaceVPX standard employs the 
RapidIO ports as the data plane and the SpaceWire links for the 
control plane.  The SpaceVPX utility plane is supported with 
four I2C ports. 

V. RAPIDIO PACKET SWITCH 
With the development of a high performance processor 

underway with both RapidIO and SpaceWire capability, the 
next logical step was to develop a RapidIO packet switch 
ASSP as the hub of the data plane for the on-board processing 
system.  Based on licensed IP from Integrated Device 
Technology (IDT), the RADNET 1848-PS [12] is a RapidIO 
switch with up to 18 total ports of various widths or up to 
twelve x4 ports, all operating at up to 3.125 Gbaud/lane.  The 
RADNET 1848PS, manufactured in 45nm SOI CMOS 
technology with the RH45 library, is now in hardware and is 
completing testing for delivery.  Since this was almost 
completely based on purchased commercial IP, there is no 
SpaceWire port on the packet switch.  Configuration takes 
place over an I2C interface which could be driven by a 
SpaceWire device such as the SpaceWire Endpoint ASSP or 
derived from the I2C interface on the SpaceVPX backplane. 

 

 
Figure 1: Die layout of the RAD55xx platform ASSP   
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VI. RAPIDIO ENDPOINT  
Currently in design is a RapidIO Endpoint ASSP designated 
the RADNET SRIO-EP, also built in RH45 45nm SOI CMOS 
technology.  It provides a single redundant RapidIO port @ 5 
Gbaud/lane and a variety of additional ports including two 
redundant XAUI ports, a 32-bit PCI parallel bus, a redundant 
MIL-STD-1553 interface, a dual interleaved DDR3 DRAM 
controller, an EEPROM memory controller, a Flash memory 
controller, and both I2C and SPI serial ports.  The RADNET 
SRIO-EP includes a four-port SpaceWire router with the same 
features found in the RADNET SpW-RB4 along with two 

64KB blocks of SRAM.  A simplified block diagram of the 
endpoint ASSP is shown in Figure 4.  The RADNET SRIO-EP 
is designed as primary interface for SpaceVPX payload 
modules, with flexibility to provide the interface to mass 
memory (DDR3 or flash), or most other payload functions and 
interfaces through FPGAs or other ASICs. 

From a processing perspective, the RADNET SRIO-EP 
includes both the EMC processor and four instantiations of a 
specialized version of the core called the SEMC.  The SEMC 
core includes a 32KB instruction SRAMs that can be loaded 
with a specific program and a 24KB data scratchpad memory. 
The SEMC attaches directly to the ARM ABMA extensible 

 
Figure 2: RADNET SpW-RB4 block diagram 
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Figure 3: RAD55xx platform configured as the RAD5545 processor personality 
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interface (AXI) bus.  The four SEMC cores are supported by a 
128KB block of on-die SRAM.  As in the case of the EMC, the 
SEMC is supported by a software development environment 
and compiler.  In the RADNET SRIO-EP, the four SEMCs 
work with a 4KB storage and hardware assist core called the 
“scoreboard” that accelerates priority queue management 
functions that are more typically performed in software [10].  
The scoreboard hardware tracks transmitted and received word 
counts, identifying which queues contain data and when a 
queue reaches a programmed threshold. 

 

VII. CROSS-POINT SWITCH 
Another component for use with high speed serial link 

networks is the RADNET 1616-XP ASSP.  The protocol 
agnostic product provides for circuit switching of serializer-
deserializer (SERDES) lanes at up to 5 Gbaud/lane with low 
latency and low power dissipation.  It provides the ability to 

execute primary/redundant switching of SERDES signals, and 
also performs a repeater function through recovery of a 
degraded SERDES “eye” for longer distance transmission. 

VIII. SYSTEMS USAGE 
Figure 5 shows a SpaceVPX system with several 

representative module types focused on using SpaceWire for 
Control and Data.  This system is based on an application 
example in the revised SpaceWire standard and controls six 
instruments attached to the SpaceVPX chassis.  SpaceWire is 
used as the control plane as well as a medium speed data plane.  
The controller uses its 16 port router to control and move data 
between all other logic modules.  Shown in green are the BAE 
Systems ASSPs used to provide the SpaceWire interface 
functions.  Not shown are additional FPGA or ASIC resources 
for unique functions or interfaces.  A single string solution 
could be created using all the solid modules.  Redundant 
modules are shown and dashed lines connect these to the other 
modules.  The SpaceVPX star configuration supports 14 
SpaceWire links on the backplane equivalent to up to 4.5 Gbps 
of cross sectional data bandwidth. 

Figure 6 shows an upgraded system where RapidIO is used 
for the data plane and SpaceWire continues to function as the 
control plane.  Here many of the SpaceWire components have 
migrated to RapidIO components that also support SpaceWire 
interconnects.  The Mass Memory now relies on RapidIO on 
the data plane for its data stream inputs and outputs.  Note the 
data plane switch is implemented in a seventh logic module.   
This system still provides the 4.5 Gbps of control plane cross 
sectional bandwidth over SpaceWire.  The 12 ports of the data 
plane add an additional 120 Gbps of cross sectional bandwidth. 

 

 
Figure 4: Block diagram of the RADNET SRIO-EP RapidIO endpoint 
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Figure 5: SpaceVPX system using SpaceWire for control and data.  Solid horizontal lines represent point to point backplane connections. 
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IX. SUMMARY 
BAE Systems has been actively developing and delivering 

SpaceWire solutions to the space community since 2003.  
These are transforming solutions from heritage bus-based 
modules to fabric-based solutions leveraging the recently 
ratified SpaceVPX standard for interoperable modules.  Recent 
RAD55xx SoC and RADNET ASSPs under development and 
testing extend the fabrics to enable control, command and data 
handling solutions spanning four orders of magnitude of 
performance and the full range of typical digital functions in 
onboard spaceborne electronics.  Using these devices and the 
SpaceVPX standard, families of scalable and interoperable 
modules may be created to meet current and future onboard 
processing needs. 
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Abstract— In 2006, we developed SpaceWire platform named 
SpaceCube cooperation with JAXA and NEC. After the success 
of SpaceCube project, we developed number of SpaceWire 
products. Some examples of this innovation include several 
kinds of the SpaceWire interface boards, SpaceWire router 
and SpaceWire-to-GigabitEtherR2. These developments 
included the support and cooperation of JAXA, OSAKA 
University, Japan Space Systems and NEC. However, there are 
the big step into the Space market for the small high tech 
companies. In this paper we describe Renewed SpaceWire Test 
Center in Japan. 
 

Index Terms—SpaceWire, Test 

I. INTRODUCTION  

The SpaceWire Test Center is open to the public who are 
interested in SpaceWire study and development. The engineers 
have to prepare own testing environment to study and develop 
own components, equipment etc. However, this is the barriers 
for the small organizations who are considering or develop the 
SpaceWire components. 

 
Shimafuji Electric Inc. has opened The SpaceWire Test 

Centre in Tokyo to the public who need to test their own 
components to adapt SpaceWire. This paper describes the 
background, purpose, use of images and configuration of the 
SpaceWire Test Center. 

 

II. THE BACKGROUNDS 

Shimafuji Electric Inc. joined ASNARO consortium and 
started the SpaceWire test facility in 2010. At that time, it was a 
small scale test facility, but since then has helped test products 
created by consortium members. 

Shimafuji upgraded this test facility in 2012, however, this 
upgrade was designed for limited projects. Recently in 2016, this 
facility became public open testing center. 

 
 
 

 

III. THE PURPOSE  

Reduction of the barriers 

It is possible to lower the barriers  for engineers or teams. 
Shimafuji manufactured  and installed an advanced  high-speed 
/ high-performance test equipment and capable facilities for 
flight model test.(Fig1, Fig2) 

 

 
Fig.1. Clean booth 

 

 
Fig.2. Constant temperature and humidity chamber 
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Promote the SpaceWire (Tutorial environment) 

Shimafuji developed the manual for SpaceWire Test 
procedure. All new entry member, who are students, engineers 
of organization or manufacturing companies, can understand 
and prepare environment condition, hardware and software for 
the SpaceWire testing. We also developed the low-cost 
SpaceWire tutorial system for SpaceWire beginners  and 
researchers training. (Fig3, Fig4) 

 
 
 
 
 
 
 

 
Fig.3. Tutorial system. 

 
 
 
 
 
 
 
 
 
 
 

Fig.4. Universal SpaceWire FPGA Board. 
 

Improvement the Open SpW IP quality  

The Open SpaceWire FPGA IPs and the Test Scripts were 
released and maintained. 

 

IV. THE USE CASE  

Connecting Test 

The Center has the equipment to evaluate SpaceWire 
connection with Conformance Tester, and SpW RMAP Tester. 
The Center also fitted with debugging tools, Link Analyzer, and 
Logic Analyzer FPGA tools. (Fig5, Fig6) 

 
 
 

 
Fig.5. Analyzing the packets. 

 

 
Fig.6. SpW backplane 12slots 

 

Physical layer evaluation and Environment test 

The center has the Network Analyzer and Digital 
Oscilloscope for Physical layer evaluation as well as 
temperature and humidity chambers for environment testing. In 
conjuncture with these testing environments, a clean booth for 
flight model. There are special equipment to evaluate the 
SpaceWire cables performance. (Fig7) 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.7. SpaceWire cable Test. 
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V. THE TEST CENTER CONFIGURATION  

TABLE1 The test center configuration 

Classification Device and equipment 

SpaceWire 

equipment 

Conformance Tester(STAR-Dundee) 

Link Analyzer(STAR-Dundee) 

Router USB(STAR-Dundee) 

Multilink Analyzer(4Links) 

SpaceWire-to-GigabitEtherR2(Shimafuji) 

SpaceCube(Shimafuji) 

SpaceCubeMK2(Shimafuji) 

6PortRouterUnit(Shimafuji) 

SpW DIOⅡ(Shimafuji) 

SpW backplane 12slots(Shimafuji) 

SpW RMAP Tester(Shimafuji) 

Tutorial system(Shimafuji) 

Open IP(Shimafuji) 

SpaceFiber Universal SpaceWire FPGA Board (Shimafuji) 

High speed SpaceWire Flash ADC Board 

(Shimafuji) 

 

Instrument  

Development 

tools 

Network Analyzer(Agilent) 

Logic Analyzer(Agilent) 

Digital Oscillo(Agilent) 

SpaceWire Adapter(Agilent) 

FPGA tools (Xilinx/Altera/Actel) 

Environmental 

testing 

Clean booth (3m x 3m, class 1000) 

Constant temperature and humidity chamber 
 

VI. SPACE TECHNOLOGY TO GROUND   

Shimafuji developed the SpW-R board which use daisy chain 
connection for less wiring, and based on SpaceWire and RMAP. 
This idea is wide use of SpaceWire into industry and commercial. 
This board has 3 port router and I/Os which can control motor, 
camera and etc. The board is reasonable for non-space industries. 
(Fig8, Fig9)  *This board and demo system will be in the 
SpaceWire test center. 

 
Fig.8 SpW-R board 

 

 
Fig.9. SpW-R Demo system 

 
 

VII. CONCLUSION  

The Center has wealthy instruments to Test SpaceWire in 
Tokyo and it also possible to provide consultation of the 
SpaceWire introduction and technical support.   

This center will accumulate feedbacks from user to improve 
the open IPs, and will work as Japanese SpaceWire 
information source. The center is expected to increase number 
of  SpaceWire users in coming years. 
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Abstract— This paper presents hardware and software solution 
for simulation of a group of cameras used by the PLATO satellite. 
The simulator can be configured either to work with the scientific 
processing unit or as the complementary loop attitude control 
processing unit. Configuration and monitoring can be performed 
remotely, which caters to cooperatively work and guarantees 
traceability for quality purposes. Because the system operates 
with database and configurable architecture, its performance can 
be modified to operate as standard generation element (CCSDS, 
e.g.) traveling via SpaceWire. Eight SpaceWire links for feeding 
processing system compose the simulator. The links may route 
data in real time rate configurable to 200Mbits/s, with 
representative images, using the RMAP protocol, it can run 
continuously up to two days of satellite operation. The 
information database is stored in two solid-state drives with 500 
GBytes capacity each one. Access for configuration and 
monitoring are made using TCP-IP protocol. Each simulator has 
a unique ID and is automatically recognized when connected to 
the Ethernet network. The software layer has graphical interface 
compatible but offers component for integration with other 
EGSE systems. The system has own housekeeping, which enables 
diagnosis operation and viewing by the operator. The system will 
be used by European groups: LESIA (France), DLR (Germany) 
and IWF (Austria). 

Index Terms— SpaceWire, RMAP, Plato mission. 

I. INTRODUCTION  
The main goal of this project is to have a realistic hardware 

simulation of the image acquisition system of the Plato satellite. 
Part of this architecture can be analyzed in Fig. 1. Each data 
processing unit (DPU) receives from the electronic front end 
(FEE) 4 SpaceWire (SpW) [3] links running at 100 Mbits/s. A 
similar system is used in the attitude control system, just 

changing the number of links to 8 and reducing the data 
amount to a half CCD. The simulator described here involves 
the CCDs, with dynamic images and the FEE. More details 
about Plato architecture is available in the ESA website [1]. 

 
The simulator can be subdivided in three subsystems:  
 

• Electronic main board (EMB). 
• Resident software (RSW). 
• Supervisor software (SSW).  

 
The EMB has the capability to work with eight SpW links 

and to generate all RMAP [2] commands necessary to transmit 
the image from the simulator to the DPU and to receive RMAP 
commands (Write and Read) from the DPU.  

The RSW software controls EMB where the images are 
stored, running on a dedicated PC and communicates with the 
EMB by a S-ATA protocols. The set RSW+EMB forms the 
Simulator (SIMUCAM).  

Supervisor software (SSW) is proposed to control a set of 
simulators and communicates with the RSW by a TCP/IP 
connection allowing debugging and configure several 
simulators. The simulator runs as stand-alone application to 
avoid timing glitches and the Human-Machine-Interface (HMI) 
will be use only to control the simulations.  

The SIMUCAM is able to work with both: normal DPU 
(N-DPU) used for scientific processing and fast DPU (F-DPU), 
used for the attitude control loop. They work in a similar way 
besides the integration image time and the number of SpW 
interfaces. 
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Fig. 1.  Plato electrical architecture for science. 

 

A. N-FEE description operating in normal mode 
 
Each N-FEE is in charge of four CCDs. Each CCD is 

acquired sequentially, the period of activity for normal camera 
is 25 seconds, The full process (4 CCD) takes 25 seconds. 
During these 25s, a full image from one CCD is delivered to N-
DPU each 6.25s. The full-image transfer time from N-FEE to 
N-DPU should take considering the maximum optimization 
value of the time transfer less than 3.3 seconds. Two 
SpaceWire link is implemented as communication protocol 
between N-DPU and N-FEE.  

  
 The CCDs are divided vertically in two parts (Left 

and Right), and each part is transmitted by one of the two links. 
The CCDs transfer are swapped each 6.25 seconds. 

  
 For safety reason the SpaceWire channel utilization 

shall not exceed 80 %, that means the data rate averaged over 
the transfer duration, including the SpaceWire overhead, shall 
not exceed 80 Mbps. N-FEE is connected to a N-DPU by two 
SpaceWire links, each link is responsible for transfer half of 
CCD each CCD at time. The transfers occurs by encapsulating 
half line of one CCD (Left and Right) on a RMAP write 
command (FEE to DPU) and send it by one of the links, as 
shown on Fig.2 The address of each write commands is 
incremental and should be restarted at a new image transfer (25 
s). 

 
Each write command (IMAGE) have at the begining of the 

data a top sync counter that is incremented at a new received 
synchronism, and at the end of the data some prescan pixels. 
The prescan pixels can be part of the image (loaded into the 
simulator) but the top sync counter must be added by the MEB 
on real time. The top sync (6.25s) is transmitted to de DPU by 
a timecode command; this is the only way that DPU can access 
this signal. It will be sent by both SpW links to guarantee 
robustness. Housekeeping is sent by the N-FEE to the N-DPU 
at the end of a full image transmission by a RMAP write 

command (N-FEE to N-DPU). The HK can also be accessed 
asynchronous at any operation mode by a read command from 
the DPU (N-DPU to N-FEE). 

 
 

Fig. 2.  RMAP data diagram. 

  
 The N-FEE has the following functional modes: 
  
• Operational mode: the CCDs are read with the 

synchronization signals. Data packets including image 
and Housekeeping are sent to N-DPU. 

• Stand-By mode: no sequencing signals and no data 
packet sent. Bias to CCD at nominal value, only 
Housekeeping data are sent on request from the MEU. 

• Integration mode: during AIT specific read must be 
done to compensate the huge dark current generated 
by the CCD, the use of the Dump-Drain or a different 
exposure time management must be implemented. In 
that mode, the N-FEE may function without 
synchronization signals from the SylBox. 

• Test Mode: the N-FEE sends a pattern to the MEU. 
This mode is mainly used during AIT step with the 
MEU without the FPA. This pattern will be defined 
latter. 

   

B. F-FEE description operating in fast mode 
 
As the N-FEE each F-FEE is in charge of four CCD. Each 

CCD is acquired sequentially, the period of activity for the fast 
cameras is 2.5 seconds, The full process (4 CCD) takes 2.5 
seconds. During these 2.5, all full images are delivered to the 
F-DPU each 1.5s. Eight SpaceWire link is implemented to 
transfer the images to de DPU. The CCDs are divided 
vertically in two parts (Left and Right), and each part is 
transmitted by one of the eight links. The CCDs transfer 
concurrently (all at the same time). F-FEE is connected to a F-
DPU by eight SpaceWire links, each link is responsible for 
transfer half of CCD, this process occurs concurrently. The 
transfers occurs by encapsulating half line of one CCD on a 
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RMAP write command (FEE to DPU) and send it by one link, 
as shown on Fig. 2  The address of each write commands is 
incremental and should be restarted at a new image transfer 
(2.5 s) this means that the images are saved on the same 
memory address at the DPU side. 

 

C. ICU 
 
There are 2 ICU channels, which work, in cold redundancy. 

The ICU is responsible for the management of the payload, the 
communication with the Service Module (SVM), the 
compression of scientific data before transmitting them as 
telemetry to the SVM. Two SpaceWire routers (RU) a Data 
Compression Unit (RDCU), a memory unity (MU) and a 
processor unit (PU) compose the ICU.  

  
 Each ICU Router Unit (RU-A and RU-B) is 

connected to 
  
• 4 MEU (Router Unit A is connected to MEU routers 

A and Router Unit B to MEU routers B). 
• 2 F-DPU 
• 4 N-AEU 
• 2 F-AEU 

  
 Other functional units of ICU throughout 4 additional 

SpW links: 
  
• ICU internal Memory Unit (MU) 
• Processing Unit A (PU-A) 
• Processing Unit B (PU-B) 
• The other Router Unit to connect together the two 

SpW network. 
 
 The RDCU will collect the data from the twelve front 

end DPUs and compress the data. Finally, the ICU generates 
the telemetry packets to be sent to ground. 

 
 

II. SIMULATOR DESCRIPTION  
 
The global vision of the Simulator is synthesized in the Fig. 

3 where we can see the components that compose the project. 
In order to understand the MEB role in overall process it is 
important to establish the main interaction during a nominal 
operation. The MEB is responsible to transmit data (ack. 
Images) from its internal SSD and DDR memory to the 
SpaceWire links, encapsulating it on a RMAP protocol. All 
transfers are started by a synchronism pulse (sync) that can be 
external our internal. With the sync detected, the processor 
core starts the tasks responsible to load the images stored on 
the DDR2 memory to the FIFOs on each SpaceWire/RMAP 
peripheral. Eight different DMA controllers, each one 
associated to a specific link, perform this transfer. 

 

  
Fig. 3.  SIMUCAM system and its components. 

 
 In order to understand the MEB role in overall 

process it is important to establish the main interaction during a 
nominal operation. The MEB is responsible to transmit data 
(ack. Images) from its internal SSD and DDR memory to the 
SpaceWire links, encapsulating it on a RMAP protocol. All 
transfers are started by a synchronism pulse (sync) that can be 
external our internal. With the sync detected, the processor 
core starts the tasks responsible to load the images stored on 
the DDR2 memory to the FIFOs on each SpaceWire/RMAP 
peripheral. Eight different DMA controllers, each one 
associated to a specific link, perform this transfer. 

  
The DMA core supports a buffer of 512 transfers each transfers 
cares 9020 bytes. At the beginning of transfer the transfer 
command buffer is full filled by the task that controls the 
specific link. During the transmission of the image, the DMA 
core generates a interruption at every DMA transfer executed, 
this causes the link task to fill again the command buffer. 

  
The 8 DMA cores share the DDR2 memory, the round robin 
scheduling is used to give access to DDR2, this scheduling is 
performed, not on software level, but at hardware level (bus 
controller).  

  
The SpaceWire/RMAP FIFO is of 32 bits wide (to be 
compatible with the Avalon bus) and has a depth of 512. This 
peripheral is responsible to fragment the data into RMAP 
packets and transmit it to the SpaceWire link. No software 
innervation is necessary once the peripheral is configured, its 
perform the auto increment of the destination address on the 
RMAP command, inserts the data CRC, inserts (if configured) 
extra data on the data (ID info, top counter).  

  
All this is done to free the uC from critical tasks the MEB 
avoiding glitch on the data transfer. Figure 4 is a resume from 
the proposed architecture. The SSD are used to stored images, 
this images must be loaded by the Ethernet TCP/IP connection 
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that communicates with the SSW component. These images are 
than cached on the DDR2 memories, and transfer by each 
SpaceWire link respecting all specification imposed for the N-
FEE and F-FEE. 

   
 

  
Fig. 4.  The simulator architecture. 

 
 The SpW/RMAP is peripheral developed for optimize 

the data transfer from de memory to the SpaceWire, which can 
be analyzed in Fig. 5, its six main parts can be listed: 

• RMAP: generates the RMAP head and data CRC; its 
operation is controlled by the REG. 

• FIFO: used to cache de data of the RMAP (image), is 
a dual port with a reading clock of 200 MHz (8b) and 
writing port of 100 MHz (32b). 

• DELAY: block that generates the sample time (4MHz) 
to emulate the A/D . 

• REG: register with all RMAP configuration. 
• TC: Time code.  
• SpW: SpaceWire core.  

  

 

 
Fig. 5.  The SpW/RMPA peripheral architecture. 
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Fig. 1. MCT-04 chip in the CPGA720 package 
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Abstract — Тhe article presents a 180nm CMOS Radiation 

tolerant heterogeneous Multi-core ASIC MCT-04 as the SoC 

(System–on-Chip) with built-in multichannel multiprotocol 

SpaceFibre/ GigaSpaceWire (SpaceWire-RUS standard), 

SpaceWire based switch for the onboard data and Mass Storage 

Device management. The SoC design and architecture support 

Single-Event-Upset (SEU) fault-tolerant. The MCT-04 embedded 

networking subsystem provides multiple ports for high-rate 

interconnection with combination of SpaceWire/ /GigaSpaceWire 

(SpaceWire-RUS)/SpaceFibre links. Input and processed data 

streams transmitted via 1.25 Gbps four multiprotocol 

SpaceFibre/GigaSpaceWire links with built-in DMA controllers. 

Two SpaceWire links (ECSS-Е-50-12С) provide data transfer 

bandwidth 2 - 400 Mbps. The MCT-04 embedded networking 

subsystem on the base SpaceWire/GigaSpaceWire/SpaceFibre 

provides a balance between external and internal data 

throughput especially for the multifunctional micro and 

nanosatellites systems. 

Index Terms — Radiation tolerant heterogeneous Multicore 

ASIC, multiprotocol SpaceFibre based links, NAND-Flash, 

Memory Controller, on-board Mass Storage Device management 

I. INTRODUCTION 

In the spacecraft data processing and storing systems, it is 

necessary to solve several important tasks, including: 

1. Delivering large amounts of data at high speed from 

the sensors to the proper processing system;  

2. High-speed data streams switching;  

3. Storing of large amount of data;  

4. The overall management of space system.  

The article describes the experience in the creation of 

MCT-04 "system-on-chip"  qualified for space application with 

architecture intended to provide high-speed data exchange 

between data source, data processing and data storage blocks, 

and also between multiprocessor networks on the SpaceWire, 

SpaceFibre and Giga SpaceWire (SpaceWire-RUS standard) 

base. 

Thus, the limiting factor in the development of  Mass 

Storage Device or SSD (Solid-state Drive)  s the absence of a 

large selection of space microprocessors for the high-

performance space computing, that provided the highly 

throughput by the links (up to the gigabits) based on modern 

advanced standards such as SpaceWire and SpaceFiber and its 

modifications. 

This article describes the experience in the creation of an 

actual high-performance the highly throughput "system-on-

chip" MCT-04 qualified for space applications with balanced 

architecture of processing IP-cores and network subsystem of 

the data exchange between ASIC resources and between 

multiprocessor networks on the SpaceWire, SpaceFiber [2] and 

Giga SpaceWire (SpaceWire-RUS standard) base. 

II. THE MCT-04 ARHITECTURE 

Radiation tolerant Multicore ASIC MCT-04 (Fig.1) was 

developed as the homogeneous SoC (System–on-Chip) for the 

onboard data and Mass Storage Device management. 

The block diagram of the chip is shown in Fig. 2. 
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Fig. 2. MCT-04 chip block diagram 

The main MCT– 04 SoC features are: 

 CPU0, CPU1 – central processing units 0, 1 based on 

RISC cores with MMU, 4-stage pipeline and 

Multiply/Divide accelerator; CPU clock frequency is 

no less 120 MHz, which apply CPU performance as 

120 MOPS each; 

 On chip memory - about 3 Mb, including CRAM0, 

CRAM1 – random access memory of CPU 128 KB 

each; 

 Error correction of internal and external memory : 

single error correction and detection of double errors 

Hamming code; 

 I, D CACHE – instructions and data cache of CPU  

32 KB each; 

 DMA MEM_CH – 8-channels DMA; 

 32-bit DDR port, 1600MB/s for the external memory; 

 Eight NAND Flash Controllers (NFC0:NFC7). Each of 

them supports speed ranging from 40 MB/s to 200 

MB/s; provides a connection 128 NAND Flash chips 

totaling 2 Tbytes using 128 Gb components; also 

provides a connection 32 NAND Flash 3DPlus firms 

modules totaling 1 Tbytes 

 SWIC0, SWIC1 – SpaceWire interface controllers; 

 SpFR (SpaceFibre Router) - 4-port multiprotocol 

switch SpaceFibre/GigaSpaceWire (SpaceWire-RUS). 

The capacity of each port from 5 MBd to 1.25 GBd 

with RMAP protocols supporting. The connecting to 

AXI switch was realized via two multi-channel DMA 

controller; 

 MFBSP - multi- buffered serial port operates in the 

controller mode SPI bus and GPIO[2:0]; 

 ICTR – interrupt controller; 

 UART – universal asynchronous port; 

 IT0, IT1 – universal timers, interval/real time; 

 SPINLOCK – low-level mutual exclusion 

synchronization primitive; 

 MAILBOX – messaging module; 

 OnCD – built-in hardware debugging tools and JTAG 

– debug port. 

 Power Saving Modes support; 

 PLL – frequency multiplier PLL based; 

 Power consumption - no more 3 W. 

The ASIC consists of two processing CPU.  CPU is a 

standard RISC - processor (RISCore32) with 4-stage pipeline. 

With Multiply/Divide accelerator CPU provides the addition, 

multiplication and division operations. CPU also has a memory 

management unit (MMU) on the basis of fully associative 

address translation buffer (TLB) of 16 double cells, the 

instruction cache (I CACHE) of 32 Kbytes of data cache (D 

CACHE) of 32 Kbytes. The programmable MMU provides 

two operating modes: with TLB (Translation Lookaside 

Buffer) and FM (Fixed Mapped). On-chip JTAG IEEE 1149.1 

Debug Unit support the single stepping and data address/value 

breakpoints. 

MCT-04 ASIC was realized to support all architectural 

solutions, which increased its resistance to failure and fault 

tolerance. All ASIC memory blocks including the register files 

in CPU/DSP are protected by Hamming code with single 

errors correcting and two errors detecting.  

The МСT-04 applies the ability to turn off unused 

processor IP cores and other resources such as unused high 

throughput links. The МСT-04 also supports a sleep mode in 

which it consumes minimum milliwatts of power. 

The ASIC has DDR memory ports (1600 MB/s), support 

DMA transfers between external I/O ports and external 

memory, have Multifunctional Buffed Serial Ports (MFBSP) 

that can act as SPI or GPIO interfaces, six Space Wire family. 

Input and processed data streams via through six 

SpaceWire based family links (four up to the 1.25 Gbps and 

two up to 400 Mbps) provide a balance between its throughput 

and SoC performance. 

МСT-04 also has a dedicated test and debug interface; run 

the Linux operating system; and have a C /C++ application 

software compiler for the CPU. 

The NAND Flash Controller has an AHB Interface, which 

allows the CPU processor to configure the operational 

registers sitting inside the NAND flash Controller. The IP core 

supports the Open Nand Flash Interface Working Group 

(ONFI) 1.0, 2.0, 2.1 and 2.2 standard. The NAND flash 

Controller handles all the command, address, data sequences, 

manages all the hardware protocols, and allows the users to 

access NAND flash memory simply by reading or writing into 

the operational registers. 

Features of NAND Flash Controller: 

  Supports Flash devices up to 128 Gb 

 Supports NAND Flash memories from Micron, 

Samsung, ST-Micro and others. 

 Supports all mandatory commands and selected 

optional commands 
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  Boot mode support, Full access to spare area 

 Supports speed ranging from 40 MB/s to 200 MB/s to 

allow applications to balance performance and Power 

 Supports Interleaving Operations: Page Program 

Interleaving, Copy back Program Interleaving, Block 

Erase Interleaving, Read Interleaving, Cache 

Interleaving 

 upports Multi LUN/Die Operations 

 Supports Small Data Move 

 Supports Change Row Address 

 Supports Reset LUN: Page Size - 512B, 2KB, 4KB, 

8KB 

 Flash data bus width: Standard support - 8bit for both 

Asynchronous and Synchronous mode, Additional 

support - 16bit only for Asynchronous mode 

 ECC: 

◦ Hamming Code: 1Bit error correction, 2Bit error 

detection 

◦ BCH:  tandard support: 4, 8 bit error correction; 

Additional support - up to 32 bit error correction 

 provides a connection 16 the Flash chip. Eight NAND 

Flash Controllers provides a connection 128 the Flash 

chip - a not less than 1 terabyte. 

III.  MCT-04 DESIGN ISSSUES 

In addition to radiation tolerant and low power 

requirements for the space applications chip there was an 

additional requirement to achieve 2 GB/s exchange rate to 

NAND mass storage from external devices. During the 

preliminary analysis of the architecture, the following critical 

points that may affect the final performance of the system as a 

whole have been identified: 

 SpaceFibre ports performance (digital part + PHY) 

 NAND controllers performance 

 DDR memory port performance 

 On-chip interconnect performance 

 CPU performance, in particular: 

◦ CPU load by processing of requests coming from 

SpaceFibre by RMAP protocol 

◦ CPU load with NAND management (processing the 

request queue, reorder memory accesses operations, 

interrupt from the NAND controllers handling) 

◦ CPU load by queries allocation algorithm between 

eight NAND controllers and software cache 

management to increase the overall performance and 

lifetime of the memory chips 

Each of the given points can become bottleneck with 

critical impact on system performance. To avoid unnecessary 

system redesign cycles Requirement Driven Verification 

approach was applied [5]. Initial specification performance 

requirements continuously checked at all stages of design, from 

the very first stage in which there is uncertainty of the system 

architecture. In the route was used: 

 Analysis of requirements to the system elements from 

memory management algorithm with high abstraction 

level TLM models; 

 System efficiency analysis task decomposition 

(autonomous research of IP-Cores performance); 

 Entire system performance analysis with RTL model 

simulation and complex system-level tests [6] [7]. 

The principal feature of the route was the feedback from 

every direction on all remaining studies. Thus, when more 

detailed models of IP-cores was created, it causes updates for 

TLM model environment, in which the memory management 

algorithm was debugged (e.g. the number of interrupts from the 

NAND controller). In other way, new details obtained from 

algorithm environment causes updates in interfaces bandwidth 

requirements and CPU performance. In particular, it was 

fundamentally important to obtain information on the service 

traffic from the CPU for memory management algorithm (in 

addition to main data traffic). 

Here are some important results of research carried out in 

the process of designing the SoC 

Case 1: 8 NAND controllers together create a huge stream 

of interrupts (8 interrupt per transmission of one 4K page), 

which is completely distracts the resources of a single 

processor with architecture selected for the project. 

Two solutions were adopted for this reason: 

 Place additional CPU in a system for controlling the 

eight NAND controllers 

 Implement inside NAND controller hardware more 

intellectual management, for example for sending 

pages in auto-increment address mode (block transfer 

mode) 

Together, these solutions have led to the release of CPU0 

for cache and SpaceFibre management tasks and selecting 

CPU1 fully for NAND control task, which in a typical mode of 

operation has reserve for software optimization and 

parallelization of NAND transaction flow. 

Case 2: System level complex tests analysis of on-chip 

interconnect and memory subsystem performance showed CPU 

traffic (arbitrary traffic with short transactions) crowding out 

effect by a continuous high-density traffic from NAND and 

SpaceFibre ports. In addition, DDR bandwidth achieved in 

such tests is very close to maximum, determined by given 

technology. Therefore, even the change of the arbitration 

scheme and buffer organization in the DDR controller would 

result in a loss of performance for NAND traffic, which would 

also reduce performance, but in another place. The simplest 

solution was to increase the internal memory size and place in 

it program and the most frequently used algorithm data. CPU 

traffic minimization has beneficial impact on system 

performance for mass storage use case. 

TABLE I. THE CROWDING OUT EFFECT FOR CPU TRAFFIC BY NAND AND 

SPACEFIBRE HIGHER DENSITY TRAFFIC 

master Average time of byte transmission, ps 

nand3_w 3318.68489583 

nand2_w 3385.41666667 

nand4_w 3447.265625 

.....  

cpu1_r 29436.7913148 

cpu1_w 32159.8223481 

NAND controller and system performance: 
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TABLE II. NAND CONTROLLER PERFORMANCE 

 ONFI mode 

performance 

SLC mode read 

performance 

SLC mode write 

performance 

16-bit mode 400 MB/s 304 MB/s 160 MB/s 

8-bit mode 200 MB/s 152 MB/s 80 MB/s 

TABLE III. SYSTEM PERFORMANCE 

 Required average 

interconnect 

bandwidth 

Payload data traffic 

speed 

 

4 КВ packets traffic 375 MB/s 5-7 MB/s 

256 КВ packets traffic 350 MB/s Up to 180 MB/s 

mixed 4/256 КВ packets 

traffic  

308 MB/s 50-60 MB/s 

SoC design analysis showed that depending on the nature 

of the external traffic system would show the performance 

from 5MB/s (traffic from the packet of minimum size at which 

the limiting factor is the CPU performance) up to 200MB/s.  

200MB/s - practically achievable maximum for SpaceFibre 

in the SoC, but large amount of different packets may drop 

performance to 140-180 MB/s, caused by limitation in the 

DDR bandwidth in case of simultaneous streams from all 

masters. 

Two CPU design left margin in terms of software 

optimization potential, thus lower performance bound can be 

improved in future work with firmware. 

Large on-chip memory for memory management algorithm 

program and data in addition to cache eliminates negative 

impact of CPU activity on overall system performance. 

The MCT-04 software platform apply the Complete tool set 

for the fast development and integration of the space 

applications, includes MCStudio ® IDE (Integrated 

Development Environment).  

IV.THE MCT-04 ASIC EMBEDDED  SPACE WIRE 

STANDARDS FAMILY NETWORKING SUBSYSTEM 

The MCT-04 embedded networking subsystem provides 

multiple ports for high-rate interconnection with combination 

of the SpaceWire/SpaceFibre /GigaSpaceWire (SpaceWire-

RUS standard) links.  

The combination of the SpaceWire based family links 

(SpaceWire, SpaceFibre and GigaSpaceWire with various 

speeds and opportunities) provides unprecedented flexibility 

and scalability for space on-board processing systems. 

The six MCT-04 SpaceWire based family serial high-rate 

links consist of: 

1) Four multiprotocol ports (belong to SpFR switch) such 

as SpaceFibre (2 VC, 1250Mbps) /GigaSpaceWire 

(SpaceWire-RUS); have rates up to 5,10,15 ... (with 5 

Mbps increments) ... 125, 312.5, 625, 1250 Mbps); 

2) Two SpaceWire ports (ECSS-Е-50-12С) have rates up 

to 2-400 Mbps. 

It should be noted that MCT-04 ASIC SpaceWire links 

implementation supports the extensions towards next 

SpaceWire standard revision such as Distributed interrupts and 

others. 

It is also important to note that the GigaSpaceWire ports 

can provide bandwidth up to the 1250 Mbps,  but can operate 

also in a range of lower data rates, down to 5 Mbit/s. Lower 

data rates could efficient for longer distances or using older 

types of cabling. 

GigaSpaceWire is in fact a high-rate link for SpaceWire 

networks, and has the exactly the same Packet, Network layers 

and the same packet formats that makes the packets routing 

and switching between any combination SpaceWire and 

GigaSpaceWire ports straightforward and resource-efficient. 

The internal switch operates as a SpaceWire routing switch, 

with routing and switching SpaceWire/GigaSpaceWire packets 

between any combinations of its ports, in accordance with 

ports operation modes and the routing table.  

Two SpaceFibre links [3] are supporting by the 

multiprotocol network interface controller. The main 

SpaceFibre link rate in the MCT-04 ASIC is 1250 Mbit/s. 

In the multiprotocol ports implementation another 

operation mode is to support the GigaSpaceWire protocol. 

Such combination of the different types of ASIC links 

(SpaceWire/SpaceFibre/GigaSpaceWire) and internal switches 

makes the MCT-04 very flexible in building ASIC network 

interconnection with external processors, nodes, and 

peripherals with any type of SpaceWire/SpaceFibre 

/GigaSpaceWire networks; provide different types of network 

services.  

While SpaceFibre links provide advanced QoS features 

(very important for the space onboard systems), the 

SpaceWire/GigaSpaceWire combination links provide 

effective and cost-efficient networking for other on-board 

applications (for example, for the space Mass Storage 

systems). Such applications may not require SpaceFibre QoS 

features with an extra cost of the SpaceFibre implementation 

silicon area.  

SpFR switch supports the following main types of information 

flow: 

 Streams RMAP packets with hardware-software 

package processing; 

 Flows package SPW, a software package processing; 

no hardware packet processing is not performed. The 

various transport protocols and application layer can 

support software for them; 

 Streams RMAP appeals teams in the space SpFR block 

configuration from remote network administrator. 

 Interpretation of flow types calls made in relation to 

the logical channel numbers SpFR virtual ports from 

which they come. 

All packets coming from virtual channel VC0, automatically 

interpreted as RMAP treatment team in the configuration 

space. 

For virtual channel VC1 is possible to program the settings of 

interpretation modes - either as a stream of packet transport 

protocols , either as a stream of packets SpW not interpreted 

SpFR unit and processed by software. 

 

Thus MCT-04 ASIC is a new generation “system on a 

chip” of that supports a wide class of space on-board 

applications ranging from onboard data management to Mass 

Storage systems.  
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Fig. 3. MCT-04 chip post-layout area. The chip size: 17.5 mm x 17.5 mm. 

 
Fig. 4. Block diagram of on-board Mass Storage Device (MSD) 

V. THE MCT-04 ASIC PROOF ON THE SILICON 

In this MCT-04 ASIC project it was created a new 

innovative multiprotocol port IP-core (SpaceFibre/Giga-

SpaceWire IP–core) that provide a balanced solution between 

all advantages in QoS, FDIR and others  from SpaceFibre and 

the simplicity and low cost of implementation  from 

GigaSpaceWire. In this MCT-04  ASIC project it was created  

a new innovative multiprotocol port IP-core  (Space-

Fibre/GigaSpaceWire IP-core) that provide a balanced 

solution between all advantages in QoS, FDIR and others from 

SpaceFibre and the simplicity and low cost of implementation  

from GigaSpaceWire. 

MCT-04 ASIC was developed and synthesized on the 

space qualifiable ASIC technologies base. The chip size is 

17.5 mm x 17.5 mm (Fig.3). During the project, we analyzed 

the complexity and feasibility of 4-channel SpaceFiber switch 

built-in microprocessor  with two virtual channels each. 

From the MCT-04 ASIC post-layout area analysis  the size 

of the silicon area for some radiation tolerant MCT-04 IP - 

cores (real layout): 

 CPU0, CPU1: 47.00 mm*2; 

 4-port multiprotocol switch SpaceFibre/Giga-

SpaceWire (SpaceWire-RUS): 42.5 mm*2 

 SpaceWire interface controller (SWIC): 2.5 mm*2; 

 NAND Flash controller (NFC): 10.5 mm*2. 

The main parameters of the SpaceFibre/GigaSpaceWire 

CML based transceivers IP-cores, based on the space 

qualification Radiation Tolerant Libraries, are: 

 A wide range of data rates 5, 10, 15… (with discrete of 

5)...125, 312.5, 625, 1250 Mbps – for the 

GigaSpaceWire mode (including multiprotocol links) 

and - 1250Mbps for the SpaceFibre mode; 

 The transmitter and receiver IP blocks dimensions are 

the same: RX = TX = 0.233 mm*2. 

VI. APPLICATION OF MCT-04 

In Fig.4 shown the block diagram of on-board Mass 

Storage Device. 

The structure of the on-board MSD suggests applying of 

SpaceWire and SpaceFibre high-speed interfaces as a 

communication transmission medium of instructions and data. 

The SpaceFibre interface will be used for communication of 

those elements of informational computing system where data 

transmission rates reach Gb/s per channel. The SpaceWire 

interface is used as the common unified environment for 

transmission of commands and interaction between all 

subsystems of informational computing system. 

Structurally the MSD consists of storage modules (from 2 

to 15 modules) and two switch modules. Storage modules are 

intended for reception of input information on two channels of 

the high-speed SpaceFibre interface and it is saving in NAND-

Flash memory. Switch modules are intended for information 

transfer between storage modules and for formation of an 

output flow to Earth via a high-speed radiofrequency line.  

Basic elements of the storage modules are the MCT-04 

(memory Controller) and NAND-Flash memory.  

NAND-Flash memory is based on modules available from 

3D PLUS [9]. MSD consisting at 15 storage modules has total 

capacity up to 15 Tbytes. 

View of the 3D PLUS module shown in Fig.5. 
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Fig. 5. View of the 3D PLUS NAND Flash storage module 
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Fig. 6. Block diagram of on-board data. Processing system 

In Fig. 6 shown the block diagram of on-board data 

processing system. 

On-board data processing system consists of Digital Signal 

Processing System, Instruments and Mass Memory. Digital 

Signal Processing System is implemented on Radiation 

tolerant heterogeneous Multi-core ASIC MC-30SF6 [8].   

VII. CONCLUSION 

Radiation tolerant chip MCT- 04 was developed using 

technology SpaceFibre/GigaSpaceWire (SpaceWire-RUS 

standard) and is designed to create a network drive terabyte 

capacity.  

Under the ELVEES development  is the 90 nm SOC design 

for the on-board Mass Storage Device with the transmission 

rates of serial I/O duplex SpaceFibre GigaSpaceWire 

(SpaceWire-RUS standard), transceivers up to 12 Gb/s per 

channel. It is planned to provide an opportunity to work via 

fiber-optic transceivers. Further extension the volume of 

storage device up to 4 Tbytes is under consideration. 
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Abstract—When developing the SpaceWire based Sirius Data 

Handling System (DHS) for small satellites ÅAC Microtec has 

had to address the dual problem of designing for a low cost and 

in a small form factor while retaining the high performance, 

availability and longevity required to support advanced science. 

In order to achieve the low cost a number of strategies have been 

applied. Notably, the data handling units are generically designed 

to be reusable either used for other missions as a part of the 

platforms they were initially targeted for or for use on other 

platforms, including CubeSats. Also, COTS components known 

to withstand the space environment have been used for the 

designs, in a strategy to reduce component costs. To increase 

reliability, the Sirius DHS units are designed around a Flash-

based FPGA to be tolerant to SEE through triple modular 

redundancy (TMR) and other fault handling techniques and 

implements SpaceWire as the main data bus, using nano D-sub 

connectors to save space and weight. The paper explores in more 

detail the choices made on the data handling units in order to 

achieve sufficiently high performance and high reliability in a 

CubeSat compatible form factor at a reasonable price. 

Index Terms—Data Handling System, SpaceWire, 

microsatellites, COTS. 

I. INTRODUCTION 

In 2014 ÅAC Microtec was awarded with a project to 

design a small, low-cost Data Handling System (DHS) for the 

InnoSat satellite bus, that was to be used in the national science 

mission MATS [1]. The project was seen by ÅAC Microtec as 

a possibility to use the experience gained from designing 

previous DHS systems to make a new design that would fit the 

new requirements. Designing a more generic DHS would 

enable a drastic reduction in project cost since parts of the non-

recurring engineering (NRE) could then be split over several 

current and future satellites. This would be a first step to enable 

the cost reduction required for the project, compared to using 

traditional space systems. 

   

Figure 1. Prototype of a DHS unit. 

The DHS is intended for all data handling between the 

radio and payload, as well as controlling the power and AOCS 

systems. Included functions shall be data storage, scheduling of 

experiments and maneuvers as well as handling the radio, 

converting payload data to CCSDS (The Consultative 

Committee for Space Data Systems communications encoding 

standard) compatible messages that can be sent to the radio. 

The MATS science mission is designated for Low Earth 

Orbit (LEO) and a 2 years lifespan. The requirements were 

optimized for this, with a starting point in the ECSS (European 

Cooperation for Space Standardization) standards but in many 

cases relaxed or pointing to the established industrial standards, 

giving some freedom to the designers. However, a lot of 

requirements were still given on the overall reliability of the 

system, also under radiation, making the alternative of a 

commercially available computer extremely difficult. The 

alternative of using existing CubeSat [2] electronics was also 

considered risky, considering the fact that, despite in some 

cases having many successful recorded flights, the systems are 

not well tested for the space environment. Also, a lot of 

commercial electronics, that can be sensitive to radiation 

without the proper mitigation techniques, are used in most of 

those designs. 
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II. DESIGN PHILOSOPHY 

A. Requirements 

The requirements for the DHS were, except for the national 

science mission, taken from several systems that ÅAC 

Microtec have previously been and are currently being 

involved in the design of. Input was also taken from market 

studies, such as [3], to improve the reusability of the system. In 

this way a design can be achieved that will fit the ongoing 

projects at ÅAC Microtec as well as be a more generic system 

for small satellites. 

The size of the satellites being developed at ÅAC Microtec 

and their partners varies from CubeSats (3U) up to platforms in 

the range of a cubic meter and 250 kg. This required the DHS 

to have some kind of scalability but also to be small and 

lightweight in its most basic forms. Given the development of 

the market and the experience from the previous systems, those 

factors were considered important also from the perspective 

that the DHS was to fit upcoming satellites. 

B. System level decisions 

To match the different requirements on size, interfaces and 

computational power, a modular approach was selected. In this 

way one or a few units could make a complete lightweight 

DHS for simpler systems while more units could be added to 

handle the requirements of more complex systems. To handle 

all the functions required from the DHS, two types of units 

were identified, one combined mass-memory and radio 

interface and one more generic unit, designed to act as on 

board computer and subsystem handler. SpaceWire was 

selected as internal communication interface, to match the 

requirements in bitrate and stability as well as enabling 

connections to external units over a standardized and well 

known interface. However, using the standard micro-D 

connectors would significantly increase the unit size, just as 

would using the quite stiff standard harness. Therefore an 

approach using nano-D connectors and removing the outer 

shield and jacket, based on the suggestions in [4] was selected. 

What could also be seen from the requirements on the 

systems was that the cost level had to be kept quite low while 

the reliability of the system still needed to be high, reducing 

risks and downtime. Given that the number of units was 

expected to be relatively large, an approach where unit cost 

was prioritized compared to NRE was implemented. This led 

to the conclusion that normal space grade components could 

not be used other than where no other alternative could be 

found. Instead commercial off the shelf (COTS) components 

were to be used. In our case COTS is referring to components 

that have not been specifically designed or qualified for use in 

space. 

To maintain the reliability of the design, several mitigation 

techniques as well as thorough testing was needed. The 

experience at ÅAC Microtec was that a COTS based design 

could become very reliable and definitely sufficient for the 

purpose, even though the total reliability would not be as high 

and well defined as it would have been using space-grade 

components, 

The parts of the system that were considered the most 

sensitive to single event effects (SEE) are the processor and 

memories. Instead of using sensitive commercial processors, 

and to be able to better monitor the memories, a solution based 

on a flash-based FPGA (field programmable gate array) with a 

dedicated system on chip (SoC), including a soft processor, 

was selected. This also enabled better tailoring of the IO 

capabilities, like including CCSDS encoding and decoding 

directly in hardware, offloading the processor.  

Even using the COTS approach would prove too costly for 

the intended range if each component was to be qualified 

individually. Therefore a system-level test approach for testing 

was selected, which would still give a good proof of the 

reliability of the system while the exact properties of each 

component would be more difficult to obtain. To reduce the 

risk during testing and flight, careful component selection was 

needed. 

III. COTS VERSUS SPACE GRADE 

Building systems for space using COTS components adds a 

number of difficulties to overcome, amongst others that the 

components are: 

 Not tested for the space environment 

 Designed with restrictions that are not applicable to 

usage in space 

 Manufactured using cost efficient methods that are 

not adapted for usage in space 

 Supported by suppliers that lack the knowledge and 

understanding of using the components in space 

systems 

 Not unit or batch tested to the same extent as space 

grade components 

The most obvious difficulty is that the COTS components 

have not been tested for use in the space environment, leading 

to undefined behavior, especially when looking at radiation 

effects. This increases the requirements on component 

selection and testing procedures as well as forcing measures to 

be taken to reduce the impact of any effects that might still 

occur. 

Requirements that are not valid for space have often been 

imposed, whereof RoHS (the Restriction of Hazardous 

Substances Directive), resulting in the usage of leadless solder, 

is one of the more troublesome. In smaller satellites the thermal 

mass is quite low and this, together with the fact that less 

resources is available for active thermal handling, increases the 

temperature swings that can be expected. Leaded solder is 

generally better in handling thermal stress than the leadless 

solders often used in the industry [5]. Also, while the ground-

based industry is taking the problem into account and has made 

improvements [6] the fact still remains that solders with a very 

high amount of pure tin can have problems with the formation 

of tin whiskers. While components with leaded terminations 

can still be found, this was considered very limiting for the 

component selection. Also, retermination can be made, but this 

would add an extra process step increasing cost, risks and lead 

time. The mitigation techniques used to cope with the problems 

of unleaded solder are described in section IV. 
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While space and military grade components have mainly 

stayed with ceramic and metal packages, the commercial 

industry have moved to plastic packages, mainly to reduce cost 

but also to decrease weight and vibration sensitivity. When 

plastic packages were first introduced the differences in 

reliability compared to ceramic packages were large, but since 

then the plastic packages have improved significantly and 

problems such as sensitivity to temperature cycling and 

hermeticity are no longer large concerns. In the data handling 

system (DHS) no extreme temperatures are expected, so the 

greater sensitivity to high temperatures of plastic packages is 

not seen as a problem either. 

Another problem in using COTS components is that some 

parameters that can easily be obtained from space grade 

component suppliers can prove difficult to obtain from COTS 

suppliers. This can be outgassing properties, batch tracking 

data, the performance under thermal stress or mitigation 

techniques used to reduce the tin whisker problem. While this 

problem increases costs for non-recurring engineering (NRE) 

somewhat, it is not a big cost driver and does not affect 

reliability. 

Finally a typical COTS component is not subject to the 

same rigorous testing on unit and/or batch level as a space 

grade one. This puts higher requirements on later testing in 

general and acceptance testing of the units after assembly in 

particular. 

Looking at the other side a few of the advantages are: 

 Cost 

 Availability 

 Basic quality 

 Performance 

The most obvious advantages of COTS are the cost and 

availability. Having much higher volumes, plastic packaging 

and less rigorous unit testing decreases cost significantly, about 

a factor of 100 per component is not uncommon. 

A not so obvious advantage is the basic quality. While 

space grade components are even more thoroughly tested to 

find any problems than many COTS components, the later 

have the advantage of often being produced in huge quantities 

and in more mainstream processes. That means that even just a 

few of them are tested per batch the number of batches provide 

better statistics for improvements in the processes. 

Another advantage is performance. Commercial processors 

and memories are often many years ahead of the space grade 

counterparts, which can also be seen from the fact that also the 

traditional space industry in some cases go to the COTS market 

to enable their missions [7]. 

In some cases, especially in critical power paths, the 

component needs to be used on the edge of its capacity and 

therefore needs to be well defined also during and after 

radiation. For those rare cases space grade components are 

used in the systems to fulfill the requirements. No such cases 

have been identified for the DHS while some have been found 

in the power subsystems that were designed at the same time. 

IV. MITIGATION TECHNIQUES 

As described in the previous section, using COTS in space 

comes with a large number of limitations. To handle this and to 

make the system robust to faults present also for space-grade 

based designs, a number of techniques are implemented on 

different levels of the DHS. 

A. System 

On a system level housekeeping and power monitoring are 

the primary ways to detect and handle any failures. 

Power monitoring is done both on the different DHS units 

and on the central power control and distribution unit [8], 

which is not the focus of this paper. On the DHS side, each unit 

has a wide input voltage range, to be able to work in many 

different systems, and use number of protection and mitigation 

functions: 

 Overvoltage protection, shutting down the power 

input in the case of a malfunction of the power supply 

 Undervoltage lockout, ensuring that current leakage 

does not put the unit in an unknown condition. 

 Power loss detection, giving the processor a heads up 

of a few microseconds for a graceful shutdown. 

In general, more resets can be expected from a COTS based  

than a space grade based solution, but tests performed and 

flight record have shown that such resets are very rare and 

generally not related to problems in the power handling. In all, 

the power monitoring systems implemented are considered 

enough to avoid most catastrophic failures due to SEE even 

though the units are not designed to be single point failure-free. 

The DHS units provide a number of housekeeping 

parameters that are used by the system software to decide on 

actions to prevent or analyze failures. Those also provide 

feedback on the behavior of the system during testing. 

Despite all the measures taken to have reliable and self-

healing units there is always a risk of having units that gets 

locked-up due to untested corner cases in the software 

implementation. To mitigate this all DHS units are capable of 

being reprogrammed in flight. This is used together with the 

possibility of resetting the units to the updated or original 

software image using hardware decoded CCSDS compatible 

messages in the ECSS-E70-41A packet utilization standard 

(PUS) format.  

Finally both the original and updated software images are 

tripled, so if booting from one version of the specific image 

fails due to single event upsets (SEUs) corrupting the data, the 

system can move to the next one. 

B. System on Chip (SoC) 

To provide a system much less sensitive to SEE than using 

a commercial processor, an FPGA (Field Programmable Gate 

Array) with a dedicated SoC is used. The FPGA selected is 

Flash based, which gives its configuration an insensitivity to 

SEE. Since the configured gates can still be sensitive to SEU:s 

all flip-flops of the SoC used in space are tripled, using 

majority voting to decide on the outcome of the operation. 

Also, all caches in the processor are controlled using parity, 

provoking a cache reload if any faulty register is detected. This 
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renders the SoC, and thereby the processor in itself, more or 

less immune to SEU:s, removing a large risk with a 

commercial design, still using COTS components. 

To mitigate the problem of SEU:s in the memories, reads 

from all memories are checked using error detection and 

correction code (EDAC). While the data from the non-volatile 

memories is just checked when read out, the volatile memories 

are also continuously scrubbed and any errors found reported 

and, if possible, corrected. If an uncorrectable error is found 

during the read from the volatile memory on a command to be 

executed, a reset is triggered, putting a fresh image from the 

non-volatile memory into the volatile one. 

To prevent any software related issues from locking the 

system up and to cover for errors not found by the other 

systems, a watchdog is implemented in the SoC, causing a 

reboot of the unit if it becomes unresponsive. 

Finally, all peripherals in the SoC have parity checking of 

their FIFO (First In First Out) registers, enabling data to be 

resent if needed. 

Figure 2 gives a rough understanding of the resulting unit. 

Most parts of the system, including the processor, runs at 

50MHz.
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Figure 2. Sample unit block diagram. 

C. Electronics design and manufacturing 

Using COTS components with unknown reaction to the 

space environment in the design introduces a risk in the test 

stage, especially for radiation testing, as well as in the final 

application. Therefore careful component selection is of 

uttermost importance to reduce final cost and improve the 

resulting reliability. A lot of effort has been spent on finding 

components that are considered to be relatively safe to use. For 

instance, already published radiation reports on different COTS 

memories are used to find suitable SDRAM (synchronous 

dynamic random access memory) and Flash (non-volatile) 

memories for the DHS. A lot of effort has also been spent 

finding data that is more relevant to satellite systems than 

COTS-based systems, such as outgassing properties.  

As previously mentioned the DHS is assembled using 

unleaded solder. The two main risks with this are possible 

failures due to temperature variations and the risk of tin 

whiskers. 

To reduce the risk of damages to the solder joints due to 

thermal stress, interfaces known to be sensitive (such as chip 

scale packages or ball grid arrays) were avoided where possible 

and tested and analyzed when used. 

Tin whiskers are crystalline spikes of tin that grow from tin 

surfaces and that can create shorts between adjacent conductors 

or break free and short conductors in other parts of the system. 

While the effect seems to be impossible to completely avoid 

for components with terminations plated with pure tin, it can be 

mitigated using conformal coating that reduces growth and 

protects all other surfaces from any whiskers that are able to 

grow through the coating. The coating also helps protecting the 

electronics from any moisture that it might be exposed to 

before launch. 

 

Figure 3. Image showing the formation of tin whiskers on uncoated, to the 

left, and coated areas, to the right [9]. 

Since qualification testing (described further in section V) 

is one of the cost drivers in the development of the DHS it is 

important to make sure that no changes are done in the 

manufacturing processes without an analysis of the 

consequences for the test results. This is controlled using lot 

travelers where the manufacturer enters the parameters that are 

used in the different processes. The same lot traveler is also 

used to increase traceability and ensure that the correct process 

parameters and safety measures are made. 

To simplify manufacturing, and thereby reduce costs, 

industrial standards rather than the space specific ones have 

mostly been used to define the quality requirements for those 

steps. Since only a few manufacturers are used to the space 

standards, this increases the selection of manufacturers 

significantly. In general the highest levels of quality were been 

selected, such as assembly according to IPC-A-610 class 3. 

D. Mechanics 

The DHS units are also separately enclosed in mechanic 

boxes, adding to the radiation shielding and insensitivity to 

electrostatic discharges during assembly. This also helps in 

harnessing, providing fastening points for the cables and 

simplifies integration. 
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V. TESTING 

COTS components are not uncommon in space designs, 

also in designs with even higher requirements on reliability 

than the ÅAC Systems, but there are few, if any, standards for 

space systems that are adapted to anything else than the very 

highest (and therefore very expensive) quality level. Since 

ÅAC Microtec depends on external resources doing most of 

the environmental testing (except for temperature and 

humidity), it is also important that any test specifications used 

are either accepted and known or, for less complex tests, clear 

enough to be able to do the testing without following an 

existing standard. To match the requirements seen an internal 

standard have had to be made, being a compromise between 

the ECSS standards, NASA recommendations and the cost 

efficiency required. In some cases industrial or military 

standards were selected to increase the number of available test 

facilities, decreasing cost and potentially lead times. As an 

example, approach very close to the ECSS standard was used 

for the temperature cycling while the SEE testing was done 

with protons only, based on NASA recommendations, to 

enable unit testing and the usage of nearby facilities. 

A problem in defining the test levels have been that the 

ECSS standard is mainly adapted for testing for a specific 

mission, where a lot of parameters are given by the selection of 

orbit and launcher. Since the DHS was designed to be reused in 

future missions, a more generic approach have had to  be 

selected, where some test levels have been taken from the 

ECSS or industrial standards while others have been tailored to 

get the most reliability for a given cost. This leaves the 

decision of any additional testing with the customer, if the test 

levels presented are not enough. 

VI. CONCLUSION 

A. Summary 

Using in-house knowledge from fully space grade and 

purely industrial designs, a design and test philosophy 

matching the requirements for the mission and more general 

requirements, improving the reusability of the system, has been 

made. Those incorporate ECSS, NASA as well as established 

industrial standards and recommendations, reducing the cost 

while only slightly decreasing the overall reliability compared 

to a full ECSS test campaign. Experience from previous test 

campaigns and flights have been incorporated to reduce the 

risks and increase the reliability of the system substantially. 

This results in a system that is drastically less expensive than a 

fully ECSS compliant system but that still have a lot of the 

reliability that can be expected of such a system for the 

intended usage, which is 5 years in LEO. 

B. Future work 

A first version of the DHS is due for launch on a tech 

demonstrator satellite in 2016 and the data obtained from the 

system during flight will be analysed and used for 

improvements. 

 

Figure 4. Integrated DHS with radio and power unit attached. 

A continuous process of improving the design and test 

philosophies and making the units even better adapted for 

reusability is ongoing. In this process there is a continued 

weighting of the cost versus the reliability in a way that a 

reliability good enough for most LEO small satellite missions, 

including the more critical ones, is achieved, without getting 

the costs associated with electronics for a large satellite 

designed for long time usage in higher orbits. 
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Index Terms—Connector new design, high data rate (HDR). 

I. INTRODUCTION  

Axon’ Cable was selected to carry out the 

development of a new, compact impedance-matched 

SpaceWire (abbreviated herein to “SpW”) connector under 

an ESA Technology Research Project.  The classic existing 

SpW connector, the 9 way micro-D, whilst having the 

advantages of being both small and common to many 

projects, is not electrically optimized to the SpW needs, nor 

is it particularly efficient when it comes to EMC protection.  

As high data rate applications are booming, there is, a 

pressing need to develop an improved connector interface. 

The design phase of the project under ESA 

supervision is nearing completion. In one hand Axon’ has 

carried out a user survey to assess the needs from users and 

their priorities for such a connector. In the other hand Axon’ 

has also conducted a connector survey to identify and 

evaluate potential candidates already on the high data rate 

connector market from different manufacturers. 

From  the original scope of the project, Axon’ has 

already gone the extra mile with the design and manufacture 

of a number of different cable constructions in order to 

evaluate whether the existing four shielded twisted pairs 

configuration is indeed the best option for SpW L.V.D.S. 

transmission. 

Axon’ will present the main results and conclusions of 

these surveys, along with a detailed presentation of the 

prototype of the compact, impedance-matched connector, 

and a description of  the trade-off made in order to achieve a 

desirable size coupled with significantly improved electrical 

and EMC performances.  

 

Note:  To avoid repeating the lengthy phrase 

“compact impedance-matched SpaceWire connector” 

throughout this paper and elsewhere, Axon’ has adopted the 

working name “MicroMach SpW” for this connector family, 

drawing on its twin heritages of micro-D and AxoMach® 

(‘mach’ meaning high speed) technologies. 

II. SURVEYS AND CHARACTERIZATION 

A. Existing Market Connectors Survey 

 

Among a variety of existing connectors on the market 

dedicated to interconnect high speed links, only a few  

appear to meet the required electrical performance levels, 

but those tend to be much larger in size than the 9 way 

micro-D solution (see example in fig.1). Other than its 

compact size, however, the micro-D offers the least 

electrically compliant results of the study - unsurprising in 

that it was originally chosen for its size and robustness 

rather than its HDR capability.  Put another way, typically 

when a connector is of a desirable size, the electrical 

parameters tend to be compromised - particularly in terms of 

EMC performance.  Additionally, the various available 

connectors on the market, along with their contacts and 

accessories, are not always well matched to the cable size 

and can therefore create a degree of electrical mismatching, 

generally manifested by deviations in characteristic 

impedance and shielding efficiency. 

 

 
Fig.1. Size comparison between classic 9 way micro-

D connector and one of the top HDR performers in the 

connector survey 
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Fig.2. Shielded twisted pair (top) versus 

shielded parallel pair (bottom) 

 
Fig.3. shielded twisted quad cable 

 

 

As no connector on the market currently meets both the 

electrical performances and the dimensional aspirations of the 

study, the development of a dedicated connector was 

commenced, focusing on the twin targets of remaining as 

close as possible to the size of the 9 way micro-D whilst 

significantly improving the overall electrical performances.  

 

B. Cable survey and trials: first results 

 

A cable survey was carried out by Axon’ Cable to try to 

improve cable features based on skew reduction and size. The 

approach has been to consider a manufacturing process of 

shielded parallel pairs using the same low loss A-PTFE® 

dielectric material as used in the current low mass SpW cable 

ESCC3902/004. The intention is to scale up the data rate 

capability of a shielded parallel pair cable whilst ensuring an 

intra pair skew and insertion losses reduction.  

With shielded parallel pairs, the skew is better managed 

due to low variation of the wires length along the cable (a twist 

adds an extra length per wire compared to a parallel pair). This 

parallel wire layout leads to a fair reduction of the insertion 

losses of the cable. Moreover from a mechanical point of view, 

the overall diameter of the wires assembly is smaller in a 

parallel construction than in a twisted one because no filler 

material is required between wires. 

 

In an attempt to reduce the cable dimensions even further, a 

shielded twisted quad cable configuration (fig.3) has been 

investigated. The wire baseline is equivalent to parallel or 

twisted pair but matched to offer 100 Ohms differential 

impedance between opposite wires. This cable requires a 

dedicated connector with four pins within the same contact 

(quadrax) to achieve the required electrical performances.   

 

C. Electrical characterization test and report 

  

Electrical features both for time domain and frequency 

domain have been selected with ESA to characterize the future 

SpW connector and link. Based on this selection, Axon’ has 

built prototype assemblies using existing high data rate 

connectors and its low mass SpW cable. Crucial electrical 

parameters like scattering parameters, characteristic impedance 

and crosstalk have been measured as well as new parameters, 

such as differential mode to common mode conversion, 

characterizing the symmetry of the differential transmission 

line. 

 

III. NEW CONNECTOR DESIGN 

 

The shape of the proposed new connector was rapidly 

chosen in accordance with customers’ needs to be a 

rectangular design with four separate cavities.  Each cavity is 

separated by a metallic wall to improve crosstalk performance.  

The four ways are designed to all be fully 100 Ω adapted 

throughout the complete transmission line. 

To secure the mating sequence, two special guide pins are 

used which, as well as securing the backshell to the connector, 

help accurately guide the male and female connectors together 

during the mating operation. 

The electrical contacts are assured by the very well-known 

and reliable Twist Pin technology used on micro-D 

connectors, which can boast decades of successful flight 

heritage.  These contacts are inserted by first fitting them into 

dielectrics which are then press-fitted into the connector shell.  

This design prevents the contacts moving backwards or 

forwards within the connector. 

A SpW cable consists of four inner shields (around the 

twisted pairs) and one overall shield.  One of the main 

challenges of this new development, therefore, was to design a 

connector with four effective inner shield terminations in an 

overall size as close as possible to that of a 9 way micro-D.  

The choice, made jointly with ESA and STAR-Dundee, was to 

work on a connector with “good-but-not-360°” inner shield 

termination (as illustrated in fig.4) in order to make it more 

compact.  The purpose of this design is to guarantee sufficient 

electrical contact between the braided shield of each pair and 

the metallic shell of the connector whilst saving space and 

significantly reducing crosstalk.  

 
Fig.4. 3D cross-section of the in-line male 

MicroMach SpW connector 
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The contact of all four inner shields is achieved using 

a metallic ‘nano’ band tightened around a special 

feedthrough insert with the four shielded pair in situ (fig.5). 

The cruciform shape at the rear of this inner shield insert 

ensures a solid electrical contact by maintaining a degree of 

pressure over the 4 cable braids.  This Axon-designed insert 

has been dubbed internally, “aXiform” 

The overall (outer) shield of the cable is then crimped 

over the backshell funnel with an axoclamp® (or equivalent) 

banding adaptor. 

 

 
Fig.5. twisted pair shield connection demonstration 

with “aXiform” inner shield feedthrough insert 

 

The MicroMach SpW connector is currently designed 

for both AWG26 and AWG28 SpW cable variants with a 

specific “aXiform” insert for each size.  Other cable 

constructions could be achieved simply by adapting the 

insert as required. 

 

Finite Element Simulation 

 

To identify the best compromise between the 

hardware design and the resulting electrical performance, 

Axon’ carried out Finite Element simulation on 3D models 

using CST software.  These analyses were principally 

focused on characteristic impedance (Zc) in order to 

determine the optimum size of all the inner connector 

elements.   

As can be seen in fig. 6, the main mismatching is 

where the cable is terminated to the contacts (peaks of Zc).  

Just before the crimped contact interface the Zc variation 

may be around 20 Ω for AWG28 and 15 Ω for AWG26 

cable. 

 

Impact of wires diverted towards the contact positions inside 

the connector 

 

Fig.6. CST simulation with Finite Element Model 

 

 

IV. PROTOTYPING 

 

A. Assembly steps description 

 

A cross-section view of the prototype CAD model 

(fig.7) illustrates the final product showing its different piece 

parts put together. 

 

 
 

Fig.7. Cross-section view of mated connectors 

 

The next page shows the main stages of the 

manufacturing sequence carried out by Axon’ Cable on a 

prototype to link cable with newly designed connector and 

accessories. 
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Stage 1: Cable cut to length and wires end stripped. 

Crimped contact to wires and use of makeshift inner 

shields protection with blue tape. 

 

 

 
 

Stage 2: Crimped wires insertion (from left to right in 

the picture) through metallic backshell, continuity ring and 

through EMI gasket. 

 

 

 
 

Stage 3: Contacts insertion into the flexible plastic 

dielectric (press-fit) 

 

 

 
 

Stage 4: Dielectrics insertion into the connector shell 

(press-fit) 

 

 

 

 

 

 
 

Stage 5: Final connector assembly and connection of 

the external braided shield of the cable to backshell by 

clamping 

 

 

 

B. MicroMach SpW main physical properties  

 

The connector flange (rectangular) dimensions are 

21.4 x 9.3 mm. The largest cross-section is 32% bigger than 

the existing 9 way micro-D but a comparative view showing 

side-by-side connectors in fig.8 indicates how similar size-

wise the connectors really are. 

The mass of the MicroMach SpW female connector 

including backshell and screwlocks is only 6 grams and the 

male version mass sits at 7.5 grams. The masses have been 

estimated from CAD models and need to be confirmed at the 

end of the project. 

 

 
Fig.8. 9 way micro-D connector (left) and MicroMach 

SpW connector (right) 

 

C. Preliminary electrical measurements  

 

Static measurements: 

Contact bonding resistance (between male & female) 

< 5 mΩ. 

 

Frequency domain: 

Crosstalk Next/Fext < -50 dB up to 1 GHz. 

Return loss < -20 dB up to 1 GHz. 

 

Time domain: 

The following characteristic impedance Zc (fig.9) is 

measured on a 9 way micro-D connector couple (male and 
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female) connected to ESCC 3902.004.01 low mass SpW 

cable. 

 

 
Fig.9. Zc on 9 way micro-D connector 

 

Zc varies between 86 and 116 Ω (with 150 ps rise time 

filter, green plot) & from 76 to 140 Ω (in full band, white plot) 

 

The following characteristic impedance (fig.10) is 

measured on a MicroMach SpW connector couple (male and 

female) connected to ESCC 3902.003.02 SpW cable 

 

 
Fig.10. Zc on MicroMach SpW connector 

 

Zc varies between 99 and 104 Ω (with 150pS rise time 

filter, green plot) & from 94 to 109 Ω (in full band, white 

plot). 

 

Eye pattern / SpW mask compliancy: 

The following eye pattern (fig.11) is measured on a 1-

metre link using ESCC 3902.004.01 low mass SpW cable 

connected to 2 connector couples and run at 4 Gb/s.  

 

 
Fig.11. Eye pattern test result (mask with purple 

colour) 

 

Fig.11 shows compliancy of the vehicle under test to 

the requirement (measured eye remains outside the mask 

representation). 

 

D. Presentation of  MicroMach SpW Range 

 

Axon’ has also worked on a number of different 

possible connector variants as presented briefly below. 

Some additional PCB connectors will be developed 

according to the need. 

 

 

 
Fig.12. Inline Male 

 

This connector (fig.12) will be used mainly for 

normal links between various equipment or between 

equipment and router. 

 

 

 
Fig.13. Inline panel mount 

 

This variant (fig.13) will be used to add a break point 

in a link. It could be fixed to a dedicated bracket or on a 

panel. 
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Fig.14. Board Straight PCB  

 

Basic PCB connector (fig.14) can be used to connect to a 

board with limited mismatching and crosstalk. 

 

 

  
 

Fig.15. Flex PCB panel mount  

 

This connector assembly (fig.15) allows a good mechanical 

decoupling between PCB and equipment panel while 

maintaining impedance matching and crosstalk reduction. The 

skew is also very low. 

 

 

 
Fig.16. Edge PCB SMT  

 

This variant (fig.16) saves a lot of space on the PCB and allows a 

significant crosstalk reduction between the two connection sides. 

 

 

 
Fig.17. Edge PCB SMT panel mount 

 

The connector (fig.17) adds the possibility of mounting the 

connector on a panel (rear mount) 

 

 

  
Fig.18. Wired PCB panel mount 

 

This variant (fig.18) allows a panel mount while 

maintaining impedance matching. Offering easy to solder 

connection to PCB. 

 

 
Fig.19. Saver (front and rear view) 

 

Savers (fig.19) are often needed during the Assembly, 

Integration and Test phase. 
 

 

V. CONCLUSION 

 

Trade-off had to be made with regards to the cable 

shield termination to the connector backshell (not full 360° 

screening) to minimize the size. But the new MicroMach 

SpW connector range, planned to be available by end 2017 

offers, in a size only slightly larger than the current 9 way 

micro-D, significantly improved performances in data rate, 

EMC and crosstalk compared to any of the current market 

solutions.  

The Axon’ internal cable survey, still in progress, will 

also propose new possibilities for cabling.  Parallel pairs are 

already showing promising results and could be used with 

the MicroMach SpW connector to achieve high data rates 

where other restrictions, such as limited available space, 

may apply. 

An important outcome of this project will be the 

creation of a generic harness specification for high data rate 

links plus a new ESCC detail specification characterizing 

these new SpW in-line and PCB connectors.  At the same 

time the latest revision of the SpW standard, ECSS-Q-ST-

50-12 has been issued incorporating the possibility to use 

this new “MicroMach SpW” connector as a type B. 
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Abstract— The GR718B is a standalone, radiation tolerant, 
18x-port SpaceWire router, enhanced with support for 64 
interrupts, SpaceWire-D and SpaceWire standard revision 1. A 
brief overview of the design background of this device is 
provided herein. The main design features of the GR718B are 
also described in this paper. A short summary of the screening 
and qualification flows for space qualification of the GR718B is 
given herein. GR718B prototypes have already passed functional 
and electrical verification and the first flight lot of GR718B is 
now in its final stage of space qualification. The main outcome 
the Single Event Effects testing of the GR718B are given here and 
support the choice of radiation hardening features selected for 
the design of this device. 

Index Terms—SpaceWire, SpaceWire standard revision 1, 
SpaceWire-D, Networking, Spacecraft Electronics, Router, 
Radiation, Single event effects, 

I. INTRODUCTION 

GR718B is a radiation tolerant 18 port standalone 
SpaceWire router component developed by Cobham Gaisler 
AB in an activity initiated by the European Space Agency 
(ESA). The GR718B is currently being qualified for space 
following an ESCC9000 lot validation approach. The GR718B 
SpaceWire router has been updated to the latest SpaceWire 
standard for 64 interrupts codes. The GR718B SpaceWire 
router use on-chip LVDS (Low Voltage Differential Signaling) 
transceivers and LVTLL (Low voltage Transistor-Transistor 
Logic) ports, which have been proven to be operational above 
200 Mbit/s. UART and JTAG interfaces, that give access to the 
on-chip AMBA AHB bus, are provided for configuration and 
debugging. SPI and GPIO interfaces are accessible through the 
configuration port, which allows SPI devices to be accessed 
and general purpose signaling to be performed through RMAP 
commands. In addition to the mandatory features in the current 
ECSS SpaceWire standard, GR718B supports group adaptive 
routing for path addresses and packet distribution. It also 
includes support for the SpaceWire standard revision 1 (ECSS-

E-ST-50-12C Rev.1), the SpaceWire-D protocol, and the 
updated SpaceWire Plug-and-Play protocol.  

The technology selected for the manufacturing of the 
GR718B is CMOS 180nm, using the DARE+ library from 
imec(Belgium). The GR718B is currently provided in a 256 
pin CQFP package. A prototype board for evaluation and 
software development for the GR718B has been designed and 
manufactured.  This board can be ordered directly from 
Cobham Gaisler [1]. 

 

Fig. 1.  GR718 device mounted on printed circuit board (PCB) 

II. BACKGROUND 

Both ESA and several companies in the space industry have 
indicated 16 as the most viable number of Space-Wire ports for 
routers in the near future. Cobham Gaisler's intentions with the 
GR718B development was to provide this key component. The 
design is based on the GRSPWROUTER configurable 
SpaceWire router IP core. The IP core supports from 2 to 31 
ports of three different types: SpaceWire, AMBA and FIFO. 
The SpaceWire ports implement an encoder-decoder compliant 
to ECSS-E-ST-50-12C [2] and provides an external SpaceWire 
interface. FIFO ports provide 9-bit parallel interfaces with 
control signals in each direction (read/write), which can be 
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used to interface external units or to cascade two or more 
routers without any glue logic. The AMBA ports interface to 
an AMBA AHB bus using DMA on the bus. All three port 
types connect to the switch matrix of the IP core using identical 
FIFO based interfaces. There is no way to distinguish the three 
ports on the SpaceWire packet level and upwards. The 
configurability provided by the IP core makes it usable in many 
different applications. It has already been used in several 
standard radiation-hardened components such as Actel’s 
RTAX2000SL and RTProASIC3 FPGAs, and is also used in 
the Next Generation Micro Processor, the GR740 [3], system-
on-chip activity funded by the European Space Agency.  

 
 

 
Fig. 2.  GR718B architecture overview 

 
During the development phase, two configurations of the IP 

core were identified as potential candidates for the final ASIC: 
one with 16 SpaceWire ports with on-chip LVDS transceivers, 
and two additional ports, either SpaceWire LVTTL ports or 
FIFO ports; and the other with 16 SpaceWire ports and two 
internal AMBA ports connected to a PCI interface. Both 
configurations were evaluated in detail to determine which one 
would eventually be used for manufacturing. The final choice 
fell on the configuration with 16 LVDS SpaceWire ports and 
two LVTTL SpaceWire ports, where the only difference 
between the two different SpaceWire port types is the I/O type 
of the pads. 

III. FUNCTIONAL OVERVIEW 

The full GR718B architecture, shown in Figure 2, includes 
the following modules: SpaceWire Router, SPI Controller, 
UART Interface, JTAG Interface, General Purpose I/O 
Interface, SpaceWire In-System Test (SIST), System Level 
Test Configuration, AMBA AHB controller and AMBA APB 
controller. 

The SpaceWire router implements a SpaceWire routing 
switch as defined in ECSS-E-ST-50-12C. Among the features 
supported by the router are: group adaptive routing, packet 
distribution, system time-distribution, distributed interrupts, 
port timers to recover from deadlock situations, and 
SpaceWire-D packet truncation based time-slot violations. 

A total of 20 ports is provided, where port 0 is the 
mandatory configuration port, ports 1-18 are SpaceWire ports, 
and port 19 is a custom port called the SIST port. Each 
SpaceWire port contains a SpaceWire codec, and provides an 
external SpaceWire interface. The SIST port provides a FIFO 
interface which is internally connected to a SpaceWire In-
System Test module (described later). The configuration port 
provides a target for the Remote Memory Access Protocol 
(RMAP) defined by ECSS-E-ST-50-52C [4], and an AMBA 
AHB slave interface, both used for accessing internal 
configuration and status registers. The configuration port also 
provides a SpaceWire Plug-and-Play interface, allowing device 
identification. The ports which are allowed for configuration 
access can be restricted if needed using several configuration 
options. 

For diagnostic and test purposes, UART and JTAG 
interfaces are provided. These low pin count interfaces are 
suitable for small packages but at the same time have sufficient 
bandwidth. Both the UART and JTAG interfaces act as masters 
on the internal AMBA AHB bus and give access to the 
complete set of registers. The SPI and General purpose I/O 
interfaces are accessible through the router's configuration port, 
which allows SPI devices to be accessed, and general purpose 
signaling to be performed directly through RMAP commands, 
or through the UART and JTAG interfaces. An auxiliary time- 
/ interrupt-code interface is present, for sending and receiving 
time- / interrupt-codes through external pins. Parts of the 
interface use dedicated pins, while the rest are multiplexed on 
the general purpose I/O pins. For more information, see the 
advanced datasheet for the GR718 [5].  

IV. PACKET ROUTING FEATURES 

The router's switch matrix can connect any input port to 
any output port. Access to each output port is arbitrated using a 
round-robin arbitration scheme based on the address of the 
incoming packet. A single routing-table is used for the whole 
router, where access to the table is arbitrated using a round-
robin scheme based on the input port number. Both addresses 
and input port can be assigned either high or low priority. 

All the addressing modes, such as path, logical, and 
regional logical addressing are supported. Group adaptive 
routing is fully supported, meaning that both path and logical 
addresses can be individually configured to use one or more 
output ports. A unique feature is the support for packet 
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distribution, which can be used to implement multicast and 
broadcast addressing. Also packet distribution can be enabled 
for any address. Each router port is equipped with a timer 
which can be individually enabled/disabled. The timer can be 
used to recover from potential deadlock situations resulting 
from either a stalling source node or stalling destination node. 

 

V. SPACEWIRE STANDARD REVISION 1 SUPPORT 

Three changes were identified as having a technical impact 
on the GR718B development. The first one is the addition of 
timers in routers. The GRSPWROUTER IP core already 
contained programmable packet timers for each port, which 
meant that no changes were required. However, an addition to 
the functionality was made in order to be able to distinguish 
between overrun and underrun timeouts. The second change is 
a modification of the link interface FSM. Two requirements 
have been identified that potentially can cause the SpaceWire 
codec to make unwanted transitions. These are unlikely corner 
cases and very few if any problems have been seen in practice. 
This modification will probably not affect backward 
compatibility with older SpaceWire codecs, so the risk of 
including this modification in GR718B was estimated to be 
very low. 

The final and most complicated change was the addition of 
distributed interrupts. The distributed interrupt scheme 
introduced two new control codes, called interrupt-code and 
interrupt-acknowledge-code, which uses one of the reserved 
control bit combinations of Time-Codes. It must therefore be 
made sure that they cannot interfere with the normal Time-
Code facilities. All existing devices might not be forward-
compatible with revision 1 compliant devices due to the 
interrupt- / interrupt-acknowledge-codes. 

The distributed interrupt scheme was identified as part of 
revision 1 that caused the highest implementation risk if 
included in GR718B. Therefore, the router was made flexible 
enough to allow ports' handling of the new control codes to be 
configured individually. In this way the router can be used as a 
device that enables old and new equipment to be used in the 
same SpaceWire network. 

The distributed interrupt scheme has been defined by [6], 
and GR718B supports all of the requirements put on routers, as 
well as some optional features to minimize the effects of errors 
such as a “babbling idiot”. Due to the uncertainty regarding 
some details in the specification, GR718B was given a high 
degree of configurability on how to handle the distribution of 
interrupt- / interrupt-acknowledge-codes. 

 

VI. SPACEWIRE-D SUPPORT 

There is a new emerging protocol called SpaceWire-D, 
where D stands for deterministic [7]. This is anticipated to be 
widely used in the future to provide deterministic and low-
latency transfer of control and command information while still 
preserving the high bandwidth of SpaceWire. It basically 
consists of a time-slotting table replicated in each unit (node or 
router) in the SpaceWire network. Therefore, a router needs to 

have support for SpaceWire-D if it is to be used in a network 
utilizing that protocol. GR718B implements support for 
SpaceWire-D by monitoring packet transfers. In the case of a 
packet being transferred while a Time-Code is received, the 
packet is truncated and an EEP is inserted at the end of the 
packet. The truncation can be individually enabled/disabled per 
port, and there is a programmable Time-Code filter per port as 
well. The filter allows for each port to have different Time-
Code values or ranges that truncates packets. The 
programmable filters also allow distributed interrupt-codes to 
truncate packets. 

GR718B implements status bits that inform software if a 
packet has been truncated due to a received Time-Code. There 
is also an option to automatically send an interrupt-code when 
the truncation occurs 

 

VII. SPACEWIRE PLUG-N-PLAY SUPPORT 

SpaceWire Plug-and-Play allows SpaceWire routers and 
nodes in a network to be identified and configured. This is 
defined by [8]. The standard uses RMAP commands and 
replies for communication, but with a different protocol ID. 

GR718B includes basic support for SpaceWire Plug-and-
Play, which covers device identification and support for 
network discovery. Extended capabilities, such as routing table 
configuration, and port configuration through SpaceWire Plug-
and-Play, were not included due to the fact that the standard 
was not considered mature enough at the time of 
implementation. The SpaceWire Plug-and-Play functionality 
can be disabled by means of a configuration pin. 

 

VIII. SPACEWIRE IN-SYSTEM TEST 

A built-in self-test is provided for the verification of the 
SpaceWire router and codec functionality. The SpaceWire In-
System Test (SIST) protocol provides the means for verifying 
larger part of the designs' functionality without the need to 
generate high speed test patterns and observe results at high 
frequencies. 

The internal SIST module is connected to the router via a 
dedicated FIFO port. The external side of the SIST module is 
connected to the AMBA APB bus, which is only accessible 
through the JTAG and UART (debug-) interfaces. Thus it is 
not possible to configure the SIST module via a SpaceWire 
link. 

The SIST module can generate and send SpaceWire 
packets via the internal FIFO port. It can also receive 
SpaceWire packets via the FIFO port and check their contents. 
The packets are generated deterministically and can therefore 
also be easily checked on reception. 

 
 
 

269



IX. POWER-SAVING FEATURES 

The GR718B incorporates the following power saving 
functions: 
 

 Disabling of unused on-chip LVDS 
receivers/transmitter 

 Disabling of unused off-chip LVDS 
receivers/transmitter or repeater devices 

 Clock-gating of unused SpaceWire ports 
 
The existing power-down functionality provided for the 

LVDS I/O cells in the DARE+ library are utilized for this 
purpose. Signals for disabling the off-chip LVDS devices are 
shared with the external pins provided for general purpose I/O. 
It is, therefore, possible to control up to 18 external LVDS 
devices, with one external pin per device. 

 

X. TECHNICAL OVERVIEW 

The GR718B has been designed for operation over the full 
military temperature range -55°C to +125°C and it is powered 
with a nominal supply of 1.8V (Core) and 3.3V (I/O). The 
GR718B is available in a 256 pin CQFP package. The system 
clock domain can operate at a maximum frequency of 50MHz, 
while the SpaceWire clock domain can operate up to 200MHz. 
This is possible as the GR718B includes a radiation hardened-
by-design PLL. The PLL allows the use of either an external 
input clock to the SpaceWire clock domain or the system clock 
itself. Further details are provided in the product datasheet and 
user manual [5] 

XI. QUALIFICATION AND TESTING 

The GR718B has undergone an extensive validation 
process which included RTL simulations, electrical and 
functional testing at high operational frequencies. The 
production test program developed for this component includes 
over 5000 different electrical tests to guarantee that each flight 
device is compliant with the information provided in the 
datasheet.  

The GR718B is currently being qualified for space 
applications following a lot validation approach. The first flight 
units are expected to be available in January 2017. Prototype 
devices are already available now. The screening and 
qualification flows selected for the flight units are based on test 
methods 5004 and 5005 of the MIL-STD-883K standard for 
class level S components. These flows cover all of the tests 
required by ESA’s generic specification ESCC9000. With the 
use of the GR718B’s in-built SIST protocol, flight devices will 
undergo dynamic burn-in as part of the screening flow, i.e. the 
devices will be fully exercised during testing. The same 
approach will be utilized during high temperature operational 
life test, which will be done as part of the qualification 
program.  

A prototype board has been developed together with Pender 
Electronic Design (Switzerland). The board, shown in Figure 3, 
comprises a custom designed PCB in a 6U Compact PCI 
format, making the board suitable for stand-alone bench top 

development, or if required, to be mounted in a 6U CPCI Rack. 
The purpose of this board is to provide developers with a 
convenient hardware platform for the evaluation and 
development of software for the GR718. The principle 
interfaces and functions are accessible on the front and back 
edges of the board. Secondary interfaces are accessible via 
headers on the board. 

XII. RADIATION TOLERANCE 

The technology used for the development of the GR718B 
has been hardened-by-design against the impact of ionising 
radiation. The designed Total Ionising Dose tolerance for the 
GR718B is 300 krad(Si). This tolerance is suitable for most 
space missions. Results recently obtained on a test vehicle built 
with the same library support this design tolerance. Additional 
Total Ionising Dose testing of the GR718B is currently 
scheduled as part of the qualification flow.    

 

 

 

Fig. 3.  GR718B prototype board 

The technology used for the development of the GR718B 
has been proven to have a high Single Event Latch-up 
tolerance, with a minimum LET value of 118MeV.cm2/mg. 
Furthermore, the SpaceWire router has been almost entirely 
implemented using Single Event Upset hardened-by-design 
flip-flops. Only the signal routing functions of the SpaceWire 
port receivers have been implemented with much faster, 
unhardened, FFs. However, a parity protection scheme has 
been implemented on these unhardened FFs to deal with any 
undesired effects from the radiation environment.  

Static and dynamic Single Event Effect testing of the 
GR718B SpaceWire router has been performed using one of 
the prototype boards as shown in figure 4. This board allowed 
to: remotely configure the device under test; link all SpW ports 
in a single Daisy chain (to fully exercise the device during 
testing); to access the SIST port to send data via the SpW ports 
(dynamic testing) and to monitor for any possible radiation 
induced errors. 
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Fig. 4.  GR718B Single Event Effects testing 

XIII. SPI CONTROLLER AND INTERFACE 

The SPI controller provides a link from the router 
configuration port to an external Serial Peripheral Interface 
(SPI) bus. The SPI bus parameters are highly configurable via 
registers. The SPI controller features configurable word length, 
bit ordering, clock gap insertion, and automatic slave select. 

The external SPI bus can be used for connecting to external 
components using the SPI interface. Typical user scenario can 
be to remotely monitor the temperature close to where the 
GR718B is mounted. 

 

XIV. GENERAL PURPOSE INTERFACE 

The GR718B is equipped with 24 general purpose inputs 
and outputs accessible from the router configuration port. The 
general purpose interface can be programmed to have one of 
the following functions: 

 
 Individual general purpose inputs or outputs 
 Distribution of time-codes to companion devices 
 Extended state or error signaling to companion devices 
 SpaceWire transceiver enable per port for off-chip 

transceiver support 
 Extend number of SPI slave select signals supported 
 

XV. DEBUG AND INTEGRATION 

GRMON2 [9] is a debug monitor used for develop and 
debug GRLIB systems. The debug monitor GRMON2 has 
extended support for the GR718B and has built-in commands 
for configuring and debugging the SpaceWire router core. The 
GR718B configuration and its peripherals are accessed on the 
AMBA bus through a JTAG or UART debug-link. 

Connection via SpaceWire RMAP interface is supported as 
long as the SpaceWire has RMAP and automatic link start. An 
Ethernet to SpaceWire Bridge [10] is required to tunnel 
SpaceWire packets from the Ethernet over to SpaceWire. 

 

XVI. RESULTS 

 
Although the targeted speed in the design of the SpaceWire 

links was 200 Mbit/s, during functional testing and validation 
of the prototype devices, it has been found that these ports are 
able to operate successfully well above 200 Mbit/s. The typical 
power consumption has been found to be below 3W, when 
running all of the 18 SpaceWire ports at 200 Mbit/s. 

Assembly of the first GR718B flight lot has now been 
successfully completed and the screening as well as 
qualification tests are under way. The first flight units are 
expected to be available in January 2017. Electrically verified 
prototypes can be ordered directly from Cobham Gaisler [1]. 

Single Event Testing of the SpaceWire router has 
demonstrated its suitability for Space. The data collected has 
confirmed the Single Event Latch-up insensitivity of the device 
and the suitability of the radiation hardened PLL. The 
extensive data collected has also shown that the device is 
compliant with the SPW standard of having a bit error rate 
(BER) below 1E-12, when operated under a worst case 
configuration (i.e. minimum supply and maximum operational 
frequency) in a GEO environment. Furthermore, the majority 
of Single Event Upsets induced errors detected during testing 
may be handled either by the SPW protocol or by 
implementing a CRC scheme. 

XVII. CONCLUSION 

The high number of ports, together with the wide range of 
supported functions and the high configurability of the GR718 
should make the device suitable for most current and future 
SpaceWire networks. The first lot of space qualified GR718B 
are expected to be available in January 2017. 

 During the GR718B development, Cobham Gaisler has 
participated and contributed to the ongoing standardization 
work of the distributed interrupt scheme that will be part of the 
SpaceWire standard revision 1, as well as the upcoming 
SpaceWire Plug-and-Play standard. These extra efforts are 
expected to pay off with an advanced multi-port SpaceWire 
router ASIC which enables coexisting of older and newer 
equipment in the same network. 

The currently available radiation results support the 
selection of hardened-by-design features implemented in the 
SpaceWire router and confirm its suitability for space 
applications. 
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Abstract—This paper presents the architecture, functionality, 

and performance of the SpW Interface Node IP which constitutes 

a configurable IP Core from which non-SpW experts can tailor a 

customized SpW interface for integration into their 

developments. The IP core offers numerous configurability 

options and is also expandable to include additional blocks as the 

SpW protocol family evolves. 

Index: SpaceWire, RMAP, SpW-D, NDCP, CPTP, TDP, SpW 

Router, Distributed Interrupts, AMBA.  

I. INTRODUCTION  

TELETEL S.A., together with Thales Alenia Space and 

Airbus Defence and Space, have been working on the 

development of an IP Core under ESA contract 4000113046 

(SpaceWire Node Interface IP Core) aiming at providing a 

solution helping non-SpW experts to integrate advanced 

SpaceWire functionality in their flight equipment. The IP Core 

contains RMAP ([2]), NDCP [5], CPTP ([3], [4]) and TDP 

([7]) protocol engines and can be provided as a single SpW 

Port Node or a Node with an integrated SpW Switch. Each 

protocol block can be independently configured allowing the 

user to customize the implementation to its own requirements 

(size of memory blocks, maximum number of RMAP pending 

transactions etc.). In addition, the IP Core allows the user to 

include its own technology primitives for implementation on 

different target ASIC technologies. 

The design has been validated on TELETEL’s SpW Xilinx-

based SpW G2 board and also on SkyLab’s PicoSky 

development board for ProASIC3 meeting all the functional 

and performance requirements. 

The rest of the paper focuses on RMAP/NDCP and CPTP 

and does not present design issues related to the SpW Switch 

design which was a readily available block or the TDP which is 

a third-party IP-Core integrated in the Node IP ([6]). 

Nevertheless, the results presented herein, related to timing and 

resources utilization, include all blocks. 

II. DESIGN SOLUTION 

The IP Core is based on the AMBA AHB bus specification 

([9]), allowing seamless core integration to AMBA based 

systems (e.g. LEON SoCs). All protocol engines are connected 

to TELETEL’s AHB DMA engine which offers user 

configurable number of DMA clients and minimum burst size 

of 8 cycles. TELETEL’s RMAP core (developed in ESA 

contract 4000105444/12/NL/CBI) is being used, providing a 

response time in the range of one microsecond. The RMAP 

core has been extended to support NDCP, in order to reuse 

most of the logic resources and minimize utilization. 
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Fig. 1: Node IP overall architecture 

 For CPTP, a newly developed block has been integrated 

which offloads the user from time-consuming operations such 

as CRC/PEC calculation/verification and packet length 

verification.  

The TDP block developed by COBHAM Gaisler [6] is 

integrated in the IP for SpaceWire Time-Distribution.  

Depending on the user needs, the IP Core can instantiate a 

SpW Switch core with user configurable number of ports and 

RMAP/NDCP support for SpW Switch configuration. 
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Finally, the core can be delivered with TELETEL’s 

SpaceWire CODEC and also provides the de-facto standard 9-

bits FIFO SpaceWire CODEC interface allowing the user to 

instantiate its own or third-party SpaceWire CODEC. 

A. Architecture 

The Node IP has different configurations spanning from 

SpW node with a single link to multiple links with a SpW 

Switch instantiated, having or not having support for NDCP, 

TDP etc. The top level architecture of the Node IP core 

consists of the following blocks (shown in Fig. 1): 

 One or more SpW CODECs 

 A non-blocking SpW Switch which switches packets 

and signaling codes among the external SpW interfaces 

and between the external interfaces and internal ports. 

 A protocol MUX/DEMUX block which discriminates 

received packets, dispatches them to the appropriate 

protocol engine (receive direction) and multiplexes 

them (transmit direction). 

 A RMAP block instantiated as Initiator, Target or both, 

used to handle RMAP transactions and execute RMAP 

commands. The RMAP Target is available from a 

previous study and has been designed with 

performances meeting the strict timing requirements 

for SpW-D. Within the study the core was extended to 

handle NDCP commands. Two such blocks are 

currently instantiated; one for the Switch and one for 

the End Node, which can have different parameters 

(verify buffer size, RMW logic, authorization keys 

etc.). 

 The CPTP/Raw SpW block which handles CPTP and 

Raw SpW packets (packets not handled by any 

instantiated protocol engine). 

 The Time Distribution block which handles SpW-TDP 

protocol which is implemented as an APB peripheral. 

 The SpW Time Codes/Interrupts Handler block(s) 

which handles the Signaling Codes at both the End 

Node and the Switch. 

 A single AHB Master which is responsible for DMA 

read/write operations to/from the system memory. The 

engine supports ATOMIC transactions required for 

RMAP RMW and NDCP CAS. A single AHB Master 

is implemented, which has a configurable number of 

channels and handles the requests for both the End 

Node and the Switch. 

 APB peripherals which host the NDCP, CPTP, RMAP, 

Switch configuration registers, SpW Interrupts 

configuration & status registers as well as the NDCP 

address translation block. 

B. User configuration options 

The core supports various options, configured either 

through VHDL generics or IP-XACT, e.g. number of SpW 

ports, data bus width, target technology etc. and also supports 

configuration options separately for each block such as the 

implementation of NDCP translation and RAM or ROM, 

maximum SpW packet size, RMAP memory map etc. The only 

technology dependent primitives required are for the SpW 

LVDS transceivers and the asynchronous FIFOs, both of which 

constitute part of the SpW CODEC. A non-exhaustive list of 

the core’s configuration options follows: 

 Overall Core: target technology, number of SpW ports, 

NDCP support, TDP support, SpW Switch 

instantiation, Switch NDCP support, data bus width. 

 RMAP: Initiator/Target support, Initiator/Target DMA 

length, Verify buffer size, Target supported commands 

and parameters all independent for the End Node and 

the Switch, maximum number of Initiator pending 

transactions (End Node only). 

 NDCP: Vendor/Device IDs, versions, RAM/ROM 

based address translation, address translation table 

depth, base transmit rate/range/divider etc. independent 

for the End Node and the Switch. 

 CPTP: Tx/Rx descriptors width/depth, maximum 

packet/DMA size, discard Rx packet on memory 

buffer unavailable (End Node only). 

C. CPTP Block architecture 

CPTP operation supports transmission/reception of multiple 

packets without occupying the user (e.g. host processor), other 

than for initializing the memory structures as described below. 
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Fig. 2: CPTP block architecture & operation 

Packet headers and payloads can be stored at different 

memory locations and separate areas exist for storing the Tx 

and Rx descriptors. In the transmit direction, the user stores the 

packets for transmission in the memory and it then writes to the 

Tx Descriptors memory area the pointers to the Tx packets. 

Finally the user writes to the CPTP block the number of Tx 

pointers and from the packets are automatically transmitted by 

the block without any user occupation. In the receive direction 
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the approach is similar, with the user allocating the required 

memory areas and pointers and downloading the number of 

available buffers to the CPTP block as shown in Fig. 2.  

Update of the descriptors can be done during initialization, 

or even after transmission has started. In the latter case, after 

storing the header and payload segments of the packets in 

memory the application updates the descriptors area and the 

passes to the CPTP block the number of additional descriptors. 

Update of the location of the Descriptors area is not required as 

this is a circular buffer in the memory and the block simply 

fetches the next transmission descriptor when the user informs 

the block that additional N descriptors have been added.  
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Fig. 3: CPTP Block Transmitter 

The architecture of the transmitter is shown in Fig. 3. It 

consists of the following modules: 

 The Descriptors Register: Block which contains the 

current address to be accessed in the Descriptors Area 

in order to fetch the header/payload pointers for the 

next packet. The module contains the number of 

currently available transmission descriptors. It is 

programmed by the user through the AHB/APB 

bridge. 

 The Commands controller: Module which fetches the 

packet header and payload from the memory for 

transmission. It stores the fetched data in the 

transmission FIFO (cptp_txfifo). 

 The Packet formatter: Module which reads header and 

payload from the transmission FIFO, converts the 

FIFO words to 9-bit SpW CODEC interface words, 

enables the CRC/PEC calculation block when required 

and appends the calculated CRC/PEC to the CPTP 

packet. If the packet under transmission is a Raw SpW 

packet (information contained in the packet header) no 

CRC/PEC is appended. 

 The CRC/PEC calculation block: Module fed by the 

Packet Formatter with data to be transmitted and 

calculates the CRC/PEC to be appended to the end of 

the SpW packet. 

The Receiver handles both CPTP and Raw SpW packets. It 

consists of the following blocks (shown in Fig. 4): 

 The Descriptors Register: Block which holds the 

pointers for the packet header and payload. It is the 

same block as the one used for the CPTP transmitter 

 CPTP Packet Decoder: Block which captures the 

packet header, stores the payload in a FIFO (CPTP Rx 

FIFO), truncates packets which are longer than the 

programmed size, identifies packet errors (e.g. CPTP 

length, CRC/PEC error), discards or stalls reception 

(programmable function) if no Rx descriptors exist. 

 CPTP Packets Handler: Block which is responsible for 

requesting ownership of the system bus (through the 

AHB Master) in order to store the received packets in 

the system memory. The Handler, acquires the 

descriptors from the Descriptors Register, stores the 

payload in the memory, stores the header and finally, 

informs the CPTP Packet Decoder that the packet has 

been stored in the memory and a subsequent packet 

can be received. 
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Fig. 4: CPTP Block Receiver 

The block supports user notification upon programmable 

events as for example when a programmable number of 

packets have been received or upon time-out. 

D. NDCP Address Translation 

The architecture and operation of TELETEL’s RMAP Core 

has been previously presented and herein only the extensions 

required for NDCP support are presented.  

The NDCP specification specifies a protocol based on 

RMAP syntax (with different semantics) and a Network 

Management Service which enables a peripheral device to 

expose its capabilities in order to allow for discovery and 

configuration by a control device. The latter, includes a set of 

resources which allow controlling a peripheral device in a 
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standardized way in order to permit for interoperability 

between devices.  

If directly mapped to memory addresses, NDCP field 

identifiers would result in a highly fragmented memory space. 

In order to support a contiguous memory space, the NDCP 

block contains an “Address Translation” block which receives 

the Application Index, Protocol Index, FieldSet ID and Field 

ID from the received NDCP packet and returns the address to 

be accessed in the memory space. The Address Translation 

block performs translation between the fragmented memory 

space created by the NDCP field identifiers to a more flat 

memory space in order to ease implementations and offer 

better memory usage by the Node IP. 

The Address Translation block consists of three entities: 

 The Translation Table, which contains the 

relationships from the NDCP field identifiers to the 

Node IP memory space. It can be implemented either 

in RAM or ROM with the RAM version being able to 

be programmed through the AMBA from a host 

processor and the ROM version being targeted for 

simple End Nodes or Switches. 

 The Translation Logic block which receives NDCP 

packet header fields and searches in the table for a 

matching entry. Upon match, the translated address is 

returned to the RMAP Target logic in order to 

write/read the addressed field(s). 

 The Device Ownership logic which assesses whether 

the received packet was sent by the peripheral owner 

or not for write transactions. 

The Address Translation Table contains entries which are 

used to map the fields of an incoming NDCP packet to the 

physical address which shall be accessed. Specifically, each 

line contains the following fields: 

 The address parameters: Contains the address 

parameters of a set of fields which can be an entire 

FieldSet or a subset of a FieldSet. It contains the 

following fields: 

 Application Index: Application Index for this 

entry 

 Protocol Index Protocol Index for this entry 

 FieldSet ID: FieldSet ID for this entry 

 Field ID: Field ID number of the “lowest” Field 

Identifier for this entry. It is used to identify 

whether the requested access is performed outside 

the FieldSet’s boundaries (e.g. if the NDCP packet 

contains a Field ID of value which is less than the 

table entry, the access is considered as outside the 

boundaries). 

 The Access Parameters: 

 FieldSet length: Length of the FieldSet (or length 

of the FieldSet subset). It is used to identify 

whether the requested access is performed outside 

the FieldSet’ s boundaries (e.g. if the NDCP 

packet contains a Field ID of value which is more 

than the table Field ID value and FieldSet length 

added together, the access is considered as outside 

the FieldSet boundaries). 

 CAS FL/RO FL: CAS/RO FL is set to 1 if this 

region is followed by a CAS modifiable/Read-

only region. The CAS FL and RO FL fields are 

applicable to writable regions only and required 

for the following reason: assuming that a Write 

operation starts in the region and spans more than 

its upper boundary then this shall be allowed if the 

region above is non-existent (write data is 

discarded) but shall generate an error (Read-Only 

Field or Field Not Writable) in case the region that 

follows is Read Only or CAS modifiable 

 RO: Used in case of successful match. It indicates 

that the respective FieldSet is Read-Only. 

 RSV: Used in case of successful match. It 

indicates that the respective FieldSet is reserved. 

This is used 1) in the case of the Vendor String 

FieldSet (to allow for the FieldSet to be left 

unimplemented) and 2) for the reserved region of 

any other FieldSet at the FieldSet end. It is used 

by the RMAP/NDCP protocol engine so that all 

zeros are returned in the Reply packet. 

 The Physical Address: Contains the Physical Address 

of the entry. This is the address of the FieldSet/Field 

within the node’s memory map and will be returned to 

the RMAP/NDCP block in order to perform the access. 
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Fig. 5: NDCP Translation Logic architecture 

The Address Translation Logic block operates in two 

stages. Upon the reception of a NDCP packet it first searches 

the table for a matching entry and, upon a successful match, it 

checks the access rights in order to determine whether the 

requested operation shall be performed or not (e.g. a write is 

requested to a Read-Only FieldSet). Since it is the block that 

will either authorize or not the requested operation, it also 

checks the protocol fields such as Target Logical Address, 

Key, Data Length etc. It scans the table and performs 

comparison of the NDCP packet fields with each table entry 

fields for matching entry. When a matching entry is found, the 

address of this entry is latched in the Translation Table Read 
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Address vector so that the access rights and the Physical 

address of the matching entry appear on the table output. 

Comparisons are performed on large vectors which would 

introduce combinational delays and reduce the Core’s 

operation frequency if they were done in a single clock cycle. 

Alternatively, searching and matching the access rights for 

each entry may require several clock cycles and for a large 

number of entries this will reduce the overall performance. To 

this respect, the search logic is implemented in pipelined 

fashion as shown in Fig. 5 and in the timing diagram of Fig. 6 
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Fig. 6: NDCP Translation Logic operation 

The following paragraphs explain the way in which the 

Translation Table shall be programmed for proper NDCP block 

operation. 

The example in Fig. 7 shows a FieldSet which spans from 

Field O to Field U and the rest (Field U+1 up to Field V) is 

non-exiting fields (reserved fields). 

The table is scanned sequentially and when the first 

matching entry is found the respective physical address and 

grant/deny signal is returned to the RMAP/NDCP block. In 

addition, when FieldSet is matched, the logic checks whether 

the Field_ID of the received command is within the boundaries 

of the region found in the table and if they are found to be 

outside the command is not granted. 

The order in which entries are inserted in the translation 

table is important for the correct operation of the logic. In the 

example shown in Fig. 7 if the RO region was the first entry in 

the translation table then all write to regions 1 to 4 would be 

denied. To this respect the user shall insert all writable regions 

first and RO regions at the end of the table.   

In addition, the NDCP specification ([5]) mandates that a 

write to a reserved region shall be accepted but no write shall 

be performed. If we program only regions 1 to 3 in the table, a 

write to the reserved space (command G in the example) will 

not produce a match and a reply status FieldSet reserved will 

be returned in the NDCP reply. To this respect for each 

FieldSet the table shall have as its first entry the reserved 

region which lies at the end of the FieldSet which shall also be 

marked as reserved (RSV field shown in Fig. 7). 

Region 4 is also programmed as read-only region for the 

following reason. If a write access is performed to this reserved 

region then the access will be authorized since a match will be 

found in the first table entry. If a read however is performed 

then the command will not be matched with the first entry 

since the RO field is not set. Consequently there must be an 

entry which defined that the region is also readable which is 

the fifth entry in the table. 

Expected Response according 

to NDCP specification:

A: Grant
B: Deny, Read-Only
C: Grant
D: Deny, Read-Only
E: Grant
F: Deny, Read-Only
G: Grant

FieldSet N
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Writable 
Regions

A: Read

B: Write

C: Write

D: Write

F: Write

G: Read/Write
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Fig. 7: NDCP Translation Table example 

Finally, each FieldSet is readable to its entirety (actual size) 

by all devices. This means that the table shall have an entry 

which corresponds to the actual FieldSet extents. This region is 

marked in the table as Read-Only section and is programmed 

as the last one in the table (Field O to Field U). This region is 

marked as RO. The reason that the last two entries are not 

merged to one entry (entire FieldSet) is that in case a read 

crosses the boundary of the reserved region, the block shall 

have a way to inform that zeros shall be returned as mandated 

in the NDCP specification for reserved regions. 

E. SoC Integration & Reliability 

The design of the core has taken into account issues like its 

integration in SoCs as well as reliability issues. As such it 

supports different interrupts to the host processor, time-outs on 

receive and transmit direction, packet truncation, selectable 

consumption of received packets in case receive descriptors are 

not available etc. A non-exhaustive list of these features is: 

 Interrupts on illegal conditions: NDCP. RMAP illegal 

field identifier, NDCP non-owner attempt, write 

attempt to CAS, RO NDCP fields, RMAP Reply TID 

not found, RMAP Reply timeout, RMAP Reply 

rejected, RMAP error received (Header CRC, illegal 

command, Early EoP etc.), CPTP CRC/PEC or Length 

error, Tx/Rx time-out etc. 

 Interrupts on nominal conditions: CPTP/SpW packet 

group transmitted/received, RMAP/NDCP command 

executed, RMAP Reply received, expected SpW 

Interrupt(s)/Acknowledgement(s) received. 

 Reliability options: discard CPTP/SpW packet if no 

pointers exist, Flush packet and append EEP if max 

length is exceeded or Rx/Tx timeout occurs, support 

for statistics (packet/NCHARs received and their rate). 

F. Core extensibility 

The core has been designed with the requirement to be 

easily extensible in order to support additional protocols as the 

family of SpW protocols evolves. In order to add a new 

protocol engine the user shall add its implementation between 
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the protocol MUX/DEMUX and the AHB DMA engine. All 

these blocks support programmable number of channels, 

through VHDL generics or IP-XACT, and the DEMUX block 

also supports mapping of PID to the newly added channels for 

dispatching of received packets to the added protocol engines. 

III. VALIDATION APPROACH 

The IP core was implemented on two different 

technologies, Virtex 6 and ProASIC3. The boards in which the 

IP core instances were deployed were respectively TELETEL’s 

SpW G2 board and SkyLabs PicoSky board. 

Three IP core instances were implemented in the Virtex 6 

target: one instance with a six-port SpW Switch (four ports 

external to the SpW Node IP core) and two minimal 

implementations with no SpW Switch.  An external DDR2 

memory was attached to the AHB bus, through a memory 

controller, to support read/write access through RMAP and 

NDCP (e.g. Vendor String). The system clock frequency was 

125 MHz. 

In the ProASIC3 target a single instance of the IP was 

implemented, with 4-Ports SpW Switch instantiated, since the 

board offers only two SpW connectors. An external SRAM 

memory was attached to the AHB bus and the system clock 

frequency was 20 MHz. Both implementations were tested at 

SpW link speeds up to 200 Mbps. 
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Fig. 8: Topology used for validation/demonstration 

Validation was based on the iSAFT tool chain which is an 

integrated solution for validation of on-board protocols and 

devices. For the purposes of the project, the SpaceWire 

simulator part of iSAFT is being used which supports 

transmission/reception of SpaceWire packets to the connected 

Unit Under Test (UUT) and assessment of the UUT’s response. 

At the same time, it allows the user to examine all exchanged 

transactions by decoding them through the WireShark protocol 

analyser. The tests covered both functional and performance 

validation as well as injection of errors for all protocols to 

assess design’s robustness. 

During all tests the traffic was also captured by an iSAFT 

Recorder whose accurate time-stamping protocol decoding 

capabilities helped towards both the functional and 

performance evaluation of the IP under test. The scenarios 

included stress tests with continuous back-to-back traffic and 

duration up to 22 hours and validation was performed through 

sample windows to validate the correct response is returned 

from the UUT and through the Recorder’s statistics capability 

(total packets/bytes transmitted/received) to validate that no 

information was lost.  

Ports used as 
“iSAFT 

Simulator” ports

SpW Node 2
SpW Node 3

SpW Node 1
 

Fig. 9: TELETEL’s SpW G2 board used for Node IP 

validation 

Functional validation was performed incrementally. Tests 

started with the validation of the NDCP implementation on a 

Node IP instance with no SpW Switch through a point to point 

connection between the iSAFT Simulator and the Node IP 

instance. The IP core instance was configured through NDCP 

commands after the iSAFT simulator got ownership of the 

device, and the configured values were read back through 

RMAP. All NDCP fields were read and all writable fields were 

configured. Error injection at NDCP level and repetition of the 

nominal tests right after validated the robustness of the core. 

SpW port 1

SpW port 0

SpW Clock

System 
Clock

“Link 

Connected” 

LEDS

SpW Link 
Speed 

selection

External 
Memory

 
Fig. 10: SkyLab’s PicoSky board used for Node IP validation 

Validation of the SpW Switch’s NDCP block was 

performed in a similar way. Tests included configuration of the 

switching matrix, GAR, self-addressing, time-outs etc. Stress 

tests with the traffic generation capability of the iSAFT 

Simulator followed. A series of mixed RMAP/NDCP 

commands were transmitted back-to-back to both the End 

Node and the SpW Switch in order to validate the robustness 

under heavy load and assess the performance. 

Validation of the CPTP block was also performed through 

RMAP. Download/upload of packet header and payloads, 

Tx/Rx descriptors and access to the descriptors registers was 

performed through RMAP. The tests included transmission of 
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SpW and CPTP packets from the iSAFT Simulator to a Node 

IP instance with Switch, transmissions in the opposite direction 

and transmission/reception between IP instances. Once again, 

the traffic generation capability of the iSAFT simulator was 

exploited in order to periodically stimulate the IPs and validate 

the block under the presence of continuous traffic. 

IV. PERFORMANCE RESULTS  

A. Latency 

Performance tests were performed on IPs with and without 

the SpW Switch instantiated on both Virtex and ProASIC3 

targets (results shown are with 100 Mbps link speed) and 

included the latency measurement from: 

 The reception of a RMAP command, transmitted from 

the iSAFT Simulator, to the time the response was 

transmitted by the UUT (RMAP Target Latency) 

 The stimulation (through a RMAP command) of the 

RMAP Initiator, to the time the RMAP command 

transmitted was transmitted (RMAP Initiator latency, 

currently measured on Virtex target only) 

 The reception of a NDCP command, transmitted from 

the iSAFT Simulator, to the time the response was 

transmitted by the UUT (NDCP Latency) 

 The stimulation (through a RMAP command) of the 

CPTP Transmitter, to the time the CPTP/Raw SpW 

Packet was transmitted by the UUT (CPTP latency) 

TABLE I.  MEASURED LATENCIES ON VIRTEX 6 TARGET 

 With Switch (us) Without Switch (us) 

RMAP Target 
1.58 us (SDRAM read) 

1.24 us (reg. Write, RMW) 

1.30 us (SDRAM read) 
1.0 us (reg. Write, 

RMW) 

RMAP 
Initiator 

2 us (incl. SDRAM access) 
1.76 us (incl. SDRAM 

access) 

NDCP target 
1.35 us (Read/Write) 

1.4 us (CAS) 

1.10 us (Read/Write) 

1.15 us (CAS) 

CPTP 
3.25 us (incl. SDRAM 

access) 

3 us (incl. SDRAM 

access) 

TABLE II.  MEASURED LATENCIES ON PROASIC3 TARGET 

 With Switch (us) Without Switch (us) 

RMAP Target 6.4 us (SRAM Read/Write) 
4.96 us (SRAM 

Read/Write) 

NDCP target 
6.6 us (reg. Read),  

7.3 us (reg. Write, CAS) 

5.1 us (reg. Read), 

5.8 us (reg. Write, CAS) 

CPTP 12.4 us (incl. SRAM access) 
10.9 us (incl. SRAM 

access) 

B. Synthesis results 

The tables below present the synthesis results for both 

Virtex 5 and ProASIC3 targets synthesized with Synplify 

2015.9. The tables that follow present the results for RMAP 

with NDCP support, for the CPTP block and for the overall IP. 

In addition, the results for the NDCP address translation are 

presented separately for various translation table depths for the 

End Node (RAM implementation) and for various numbers of 

ports, for the SpW Switch (ROM implementation). 

 

TABLE III.  RMAP WITH NDCP SUPPORT, VIRTEX 5 RESULTS 

 
RMAP with NDCP support, Verify buffer size 4K, Max 

DMA length 128 Bytes, Virtex 5 FX target 

 LUTs Registers BRAMs 

RMAP Block 2072 1775 3 

RMAP Initiator 941 831 1 

RMAP Target 767 647 1 

RMAP Packet 

Validator 
342 242 1 

Statistics Block 22 55 - 

TABLE IV.  RMAP WITH NDCP SUPPORT, PROASIC3 RESULTS 

 
RMAP with NDCP support, Verify buffer size 4K, Max 

DMA length 128 Bytes, ProASIC3 target 

 Core Cells Registers BRAMs 

RMAP Block 8564 1851 21 

RMAP Initiator 3842 703 11 

RMAP Target 3614 738 2 

RMAP Packet 

Validator 
1415 351 8 

Statistics Block 127 60 - 

TABLE V.  NDCP ADDRESS TRANSLATION, END NODE, VIRTEX 5 FX 

RESULTS 

 NDCP Address Translation, Virtex 5 FX target 

Translation 

table Depth 
LUTs Registers BRAMs 

64 348 209 5 

128 347 211 5 

256 349 213 5 

TABLE VI.  NDCP ADDRESS TRANSLATION, SPW SWITCH (ROM 

IMPLEMENTATION), VIRTEX 5 FX RESULTS 

 NDCP Address Translation, Virtex 5 FX target 

Number of 

SpW Ports 
LUTs Registers BRAMs 

4 344 209 5 

8 344 209 5 

16 344 209 5 

32 344 209 5 

TABLE VII.  NDCP ADDRESS TRANSLATION, END NODE, PROASIC3 

RESULTS 

 NDCP Address Translation, ProASIC3 target 

Translation 

table Depth 
Core Cells Registers BRAMs 

64 1452 245 - 

128 1472 249 - 

256 1575 267 - 

TABLE VIII.  NDCP ADDRESS TRANSLATION, SPW SWITCH (ROM 

IMPLEMENTATION), PROASIC3 RESULTS 
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 NDCP Address Translation, ProASIC3 target 

Number of 

SpW Ports 
Core Cells Registers BRAMs 

4 1506 257 - 

8 1506 257 - 

16 1506 257 - 

32 1506 257 - 

TABLE IX.  CPTP, VIRTEX 5 RESULTS 

 
CPTP, Max packet size 64K, Max Tx/Rx descriptors 16, 

Max DMA length 128 Bytes, Virtex 5 FX target 

 LUTs Registers BRAMs 

CPTP Block 1177 838 2 

Descriptors 

Register 
98 72 - 

Command 

Controller 
193 174 - 

Packet 

Formatter 
199 120 - 

Packet Decoder 252 147 - 

Packet handler 227 125 - 

CPTP CRC 26 17 - 

CPTP PEC 77 18 - 

CPTP Rx FIFO 81 102 1 

CPTP Tx FIFO 29 26 1 

TABLE X.  CPTP, PROASIC3 RESULTS 

 
CPTP, Max packet size 64K, Max Tx/Rx descriptors 16, 

Max DMA length 128 Bytes, ProASIC3 target 

 Core Cells Registers BRAMs 

CPTP Block 3989 869 4 

Descriptors 

Register 
396 76 - 

Command 

Controller 
857 184 - 

Packet 

Formatter 
746 152 - 

Packet Decoder 793 136 - 

Packet handler 820 135 - 

CPTP CRC 86 18 - 

CPTP PEC 218 34 - 

CPTP Rx FIFO 337 104 2 

CPTP Tx FIFO 140 28 2 

TABLE XI.  OVERALL NODE IP, VIRTEX 5 RESULTS 

 Overall Core, Virtex 5 FX target 

 LUTs Registers BRAMs 

Without Switch 6924 6596 10 

With 2 external 

ports 
12212 10837 19 

With 6 external 

ports 
16389 14098 19 

With 14 

external ports 
24737 20954 19 

With 30 

external ports 
50011 37471 19 

TABLE XII.  OVERALL NODE IP, PROASIC3 RESULTS 

 Overall Core, ProASIC3 target 

 Core Cells Registers BRAMs 

Without Switch 32478 7215 22 

With 2 external 

ports 
59411 13434 35 

With 6 external 

ports 
75781 17219 47 

V. CONCLUSIONS 

The designed and developed IP offers fine configurability 

options to the user, not only at top level, but offers also 

configurability of its constituents, allowing the user to tailor it 

according to the performance and utilization needs. Synthesis 

results on Virtex 5 and ProASIC3 have shown that the design 

fits the targeted devices.  

Preliminary synthesis on RTAX2000 has shown that the 

Node IP without SpW Switch can also fit within the device as 

well as an implementation with 2 external ports if SpW 

Interrupts are not supported. The results have shown that the 

SpW Interrupt block in the Switch occupies a significant 

portion of the device resources, since the implementation 

(taken as is from a previous ESA study) implements all timers 

in registers instead of the LUT/memory based implementation 

followed for the End Node. 

Node’s performances meet the set requirements for both the 

Virtex and ProASIC3 implementations. The RMAP target 

response time of 1.2 us on Virtex 5 (including two times the 

SpW Switching latency) exceeds by far the requirements for 

SpW-D operation. Experimentation at much lower system 

clock frequency (20 MHz on the ProASIC3 implementation) 

resulted in a response time of 7 us showing that the 

performance requirements can still be met even at low system 

clock frequencies. 
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Abstract— Complex robotic systems like the DLR Hand Arm 
System integrates a huge amount of sensors and actuators. Hence 
system design and especially communication infrastructure 
design has to be flexible in a heterogeneous network of different 
bus systems. As basis, a modular electronic concept as well as a 
well-structured communication concept is necessary [1]-[3]. 
SpaceWire suites well to these requirements since on one hand it 
supports arbitrary topologies from point to point up complex 
network structures and on the other hand it is easy to implement 
and has a small footprint. Additionally its logical and regional 
addressing scheme enables changes in the topology during 
runtime simply by reprogramming the routing switches. 
However, such changes require expert knowledge. This work 
presents a graphical method to setup and configure SpaceWire 
network topologies. This enables non-experts to replace or 
integrate new components to the system or to set up a test bed to 
investigate a specific aspect. The developer provides a GraphML 
description [4] specifying the SpaceWire communication 
capabilities of each component. Thus the user is able to adapt the 
SpaceWire network topology or to set up a new one simply by 
merging the different GraphML descriptions of the used 
components. A post process is afterwards used to analyze the 
GraphML description and to generate the necessary 
configuration messages according to the topology. This enables 
faster development cycles and rapid prototyping. The approach 
is approved and explained using the SpaceWire network topology 
of the DLR Hand Arm System. 

Index Terms— Graphical Communication Infrastructure 
Design, Automatic Configuration, GraphML 

I. INTRODUCTION 
The DLR Hand Arm System is an anthropomorphic impact 

tolerant robot based on variable stiffness actuators. It is 
designed to meet the human archetype respective to size, 
weight and performance (see Fig. 1). Its communication 
infrastructure comprises 52 actuators and 430 sensors of 
different types [2], [3]. To guarantee main control loops up to 
10kHz a deterministic behavior, low latency, high bandwidth 
and mechanisms to synchronize the actuators and sensors are 
indispensable. Furthermore their arbitrary physical interfaces 
(I2C, SPI, BiSS, PWM) demands flexibility and modularity in 
terms of electronic and communication [1]-[3]. 

 
SpaceWire provides this flexible communication 

infrastructure, since it enables arbitrary network topologies and 
is changeable during runtime. It also supports high speed 
communication up to 1Gb/s by use of an adapted physical layer 
[5] and is deterministic for a given topology. Another 
important aspect is the synchronization, of the participants of a 
SpaceWire network via timecodes.  

This flexibility also has to be introduced to the hardware 
abstraction layer to enable the user to change, adapt and 
expand the topology according to his purpose. Changes in 

Fig.  1. DLR Hand Arm System light weight robot 
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existing systems as well as rapid prototyping  of new systems 
with hardware out of the shelf can be performed. This 
flexibility was, however, not given so far as a standard user. 
All changes and adaptions to the system or simply the setup of 
a new testbed require a detailed SpaceWire knowledge. 

A huge amount of publications exists dealing with different 
aspects of network configuration: For example topology 
depending configuration algorithms [6], [7], automation 
aspects of network configuration [8], [9], configuration 
management [10], [11] and network configuration in 
virtualized environments [8], [12]. Most of the approaches are 
either detached from a specific communication system 
described on a higher level of abstraction [6], [11] or are 
describing their approaches on standard IP-based systems and 
services where hardware and tools are already available and IP-
specific configuration details are abstracted or hidden [7],  [8], 
[10]-[12]. But so far according to the authors' knowledge there 
is no approach neither universal to describe network topologies 
for various communication systems taking into account their 
specific configuration mechanisms nor SpaceWire specific. 

This paper provides a method to graphically setup network 
topologies according to user requirements taking the example 
of SpaceWire. Since network routing can be described as a 
problem of graph theory [13], a graph description of network 
topologies is proposed. Hence, the topology description is 
stored in the GraphML format (a XML based description of 
graph structures) [4] which is used in a post process to 
configure the network (routing and connections). 

Section II gives a brief overview of SpaceWire and the 
DLR protocol suite which is built on top of the standard 
SpaceWire stack as well as a brief introduction to GraphML. 
Section III deals with the mapping of SpaceWire characteristics 
into GraphML attributes. The use of this mapping in the post 
process is explained in section IV as well as its application to 
the DLR Hand Arm System. Section V concludes the paper 
and gives a brief outlook to future fields of applications of the 
presented method. 
  

II. BASICS 
This chapter gives a brief overview of SpaceWire focused 

on its addressing scheme and the associated configuration. 
Afterwards a short introduction to GraphML is given by using 
a SpaceWire network as an example. 

A. SpaceWire 
The main intention of SpaceWire is the data exchange 

between sensors, processing units, mass-memory units and 
downlink telemetry subsystems onboard of a spacecraft [14]. 
Since SpaceWire's properties also meet the requirements of a 
robotic system (high speed, low latency, synchronization etc.) 
various systems developed in our institute use SpaceWire as 
communication backbone (e.g DLR HAND II, DLR Crawler, 
DLR Miro, DLR Mica, DLR Hand Arm System [15]-[18], [1], 
[3]). The following brief overview of the SpaceWire network 
layer is based on [14] and deals with terms and definitions of 

SpaceWire links, nodes, routing switches and networks. 
Furthermore the different addressing schemes are presented. 

A SpaceWire network consists of an arbitrary number of 
three components: 

• Nodes are start or end points of a SpaceWire network. 
They are connected via links directly to another node 
or to a routing switch. 

• Routing Switches connect various nodes together via 
links and also provide routing capabilities. The 
maximal number of connections is limited to 31. 

• Links provide the capability to exchange packets 
between nodes and routing switches in any 
combination (node ↔ routing switch, node ↔ node 
and routing switch ↔ routing switch). 

Each packet to exchange has the following structure 
<destination address><cargo><end of packet marker>. The 
destination address describes the destination to route the packet 
to. Depending on the addressing scheme and the network 
topology the length varies from 1 to n bytes. The cargo 
contains an arbitrary number of bytes. The end of packet 
marker can be either a normal end of packet (EOP) or an error 
end of packet (EEP). The SpaceWire standard does not dictate 
a maximum packet length. Nevertheless, to achieve a 
deterministic behavior in our systems a limitation is necessary 
(our implementation limits the packet size to 1024 Bytes). 

SpaceWire offers three different ways of describing the 
destination address. The first addressing scheme is "path 
addressing". Here the address section of the packets contains 
the physical path through the network. For example an address 
of <4, 4> routes the packet via port 4 of the first routing switch 
to a node connected to port 4 of the second routing switch. In 
"path addressing" the routing switch always performs header 
deletion which is necessary for the correct path through the 
network. In "path addressing" the number of bytes is arbitrary 
but the address range is limited to the range from 1 to 31 which 
represents the number of possible connections to a router. 
Address 0 is a special case used for configuration of the lookup 
table of the routing switch. 

The second scheme is "logical addressing". Here the 
address section of the packet contains exactly one byte in the 
range of 32 to 254 (255 is reserved for future use). The route 
through the network is determined by the lookup tables of the 
routing switches. The lookup table can be preconfigured or 
configured at startup. Header deletion is optional but makes 
only sense when reaching the final link to the destination node. 

The third addressing scheme is "regional addressing". Here 
the destination address contains an arbitrary number of bytes in 
the range of 32 to 254. This scheme is used if a packet has to 
be exchanged between different regions. Regions are necessary 
if the logical address space from 32 to 254 is insufficient or if a 
systematic separation makes sense. Each logical address except 
the last one represents a gateway to another region. Due to this 
leaving a region always requires header deletion of the actual 
first address. Finally in the last region there is no difference to 
any other packet using “logical address” in between this region. 

Since all three addressing schemes can be used in parallel 
in SpaceWire networks, preferring "logical" and "regional 
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<graphml> 
 
  <key attr.name="type" attr.type="string"  
   for="node" id="d0"> 
  <default>node/routingSwitch</default> 
   
  <graph edgedefault="undirected"> 
  <desc>GraphML description of a simple 
        SpaceWire network</desc> 
 
    <node id="n0"> 
      <data key="d0">routingSwitch<data/> 
    <node/> 
    <node id="n1"/> 
      <data key="d0">node<data/> 
    <node/> 
    <node id="n2"/> 
      <data key="d0">node<data/> 
    <node/> 
    <node id="n3"/> 
      <data key="d0">node<data/> 
    <node/> 
 
    <edge id="e0" source="n0" target="n1" /> 
    <edge id="e1" source="n0" target="n2" /> 
    <edge id="e2" source="n0" target="n3" /> 
 
  </graph> 
 
</graphml> 

 

addressing" makes sense to keep the addressing overhead as 
small as possible. In our implementation path addressing is 
exclusively used for configuration of the lookup tables of the 
routing switches. 

The SpaceWire standard does not define a transport layer. 
Since the control of a robot demands for reliable (connection 
oriented, request/response) and non-reliable (connectionless, 
datagram) mechanisms, a transport protocol was developed [3]. 
It is built on top of the existing SpaceWire packet and network 
layer. The transport protocol is wrapped in the cargo of a 
normal SpaceWire packet and uses the SpaceWire's address 
schemes. Since participants in a SpaceWire network have no 
knowledge about the network topology the transport protocol 
includes a configuration process. Here the destination address 
of the peer node is set. Therefore two specific nodes are able to 
set up a channel to exchange data by using the transport 
protocol. 

B. GraphML 
GraphML (Graph Markup Language) is a XML based 

format to describe graph structures [4]. The language provides 
core elements to fully describe graph structures enhanced by a 
mechanism to store graph independent application specific data 
[4]. Due to this, Brandes et al. [4] especially attach importance 
to the following points: 

• Simplicity to easily be parsed and interpreted by 
humans and machines. 

• Generality to support arbitrary graph models. 
• Extensibility to provide additional information for 

arbitrary applications in a well-defined way. 
• Robustness to easily extract additional data by any 

target application without the need of understanding or 
interpreting the whole graph model. 

The following GraphML listing (see listing 1) shows the 
core elements of the language. The header part is omitted for 
reasons of clarity and comprehensibility (a detailed description 
is given at http://graphml.graphdrawing.org). The example 
consists of three SpaceWire nodes connected to one SpaceWire 
routing switch. Since GraphML only differentiates between 
nodes and edges, SpaceWire nodes as well as routing switch 
are modeled as GraphML nodes (<node><node/>). The feature 
of integrating additional data into the graph data is used to 
specify the type of SpaceWire item. By use the GraphML key 
<key attr.name="type" attr.type="string"    
for="node" id="d0"> (see line 3 and 4) a data attribute of 
type string with identifier d0 is defined for the GraphML node 
element. By <default>node/routingSwitch</default> the 
default values are set here node or routingSwitch (see line 5). 
Inside a node statement the defined data can be set by <data 
key="d0">routingSwitch<data/>. 

In SpaceWire the connection between nodes and routing 
switches are called links. The equivalent to a link in GraphML 
is the edge statement (<edge></edge>). By setting the source 
and the target element to one of the nodes unique identifier 
<edge id="e0" source="n0" target="n1" /> the connection 
between the GraphML nodes can be determined. 

 
 

III. PEPRESENTATION AND SPECIFICATION 
Chapter II showes that a SpaceWire topology can be 

described by the node and edge elements of GraphML. 
However, SpaceWire specific characteristics can only be added 
by integrating additional information (e.g. type of SpaceWire 
item: Node or routing switch). So a fully automatic 
configuration process of SpaceWire networks according to the 
standard as well as the transport protocol build on top is 
possible. To achieve this, the following data set of SpaceWire 
characteristics is integrated into the GraphML format.  

a) type: (is assigned to the GraphML node tag) It specifies 
the kind of SpaceWire item. It could be one of the following 
items: node/routingSwitch/link/subnet. In addition to the 
already known SpaceWire items node and routingSwitch also 
link and subnet are provided. Link is a special case of the 
normal SpaceWire links which are described by edge. It 
represents a connection of two SpaceWire items (node or 
routingSwitch) via an exchange level implementation of the 
SpaceWire standard, which is necessary to connect physical 
separated parts of a SpaceWire network each with independent 
clock domains. It is independent of the configuration 
mechanism but already included for the future goal of using 
GraphML description as a base for code generation. Subnet 
describes the SpaceWire regional address scheme. Each item in 
a region is encapsulated by a node of the type subnet using 
GraphML nested graph description for hierarchical ordered 
nodes [4]. 

b) numberOfPorts: (is assigned to the GraphML node tag) 
Specifies the number of ports in case of a routingSwitch item. 
It could be in a range of 1 to 31. The default value is zero 

Listing 1. GraphML listing of a simple spaceWire network 
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which is used for all other SpaceWire items except the 
routingSwitch. 

c) logicalAddress: (is assigned to the GraphML node tag) 
Specifies the SpaceWire logical address in case of a node or 
the regional address in case of a subnet. It could be in a range 
of 32 to 254. The default value is 32. It is ignored for 
routingSwitch and link items. 

d) peerNodeAddress: (is assigned to the GraphML node  
tag) Specifies the logical address or regional address of a peer 
node for the transport level implementation, and could be in a 
range of 32 to 254. The default value is 33. It is ignored for all 
other items except a SpaceWire node. 

e) port: (is assigned to the GraphML edge tag) Specifies 
the port on which edge is connected to a routingSwitch. 

Furthermore, some additional data are helpful to improve 
the readability as well as for the future goal of using GraphML 
description as a base for code generation. 

f) subsystem: (is assigned to the GraphML node tag) 
Specifies the physical subsystem of the item to show its 
membership for example in case of robot "joint1". That could 
also be useful for the application level to identify functional 
groups (e.g. "housekeeping" to read out all sensors of this 
group). 

g) Label: (is assigned to the GraphML node tag) Specifies 
the name of an item. For example "I2CTemperatureBridge". 

 

IV. METHODS AND EXAMPLES 
To enable a configuration of SpaceWire networks in an 

automatic process a GraphML description of subcomponents 
(e.g. PCBs) according to the specification presented in chapter 
III is required. Therefore, every component which can be 
integrated into a SpaceWire network must provide a GraphML 
description of its interconnection possibilities. Starting from 
this the user can modify the description according to his 
requirements within the function range of the component. By 
putting all GraphML descriptions of the various components 
together the whole network topology can be set up. 

Since one of the design goals of developing GraphML was 
simplicity in terms of interpretation and parsing [4], the 
GraphML file describing a component can easily be written by 
hand. A much more practical solution is to use a graphical 
editor as yEd (https://www.yworks.com/). yEd provides full 
GraphML language support including the feature of integrating 
additional data. The graphical solution even makes the learning 
of the GraphML syntax needless and for the user the 
configuration process is reduced to assembling various 
predefined graphical components. 

The depicted electronic component (Fig. 2). shows the 
SpaceWire-to-controller PCB as well as its associated 
GraphML graphical representation described with yEd. The 
PCB uses FPGA technology to implement the SpaceWire stack 
and the transport level build on top. Its purpose is to connect 
arbitrary standard buses (I2C, SPI, SSI etc.) or non-standard 
buses (processor bus, PWM, etc.) to the SpaceWire network. 
The data exchange is carried out by a dual-clock, dual-ported 
RAM interface (port 5 SpWControllerRAMNode in graphical 
representation). Additionally, it offers two 1Gb/s SpaceWire 
links for external connections (connected to port 1 and 4). 
Furthermore it also provides housekeeping (temperature, 
current measurement) functionality via I2C (port 3 
SpWControllerI2CNode) and access to a SPI-Flash to 
reprogram the FPGAs content during runtime (port 2 
SpWControllerSpiFlashNode). 

This initial graphical description which provides all 
available features of the PCB can be adapted according to 
application specific requirements. Thus, a whole SpaceWire 
network can be set up by merging different components 
together into one single graphical description. The so generated 
final GraphML description serves as the starting point for the 
post process. The post process is implemented in python and 
contains the following steps: 

1. The GraphML file is parsed to discover all nodes 
(<node><node/>). Their unique id as well as the 
embedded SpaceWire specific data are extracted to 
python dictionaries and saved in a list. The edges 
(<edge></edge>)are proceeded in the same manner. 

2. All SpaceWire routing switches are filtered out of that 
generated GraphML node list by interpreting the 
SpaceWire specific data. Afterwards the unique 
GraphML node id of each discovered SpaceWire 
routing switch is used to search for matches in the 
source/target items of the generated GraphML edge 
list. Thus the GraphML node id and the port number of 
the counterparts connected to each SpaceWire routing 
switch can be extracted and saved in separate list 
associated to each SpaceWire routing switch. In this 
way all SpaceWire routing switches know their locally 
connected items. 

3. Each SpaceWire routing switch's list of locally 
connected items is analyzed and in case of a 
SpaceWire node extended by the associated logical 
address. This is done by a repeated iteration through 
the GraphML node list to discover all unique 
GraphML node ids of the locally connected items. In 

Fig.  2. FPGA based SpaceWire interfacing electronic overlayed with its 
graphical GraphML representation. 

285



 

this manner a local LUT (lookup table) of logical 
address to port mapping is built. 

4. All SpaceWire routing switches exchange their routing 
information (LUT of logical address to port mapping) 
to set up a global LUT associated to each routing 
switch. The used mechanism is similar to the reliable 
flooding process described in [13] with the difference 
that the network topology is known. The starting point 
of each global LUT associated to a SpaceWire routing 
switch is its own local routing table. This global LUT 
is exchanged among all SpaceWire routing switches 
found in the formerly generated list of all locally 
connected items of each routing switch. While doing 
that the received logical address to port mapping of the 
received global LUT has always to be changed in: 
logical address / port of the SpaceWire routing switch 
where the global LUT comes from. This has to be done 
for about n-1 times where n is the number of 
SpaceWire routing switches in the network. Since in a 
worst case scenario the topology of the connected 
SpaceWire routing switches is a line structure where 
each routing switch is connected to only two bordering 
routing switches. 

5. The starting point to build SpaceWire configuration 
packets for set up the LUT in each SpaceWire routing 
switch is a specific node within the SpaceWire 
network. With the unique GraphML node id of this 
SpaceWire node the directly connected SpaceWire 
routing switch can be found inside the former 
generated GraphML node list. The only addressing 
scheme which can be used to set up the LUT inside the 
SpaceWire routing switches is path addressing. Due to 
this for the directly connected SpaceWire routing 
switch the destination address equals zero for 
accessing its internal LUT. Based on the locally 
connected items list of this SpaceWire routing switch 
directly connected routing switches and their 
associated port number are searched for. Their 
destination address is built by simply inserting the 
outgoing port number at initial position of the 
destination address of the previous SpaceWire routing 
switch. This has to be done in each new stage of 
connected SpaceWire routing switches until all routing 
switches are reached. 

6. Since all SpaceWire routing switches of the network 
are configured at this point the logical addressing 
scheme can be used for the transport protocol built on 
top of the SpaceWire stack. By discovering all 
SpaceWire nodes out of the former generated 
GraphML node list their logical address and peer node 
address can be extracted which are necessary to build 
the transport protocol configuration packet. Since 
logical addressing is used the transport protocol 
configuration is independent from the SpaceWire node 
which performs the configuration. 

 

The post process also supports the handling of different 
SpaceWire networks and the associated regional addressing 
scheme. Here, the exchange of the LUT is performed in each 
subnet separately. An adjacent subnet is treated as a normal 
SpaceWire node with a logical address. The GraphML nested 
graph approach is used for describing hierarchical graphs [4]. 
The unique id of each GraphML element is extended by a 
leading id describing the parent node (<node 
id=”n0::n1”><node/>). Hence, it is simple to identify the 
membership of each SpaceWire item to a subnet. 

The presented method is applied to the DLR Hand Arm 
System's SpaceWire network topology. As an example the 
SpaceWire topology of the HASy hand is used. The GraphML 
description of the SpaceWire topology is built by use of the 
graphical editor yEd (see Fig. 3). 

The SpaceWire topology of the HASy hand is spread over 
five FPGAs located on three different PCBs. This is 
recognizable in the five vertical branches which have their 
orign at the horizontal structure at the bottom (see Fig. 3). The 
horizontal structure at the bottom is the backbone which 
connects all physically separated parts of the SpaceWire 
network. The depicted SpaceWire topology comprises in total 
61 SpaceWire nodes (square shape) and seven SpaceWire 
routing switches (octagon shape). 61 SpaceWire nodes 
correspond to 61 logical addresses to be set up in the seven 
routing switches' LUTs. This leads to 427 configuration 
packets exclusively to use the logical address scheme. This is 
exactly the result of the python post process of the GraphML 
representation of the hand's SpaceWire topology. The number 
of SpaceWire packets necessary for the configuration of the 
transport protocol built on top is variable since some nodes 
share their peer nodes. In our case 14 nodes are unused, since 
they are reserved for optimizing latency by efficient packing. 
From the remaining 47 nodes one is used as a shared peer node 
for all others. This leads to 46 configuration packets associated 
with the transport protocol which are also the result of the 
python post process. 

Fig.  3. DLR Hand Arm System's SpaceWire network topology of the hand 
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The additional data embedded in the GraphML format is 
not only limited to network and transport layer depending data. 
The post process also generates configuration files for our 
hardware abstraction layer approach "robotkernel" as well as 
our middleware approach "links and nodes". The "robotkernel" 
is a runtime-configurable robotic hardware abstraction 
framework. It is designed as a cross platform software 
component with reusable dynamical loadable device drivers 
encapsulated in modules. It provides an intra-module 
communication, a module synchronization mechanism and 
access to the cyclic and acyclic hardware data. It also supplies 
modules with generic interfaces to control applications, written 
in C, python, Simulink, etc. At DLR most of the robotic 
hardware components work with the "robotkernel" by simply 
writing a bunch of configuration files. As middleware between 
different processes we use our own hard-realtime capable 
middleware called "links and nodes". It provides a realtime 
communication mechanism for cyclic process data, acyclic 
service calls and process management across IP networks. 

 

V. CONCLUSION AND OUTLOOK 
This paper presents a graphical method for communication 

infrastructure design. Since network topologies can be 
described by graph theory the system's network topologies are 
modeled by using graphs. To store the graph information the  
XML based GraphML format is used. It is easy to read and 
interpret by humans and machines and provides a mechanism 
to store arbitrary additional data. Thus, specific information 
depending on the used communication standard as well as 
detailed information from other abstraction layers can be 
integrated. By use of a graphical editor (e.g. yEd) the usability 
can be further enhanced. By providing a graphical model of 
each component describing its network depending capabilities 
the system's topology can be adapted easily to user needs 
without expert knowledge. Complexity can be clearly 
described with the GraphML approach and detailed 
configuration knowledge can be hidden in the post processing 
stage. The method was applied to the SpaceWire topology used 
in the DLR Hand Arm System with promising results. The 
system can be fully configured by use of the method. 
Additional application specific information (also integrated in 
the GraphML format) can also be processed to configure the 
hardware abstraction layer. 

Future work will include the modeling of all SpaceWire 
network components used in the DLR systems (e.g. DLR Miro, 
DLR Mica). Thus components can be used out of the shelf to 
easily build new testbeds or systems. Another possibility is to 
go a step further by using the GraphML description not only 
for configuration but also for code generation. Since a full 
SpaceWire stack as well as the transport protocol built on top 
and various communication bridges to physical interfaces (I2C, 
SPI, BiSS, PWM, etc.) are available in VHDL in our institute 
the whole component configurations could be generated online.  
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Abstract—In many networks there is a necessity to transmit 
data packets flows, the intensity of which exceeds the throughput 
of one channel SpaceWire, GigaSpaceWire, SpaceFibre. This 
flow can be a packet flow from a single source to a single 
destination, for example, from a camera to a monitor. Also, a 
packet flow can include packets from different sources to 
different destinations that goes via two neighboring routers. An 
example is transmission of packets between two routers located 
on the boundaries of neighboring regions. The packets, belonging 
to one flow can have almost same length (transmission of 
uncompressed video), or quite different length (transmission of 
compressed video, transmission of packets with different content 
between two regions). 

The adaptive routing can be used for transmission of such 
packet flows. This mechanism includes in SpaceWire standard. A 
set of alternative output ports (a group of ports) can be 
determined in routing table for the logical (or regional address). 
Any output port from this group (if connection for this port is 
established and port is not occupied by other packet) may be 
used for transmission of packet with this address. 

Thus, the summary throughput of all ports belongs to the 
group can be used for transmission of data packets with this 
address. However, the possibility of parallel transmission of 
packets from this flow to different output ports belongs to the 
group is required for effective utilization of this summary 
throughput. 

If the length of packets may be different or if the quantity of 
input ports for considered flows is not equal to the quantity of 
output ports in the group, the router should include special 
mechanisms to ensure efficient parallel transmission of packets to 
all ports belongs to the group. 

Adaptive routing for intensive data flows transmission can be 
implemented not only in SpaceWire/GigaSpaceWire networks, 
but also in SpaceFibre networks. We consider the specific of its 
implementation taking into account the features of data link 
layer (virtual channels with a fairly large buffers, retry 
mechanism) 

In this paper we discuss possible implementations of these 
mechanisms for SpaceWire, GigaSpaceWire and SpaceFibre, 
estimate achievable bandwidth utilization of port’s group, the 
overhead of the implementation of these mechanisms for packets 
flows with different characteristics. 

A side effect of adaptive routing is a possible mismatch of the 
order in which packets are sent to the network form the source 

and the order of their receipt by destination. We evaluate the 
packet’s window size that required in the destination node for 
recovery order of packets and the associated delays. 

The ports of router belonging to the same group may be 
connected to one or several different routers (according to the 
standard). In the first case all packets from the flow will be 
transmitted via one chain of routers (via one path via network). 
In the second case, they will be transmitted through the network 
in different ways. The reordering of packets is possible in both 
cases. However, in the first case, the mechanisms, that prevent 
the packets reordering, can be implement in routers. But its 
implementation can lead to decrease of throughput utilization, to 
additional hardware costs and to increase of packet’s 
transmission time. In the paper we estimate these overheads for 
data packets flows with different parameters. 

Index Terms—SpaceWire, GigaSpaceWire, SpaceFibre, 
Adaptive routing 

I. INTRODUCTION 

This paper discusses group adaptive routing mechanisms 
and their facilities in SpaceWire, SpaceFibre and 
GigaSpaceWire networks. We chose several case studies which 
find applications in different networks. The first case study 
considers high intensity data flow transmission (high resolution 
video) between source and destination. The second case 
discusses possibilities of several data flows transmission from 
different independent sources and destinations between two 
routers which are situated on borders of network regions. The 
third case study refers to group adaptive routing abilities for 
bypassing overloaded network parts. Finally, the fourth case 
study discusses group adaptive routing for bypassing failed 
links and routers. 

II. SPACEWIRE GROUP ADAPTIVE ROUTING 

Group adaptive routing is defined in the SpaceWire 
standard [1,2]. In this switching mode, a routing table defines a 
set of output ports that correspond to one logical address. A 
packet with a particular logical address can be potentially 
passed to any of output ports in the defined group. Any port 
from the group with established connection and which is not 
occupied by transmission of another packet can be chosen for 
transmission of the subsequent packet. If all ports from the 
group are in the Run state and are occupied by transmission of 
other packets, the current packet will wait for one of these ports 
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to be free and ready for transmission. Output ports from one 
group can be connected either to the same or to different 
network devices. In the first case, packets transferred by means 
of group adaptive routing will be always transmitted via the 
same path i.e. via the same sequence of routers (see Fig. 1). In 
the latter case, packets will be transmitted via different paths, 
i.e. via different sequences of routers (see Fig. 2). 

 

Fig. 1.  An example of a network structure with group adaptive routing for 
connection with the same device 

 

Fig. 2.  An example of a network structure with group adaptive routing for 
connection with different devices 

Group adaptive routing can be used [3, 4, 5, 6, 7, 8, 9, 10]: 
• for co-utilisation of bandwidth of several links; 
• for keeping a possibility to transmit data in case of link 

disconnection for one or several links. 
In the next sections of the paper we consider several typical 

case studies of the group adaptive routing use and estimate its 
efficiency by the following criteria: 

• Objective function, which is defined in the statement 
of the problem for each case study; 

• Necessity and size of additional buffers; 
• In-order packet transmission (if necessary). 
Group adaptive routing can be also used in GigaSpaceWire 

[11] and SpaceFibre [12] networks, consequently, we will 
make estimation for these standards as well. 

III. CASE STUDY 1. HIGH INTENSITY DATA FLOW 

TRANSMISSION BETWEEN SOURCE AND DESTINATION 

A. Statement of the Problem 

Let us consider the case when there are source and 
destination nodes in a network and data intensity between them 
is higher than the bandwidth of physical links between them. 
For example, this can occur for a source and destination of high 
resolution video traffic. From the structural point of view, it is 

possible to organize a path comprising several physical links. 
Examples of such paths are given in Fig. 3. At the logical level 
we can use the group adaptive routing for packets distribution 
between physical links. Packets in a data flow can have either 
of equal length (e.g. uncompressed video) or unequal length 
(e.g. compressed video). Such kind of applications may require 
in-order packets delivery. These nodes can exchange other 
types of traffic, e.g. command data, in addition to the high 
intensity traffic. 

Destination NodeSource Node

Router 2

Adaptive routing group

Router 1

Router 1

Terminal node
(Destination)

Terminal node
(Source)

High speed port

Src Dest

  

Fig. 3.  Examples of terminal nodes connection for transmission of high 
intensity data traffic  

Data generation rate in the source and data reception rate in 
the destination can be several times greater than data 
transmission rate over a single physical link. 

B. Estimation of Characteristics for SpaceWire 

Using of the group adaptive routing can lead to inefficient 
use of links bandwidth. This case can be shown for the receiver 
terminal node with embedded router with 4 external and one 
internal ports. Let us assume that the functional part of the 
receiver node can accept data 4 times faster than data rate in 
external ports of the terminal node. These external ports are 
used for reception of the traffic. If data packets are transmitted 
directly from external ports to the receiver, we will get the 
situation shown in Fig 4. 

Data transmission between external ports and the functional 
part of the receiver is performed by packets. Until the current 
packet from the external port is not fully transmitted to the 
functional part via the internal port, the subsequent packet from 
another external port cannot start its transmission. Data 
character reception in the external port takes significantly more 
time than it takes for its transmission to the functional part. In 
the given example, there is a difference by 4 times. 
Consequently, there is a standby of a link to the functional part 
for a long time, which is ¾ of all operational time. In this case, 
group adaptive routing cannot increase the link bandwidth. 
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Fig. 4.  Data transmission without buffering 

This problem can be solved by adding buffers to the low 
data rate ports. The high data rate link’s bandwidth can be 
fully utilized if a packet starts its transmission from the 

external port to the functional part just after it is fully stored in 
the buffer (see Fig. 5). 

 

Fig. 5.  Data transmission with buffering 

The size of transmitted packets should be not more than the 
buffer size. Such a scheme with buffering requires an 
additional arbitration mode for data transfer to the high data 
rate port. An arbiter should choose a low data rate port for 
transmission in the following cases: 

• A buffer of a low data rate port contains an entire 
packet; 

• A buffer of a low data rate port is full (i.e. packet’s 
length is more than the buffer’s size). 

If packet’s length is more than the buffer’s size, then the 
part of the packet that was not stored into the buffer will be 
transmitted to the functional part at a low data rate. This will 
result in decreasing of the link bandwidth. 

For the reason described above, the transmitting terminal 
node should also implement buffers in its external ports. A 
generalized scheme which shows the place of buffers in 
receiver and transmitter is given in Fig. 6.  

 

Fig. 6.  Place of buffers  in receiver and transmitter 

However, this buffers mechanism can be insufficient. 
Packets flow can contain packets which have the size equal or 

less than the buffer’s size. Consequently, the following 
situation can occur: the buffer contain a packet or its fragment 
and still has some free space. The next packet from the 
functional part can start to be stored in this buffer. And yet, 
there are no enough space in the buffer to store the whole 
packet. As a result, a part of this packet, which was stored to 
the buffer, is transmitted at a high data rate, while the other part 
is transmitted to the buffer at a low data rate of the external 
port. During this time, subsequent packets from the high data 
rate link cannot be transmitter to other external links. 
Therefore, there is a significant decrease of the high data rate 
link bandwidth. 

As an example of a packets flow with different sizes let us 
consider a compressed video flow. Video frames compressed 
using MPEG, H.263, H.264 and other standards can vary by in 
sizes by several times (even by ten times) [13, 14]. Let us 
consider data transmission from a compressed video source 
with the following sequence of frames: IBPBPBPBP (see 
Fig. 7), where: 

• I-frame –  intra pictures; 
• P-frame – corresponds to the frame compressed using 

a reference to one image (P - predicred); 
• B-frame – corresponds to the frame compressed using 

a reference to two images (B - bidirection). 

 

Fig. 7.  Compressed video frames  
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In the discussed example a node has three external ports 
with buffers. Size of these buffers corresponds to the maximal 
size of I-frame in a system. A possible sequence of packets 
transmission is shown in Fig. 8. Dotted lines show buffers 
bounds. 

 

Fig. 8.  Example of packets sequence transmission to output ports  

The first packet with I-frame can be stored into the Port 1 
buffer. This I-frame is followed by 4 groups of BP-frames. 
Each such frame is significantly smaller than the I-frame. 
Assume that they were stored into the Port 2 buffer and still left 
free space in this buffer. The next frame is an I-frame, which 
can be passed to any buffer: 

• Port 1 has already send some of data and freed free 
space; 

• Port 2 has free space because 4 BP-frames are smaller 
than the buffer size; 

• Port 3 buffer is empty. 
According to the rules of group adaptive routing a packet 

can be passed to any of these ports. Assume that it will be 
passed to the port 2 buffer. The bigger part of the packet could 
not be stored in the buffer so it will be stored in the buffer at a 
data rate of the external port. Consequently, the high data rate 
link bandwidth can decrease by 1,5-2 times depending on sizes 
of packets and port arbitration choice. 

A similar problem can occur with packets of the same size 
which is equal the buffer size. For example, in a terminal node 
with three external ports the first packet was sent to the port 1 
buffer, the second – to the port 2 buffer. At the time of starting 
transmission of the third packet, a part of the first packet was 
send, so there is again free space in the port 1 buffer. The port 
3 buffer is empty but according to the rules of the group 
adaptive routing the third packet can be passed to the port 1. 

In some applications it can be essential to preserve at 
reception the packets order the same to the order they were sent 
by the source. However group adaptive routing cannot 
guarantee in-order delivery. An example of packets reordering 
is shown in Fig. 9.  

 

Fig. 9.  Example of packets sequence transmission to output ports  

In this case we did not loose the high data rate link 
bandwidth but the shorter packet P3 was fully stored in the 
receiver buffer before the longer one P2 was received. 
Therefore, the packet reordering occurred. 

Link disconnection in one of the parallel links of the 
adaptive group can result in: 

• loss of one or more packets; 
• packets reordering while their transmission from high 

data rate link to the low data rate port. 
These cases are illustrated in Fig. 10.  

 

Fig. 10.  Example of system behavior in case of link disconnection in one port  

In this case we can observe a link disconnection in Port 3 
which results in the loss of packet P2. The receiving side needs 
some time to detect the disconnection. Meanwhile, ports SpW3 
and SpW4 can receive packets P3 and P4 correspondently. The 
order in which these packets will be passed to the high data rate 
link is random. Thus, the packets P3 and P4 can be passed in 
wrong order.  

The more buffer size in ports is, the more data can be lost in 
case of link disconnection. According to the SpaceWire 
standard, the tail of a transmitted packet will be automatically 
spilled if a link disconnect occurs. If a transmit buffer contains 
other packets or their fragments, they will be: 

• either transmitted in case of successful link 
reinitialisation; 

• or they will be deleted in case of link disable flag is set 
to 1. 

This time can be rather long (not less than 19,2 μs) and 
other ports can transmit a large number of packets. In the first 
case it can lead to significant reordering of packets on a sender 
side. Assume the situation when a packet was not fully written 
to the external port buffer because there was not enough free 
space and a link disconnection occurred. All next packets from 
the sender will be blocked for a long time (until the link is 
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reinitialized or link disables flag is set to 1) and could not be 
passed to other ports with established connection. 

The discussed above cases show that smaller buffers can 
cause smaller losses of data and packet reordering in case of 
link disconnection. Disconnection results in loss of all data in 
transmit buffers together with packets’ tails which were not 
stored in a buffer. However, buffer size should be defined in 
accordance with sizes of packets in a system. The smaller 
packets size is, the bigger transmission overhead is (see 
Fig. 11). The graphs of dependency between maximal packet 
size (header|overheads + data payload) and throughput 
utilization are represented in this figure. Here we can observe a 
contradiction between these requirements that should be 
balanced in practical engineering design. 

 

Fig. 11.  Throughput utilization 

Therefore, we can formulate the following summary: 
• The objective achieving requires implementation of 

additional buffers, which size is not less than the size 
of transmitted packets, and an additional arbitration 
mechanism. 

• The objective cannot be fully achieved even with these 
additional mechanisms: packets reordering and long 
delays are possible. 

C. Estimation of characteristics for GigaSpaceWire 

GigaSpaceWire standard has much in common with 
SpaceWire standard: layers over Exchange layer are the same, 
link disconnection and link re-initialization cause similar 
actions. Buffering in GigaSpaceWire is organized in the same 
way, as in SpaceWire. Consequently, if we use GigaSpaceWire 
in the first case study, we need additional buffering and 
arbitration mechanisms. 

However, this also cannot solve all stated problems: 
packets reordering and long delays in some cases. 

D. Estimation of characteristics for SpaceFibre 

In contrast to the previous standards, in SpaceFibre there 
are output and input buffers (not less than 256 bytes) for each 
virtual channel and data retransmission in case of errors in a 
link. If these buffers are large enough to store an entire packet, 
than there is no need to use additional buffers for group 
adaptive routing.  

Data retransmission mechanism allows significantly reduce 
data transmission delay in case of single errors in a link. 
However, the same problems as in SpaceWire arise if link 
disconnection lasts for a longer time: packets reordering and 
long delays. 

IV. CASE STUDY 2. TRANSMISSION OF BIG DATA 

BETWEEN DIFFERENT SENDERS AND INITIATORS 

VIA TWO ROUTERS  

A. Statement of the problem  

A network can contain two routers which exchange an 
amount of data bigger than it can be transmitted via one 
physical link. For example, such routers can be situated on 
borders of regions. At a structural level such routers can be 
connected via several links in order to provide the required 
bandwidth. An example of such a network is given in Fig. 12. 
This pair of routers can transmit data packets flows between 
different pairs of sources and destinations. Packets flows can 
have different characteristics, such as different length of 
packets, different intensity. Data transmission rates in different 
ports can also vary. Generally, there is no need of preserving of 
the packets order between different packets flows in such 
adaptive routing application. However, in some cases it may be 
necessary to preserve an order for the packets between one pair 
of source and destination. 

 

Fig. 12.  An example of network structure  

Assume that the system is designed correctly and an 
aggregate throughput of physical links between two discussed 
routers (hereinafter, adaptive group ports) is sufficient for 
transmission of all existing packets flows. In addition, the 
number if others ports in each of these routers can be equal or 
not to the number of ports in adaptive group ports. Data traffic 
coming via ports, which are not in the adaptive group, can be 
transferred either only to the adaptive group ports or not to this 
group. Transmission data rates can vary for different ports. 
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B. Estimation of characteristics for SpaceWire 

As it has already been shown in the first case study, it is 
necessary to use additional buffers in low data rate ports if data 
rates vary in different ports.  

If packets from several input ports can be transmitted to 
one output, then we can use buffers in the input ports in order 
to store the packets waiting for their transmission to an output 
port. 

Let us consider the simplest case from the estimation 
characteristics point of view: 

• number of ports in the adaptive group is equal to a 
number of ports which are not in the adaptive group; 

• data rates are the same for all ports (buffers can not be 
used). 

If there is a packet which should be transmitted to the 
adaptive group ports, then there always will be a free port in 
the group for transmission. If there is a packet from the 
adaptive group ports which should be transferred via a port not 
in the group, this port can be occupied by transmission of the 
other packet. In this case, packet transmission delay depends 
on the occupancy of an output port and packets length.  

If transmission delay in one of output ports (includes in 
alternative group) occur, it does not affect to data flows (from 
other sources) that are transmitted via other ports 

For example, if in the network shown in Fig. 12 delay occur 
for a packet transmitted from the router 3 to th router 6 via the 
port 5 of the router 1, it does not affect to transmission of data 
from the router 4 to the terminal node 2 via the port 6 of the 
router 1. 

This can lead to much less decrease of link bandwidth in 
the adaptive group ports in contrast to the Case Study 1 
(see Fig. 13). The example shows that Router 4 cannot be 
ready for some time to receive a data packet from Router 1 
transmitted via a link from an adaptive group. During this time, 
data from the terminal node 1 can be transmitted to the 
terminal node 2 via another link between the routers without 
any loss of link bandwidth. However, if the terminal node 1 
needs to send packet to the Router 3, then this packet and all 
subsequent packets will wait until the current packet is 
transmitted from Router 1. 

 

Fig. 13.  Example of data transmission delay via adaptive group link  

The same can be referred to a link disconnection case in 
one of alternative ports. 

Let us consider a more complex case when a number of 
ports in the adaptive group is less than the number of ports out 
of this group. In this case, it is recommended to use buffers in 
order to store packets while waiting for output port is free. For 
example, assume that a router has 12 ports: 

• 4 ports in the adaptive group; 
• 8 ports can transmit packets addressed to the adaptive 

group. 
Packets from 4 ports, which are not included to the adaptive 

group, can be transmitted to 4 ports from the adaptive group 
when a new packet arrives and needs to be passed to the 
adaptive group. This packet will wait until one of the ports 
from the adaptive group is free. If this packet does not fit in the 
buffer, then its tail will occupy one or several previous routers, 

If data transmission rate is the same for all links then there 
is no need for additional buffers in output ports. As it was 
shown in Case Study 1, it allows to loose minimal amount of 
data in case of link disconnection in one of group adaptive 
ports.In this case, inefficient distribution of packets between 
ports and decrease bandwidth of adaptive group ports is 
impossible. Distribution of packets between the ports can 
influence transmission delays only. 

However, if data transmission rates in ports vary, then we 
need additional buffers in low data rate ports. In this case, the 
problems from the Case Study 1 arise: decrease of link 
bandwidth in case of unsuccessful port arbitration, large 
amount of lost data in case of link disconnection. 

Therefore, this case study requires additional buffers only 
in case of different data rated in links. The objective is 
successfully achieved. 

The objective function is also successfully achieved in case 
of GigaSpaceWire and SpaceFibre use. 

V. CASE STUDY 3. GROUP ADAPTIVE ROUTING FOR 

BYPASSING OVERLOADED NETWORK PARTS 

A. Statement of the problem  

There are several paths for data transmission between the 
source and destination. Besides the discussed traffic, another 
traffic can be transmitted via these paths also. Transmission 
paths can be loaded in different ways at different moments of 
time. Potentially, group adaptive routing can be used for 
packets redirection to the less loaded path at a particular 
moment of time. 

B. Estimation of characteristics for SpaceWire 

Fig. 14 presents a fragment of a network structure with two 
alternative paths between the source and destination. Each 
alternative path comprises several routers, each of which can 
transmit additional traffic (see Fig. 14). 
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Fig. 14.  Example of a network with two alternative paths  
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Packets from the source node Src arriving at Router 1 can 
be transmitted either to the Router 2 (path 1) or to the Router 5 
(path 2) by means of group adaptive routing defined for ports 2 
and 3. Router 1 arbitrates packet transmission from Src to the 
Router 2 via port 3 or to the Router 5 via port 2. If port 3 is 
occupied by transmission of another packet while port 2 is free, 
then the packet will be transmitted via port 2. If both ports are 
occupied, then the packet will wait them to become free. 

If there is another traffic transferred to Router 5, then the 
discussed packet will be transmitted to the Router 5, if port 3 is 
not occupied. In this case group adaptive routing allows to 
effectively redirect packets to the free port. 

However, this mechanism works only if an overload 
occurred in a router which divides further path into two 
alternatives. Assume that an overload occurred in Router 4 (see 
Fig 15) and, consequently, packets transmission from Src to 
Router 8 will be delayed. Although SpaceWire standard uses 
wormhole routing there are buffers of a particular size in 
routers. These can be credit buffers and any additional buffers. 
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2

3 Alternative packet 
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Fig. 15.  Example of packet transmission via alternative path  

Depending on packets length and buffers sizes the 
discussed packet can be either fully stored in Router 4 or its 
parts will be stores in Routers 3 and 2. In addition, if the 
Router 2 has still more space in buffers to accept the next 
packet, then Router 1 cannot predict that there is an overload 
somewhere further in this transmission path. 

SpaceWire standard does not define any mechanisms for 
monitoring such kind of overloads in remote routers. 
SpaceWire flow control mechanism operate in a data link and 
can be used for detection of overloads in neighbor routers only. 
If there are no FCTs received, then ports can be considered as 
overloaded. 

As a result, several subsequent packets can be transferred to 
Router 2 until all buffers on a transmission path are full. 
Consequently, an overload area will reach Router 1. There are 
two possible cases: 
1. the next packet will be fully transferred to Router 2; 
2. the next packet will be partly transferred to Router 2. 

In the first case next packets from Src can be transferred to 
Router 5 (see Fig 15). 

Packets transmitted via alternative path can arrive at 
Destination earlier than packets which were blocked while 
transferrin through Router 4. If there is a need of in-order 
packets delivery, then the destination node should have big 
enough memory in order to recover an initial packets order at a 

Transport and Application layers. The memory area should not 
be less than total buffers sizes in each existing alternative path 
between the source and destination. 
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Fig. 16.  Example of packets waiting for data transmission recovery in 
Router 4 

In the second case, packets transmission from the source in 
Router 1 will be stopped until data transfer through Router 4 is 
recovered. This is shown in Fig. 16.  

New revision of the SpaceWire standard proposes a 
mechanism of port time-outs in routers in order to detect a 
packet that has become stuck. This time-out controls the time 
since the last data character was sent from the input port to the 
output port. This mechanism can be used for discarding 
packets which have become stuck. However, it cannot improve 
anything in packets delivery avoiding overloaded parts of 
network. 

This case shows that group adaptive routing use combined 
with such network structure does not give ability to 
dynamically control overloads and redirect packets from 
overloaded parts of network. This is because each router knows 
only about ports overloads in neighbor routers while it does not 
anything about remote routers n a network. This can result in 
inefficient use of the group adaptive routing is adaptive paths 
includes several routers. 

Let us consider a subcase with branching adaptive paths in 
each router. Each router can choose one of alternative 
directions in dependence on neighbor routers state. An example 
of such network structure is given in Fig. 17.  
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Fig. 17.  Example of a network with adaptive connections between all 
routers in adaptive paths. 

In this example, a packet in each router can be transferred 
via two paths. For example, a packet from Router 2 can be 
transferred to Router 3 or to Router 6. Let us consider the case 
when a packet from source to destination becomes stuck in 
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Router 4 as a result of an overload. Similarly to the previous 
case, two cases are possible: 
1. A packet was fully sent by one of the previous routers; 
2. Part of a packet was not sent. 

In the first case all subsequent packets can be transmitted 
bypassing an overloaded network part. In the second case, the 
tail of unsent packet will block this opportunity. Therefore, the 
problem will be solved partly. According to SpaceWire 
standard, it is impossible to completely eliminate a possibility 
of keeping a packet tail in a router. As it was mentioned above, 
the only mechanism that can help in overload detection is a 
flow control in SpaceWire. Flow control is performed in terms 
of flits, which do not correlate with packets sizes. One flit can 
contain parts of several packets. Moreover, packet is unlimited 
in size. Even though it is limited and conforms to buffers in 
routers, the problem cannot be fully solved. 

Moreover, it should be mentioned, that such network 
design causes a large number of additional communication 
paths between routers and, consequently, additional router 
ports which are necessary for adaptive path construction. This, 
in turn, will lead to increase of number of routers in the 
network. 

The objective function is reached without additional 
mechanisms in routers, but alternative data path via each router 
should be implemented for this sample. Data packets sequence 
between the source and the destination nodes can be reordered 
in the network. 

C. Estimation of characteristics for GigaSpaceWire 

A GigaSpaceWire router likewise a SpaceWire router can 
determine load of only neighbour routers (using of the credit 
mechanism). Therefore all problems of SpaceWire standard 
shown for this use case are actual for GigaSpaceWire also. 

D. Estimation of characteristics for SpaceFibre 

A SpaceFibre router also can determine the state of only 
neighbour routers. It follows same problems as for SpaceWire 
and GigaSpaceWire standards. Due buffers of large size used 
in the data link layer of this standard, the overload of the 
neighbour routers will be determined very late, and more data 
will be stalled in buffers. Therefore data packets flow 
reordering will be more essential in comparisson with 
SpaceWire and GigaSpaceWire standard.  

VI. CASE STUDY 4. GROUP ADAPTIVE ROUTING FOR 

BYPASSING FAILED NETWORK PARTS 

A. Statement of the problem  

Some devices and communication lines can be failed in the 
network operation. The network can include spare routers and 
interconnection lines. Group adaptive routing can potentially 
be used for automatic (witout reconfiguration of the network) 
redirection of data packets flows bypassing failure equipment. 

B. Estimation of characteristics for SpaceWire 

The SpaceWire standard does not support guaranteed 
packets delivery. If failure occur in an interconnection line 
when data packet is transmitted, only the primary part of the 

packet (transmitted before the failure) with EEP will be 
forvarded farther via network. The rare part of the packet will 
be lost. 

Every SpaceWire router can determine disconnections in its 
ports (in lines, connected this router with neighbours). Failure 
in a router that be accompanied with disconnection looks like 
link failure with this router for its neighbours. 

A router has not any information about state of others (not 
neighbour) routers and interconnections. Therefore, the group 
adaptive routing is not suitable for network structure, shown in 
Fig. 14.  

For example, if disconnection error occur between the 
router 4 and the router 8, the secuence of packets that wait for 
transmission will be placed in the routers 4, 3, 2. These packets 
will be never transmitted to destination if connectionbetween 
the router 4 and the router 8 will not restore. 

As indicated above, if in the router 1 stalls the rare part of a 
packet, it will block transmission of next packets for long time. 
(These packets will be not transmitted via the router 5 until the 
rare part of the previous packets block the router 1.) 

The mechanism of transmission timeouts in the SpaceWire 
standard next version allows to solve this problem by deletion 
of the untransmitted rare part of the packet in case of timeout. 

But next packets can be transmitted to the router 2 (not to 
router 5) due to connection with router 2 is valid (available). 
These packets will not reach the destination due to 
disconnection between the router 4 and the router 8. 

More suitable for this use case is network structure 
represented in Fig. 17. If in this structure disconnection 
between two routers occurs, the alternative path (that exist in 
every router) will be used for data packets transmission. For 
example if disconnection between the router3 and the router 4 
occurs, next packets will be transmitted from the router 3 to the 
router 7, bypass failure connection. There are three alternative 
pathes between source and destination in this network: 

(1) the router 1 – the router 2 – the router 3 - the router 6 – 
the router 7 – the router 8 

(2) the router 1 – the router 2 - the router 6 – the router 7 – 
the router 8 

(3) the router 1 – the router 5 – the router 6 – the router 7 – 
the router 8 

Packet order is not guaranteed when packets transmited via 
different pathes. 

So for this use case the objective is reached without any 
additional mechanisms in routers, but alternative data pathes 
should be determined for every router. 

C. Estimation of characteristics for GigaSpaceWire 

GigaSpaceWire router likevise SpaceWire router has 
information only about state of connections with neighbour 
routers. Correspondingly, all problems shown for this use case 
when SpaceWire standard is used are actual for 
GigaSpaceWire standard. 

D. Estimation of characteristics for SpaceFibre 

A SpaceFibre router also can determine the state of 
connections with neighbour routers only. On data link layer of 
SpaceFibre standard the data frames retransmission is 
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implemented. The quantity of retransmission or retransmission 
time is unconstrained. Therefore for detection of permanent 
failures we need to add retransmission timeout. If this timeout 
expired, the port (and the data link) will be marked as unable to 
work, and alternative ports will be used for data transmission.  

CONCLUSION 

In this paper group adaptive routing in SpaceWire, 
GigaSpacWire andSpaceFibre networks were considered. We 
evaluated objectives and requirements of additional 
mechanisms for their realization in these standards for four 
case studies: 

- Using of group adaptive routing for high intensity data 
flow transmission (between one source and one destination) is 
not effective due to possibility of unsuccessful selection the 
output port (decreasing of useful bandwidth), due to loss of big 
amount of data in case of disconnection in one of links, and 
due to possible packet reordering.   

- Using of the group adaptive routing for transmission of 
several data flows between different independent sources and 
destinations via two routers (for example, which are suitated on 
boards of network regions) when all ports of these routers 
works on same speed. It showed to be efficient. 

- Using of group adaptive routing for bypassing overloaded 
network paths is not effective if pathes between sources and 
destinations includes more than one router. 

- Using of group adaptive routing for bypassing failed links 
and routers is possible when lose of packets and packets 
reordering is allowable. But alternative pathes should be 
determined for every router. 
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Abstract—SpaceWire-D is an extension to the SpaceWire 

protocol that provides deterministic capabilities over existing 

SpaceWire equipment. The network is divided into segments using 

a virtual bus abstraction, where a virtual bus consists of a single 

RMAP initiator, one or more RMAP targets and the SpaceWire 

links that make up the paths between the initiator and the targets. 

Time-codes are broadcast periodically to provide time-division 

multiplexing, and a network schedule is defined by the allocation 

of virtual buses to time-slots. If a virtual bus has been allocated a 

time-slot, it is allowed to execute transactions to any of the targets 

within the virtual bus as long as the transactions complete their 

execution before the end of the time-slot. If the schedule is designed 

so that no virtual buses sharing a link are allocated the same time-

slot, packets are no longer affected by blocking which allows the 

transaction execution times to be calculated and real-time 

constraints to be satisfied. 

The SpaceWire-D demonstration system has been designed to 

facilitate the verification of the draft standard. It consists of two 

RMAP initiators, twelve RMAP targets, a network manager 

device, a host PC and a routed SpaceWire network to connect the 

devices together. The LEON2-FT based initiator boards each 

contain an embedded SpaceWire-D software layer and an 

automated test scripting system, built on top of the RTEMS real-

time operating system. The target boards respond to RMAP 

commands and provide event notification functionality on the 

backplane to allow for network activity monitoring. The network 

manager receives statistics and error information at the end of 

each schedule epoch, reported by the initiators, and informs the 

host PC so that it can be read, parsed and displayed to the user. 

Finally, the host PC runs a suite of software programs to 

configure, control and monitor the other devices in the 

demonstration system. 

This paper provides an overview of the SpaceWire-D protocol 

and describes the design and features of the SpaceWire-D 

demonstration system. 

Index Terms— SpaceWire, SpaceWire-D, Deterministic 

Networks, Demonstration System 

I. INTRODUCTION 

SpaceWire is a data-handling network used on-board 

spacecraft to provide communication between scientific 

instruments, mass-memory storage devices, on-board 

computers, downlink telemetry and other subsystems [1]. 

SpaceWire enabled devices are connected by full-duplex data 

links, providing bi-directional data-flow at variable transmission 

rates of between 2 Mbit/s and 200 Mbit/s. The simplest 

SpaceWire network can consist of two nodes with a point-to-

point link between them. If more complex network topologies 

are required, routing switches can be used to direct traffic 

between nodes. 

SpaceWire networks can suffer from blocking caused by 

wormhole routing if a packet is delayed because of another 

packet currently using one of the links in the packet’s path from 

its source to its destination. The packet will be held within one 

or more router’s buffers until the links are freed and the packet 

can complete its journey through the network. Due to 

SpaceWire’s arbitrary length packets, this may cause 

unpredictable packet propagation times which means that a 

regular SpaceWire network is not suitable for real-time 

applications such as command and control traffic because these 

delays could cause a critical deadline to be violated. 

The aim of SpaceWire-D is to solve this problem by 

providing deterministic features in order to ensure that blocking 

does not cause deadlines to be missed, as well as allowing 

deterministic and non-deterministic traffic to share the same 

network. If these goals can be achieved, then cable mass will be 

reduced as the spacecraft now only requires one network to 

handle both payload data and control traffic which in turn will 

reduce complexity and cost. 

II. SPACEWIRE-D 

SpaceWire-D is a deterministic extension to SpaceWire 

designed by the Space Technology Centre at the University of 

Dundee for ESA [2]. 

SpaceWire-D operates by controlling which parts of the 

network are allowed to operate at specific times. Network time 

is divided into isochronous time-slots which are controlled by 

the distribution of consecutive SpaceWire time-codes. The 

network is divided into segments called virtual buses where all 

traffic, encapsulated within Remote Memory Access Protocol 

(RMAP) [3] transactions, is controlled by a single initiator. Each 

initiator has a schedule which describes which time-slots are 

allocated to its virtual buses. If some rules are adhered to when 

creating the schedules, the possibility of blocking can be 

removed and the deterministic requirements of a command and 

control network can be satisfied. 
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A. Time-Slots 

A SpaceWire-D time-slot is a period of time that begins 

when an initiator receives a time-code and ends when the 

initiator receives the next time-code. SpaceWire time-codes 

contain a 6-bit time-value so there are 64 time-slots. This is 

illustrated in Figure 1. 

 

 

Figure 1: Time-Slots 

In Figure 1, there is a timeline going left to right on the 

horizontal axis showing when time-codes are received by an 

initiator. At the start of the illustration, time-slot 63 is currently 

active. When time-code 0 is received by the initiator, this 

terminates time-slot 63 and signals the beginning of time-slot 

0. The same process is repeated for another two time-codes. 

The generation of time-codes is synchronised by using a 

single time-code master responsible for sending out time-codes 

at fixed-length intervals, typically at a rate of 1-1024 Hz, 

allowing for between 1 and 16 schedule epochs per second. 

Each initiator listens for time-codes being received by, for 

example, installing an interrupt service routine (ISR) that is 

called whenever a time-code interrupt is raised, or polling a 

time-code status flag if interrupts are discouraged. The initiator 

can then inform its SpaceWire-D layer that a new time-slot 

should be executed, which will in turn execute any scheduled 

transactions for the virtual bus allocated to the time-slot. 

B. Virtual Buses 

Virtual buses are segments of the overall network that have 

a specific structure. They consist of a single RMAP initiator, 

one or more RMAP targets and the SpaceWire links that make 

up the paths between the initiator and the targets. For example, 

take the network architecture illustrated in Figure 2. 
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Figure 2: Overall Network Architecture 

In Figure 2, there is a network containing two initiators, six 

targets, three routers and some links to connect the different 

nodes and routers. Two possible virtual bus configurations are 

shown in Figure 3. 
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Figure 3: Example Virtual Buses 

As shown in Figure 3, there are two virtual buses, each 

consisting of one initiator, three targets and the links between 

the nodes. In this example, the two virtual buses have no shared 

links so they can be thought of as independent i.e. they can 

operate at the same time without RMAP transactions on one 

virtual bus interfering with transactions on the other. 

Virtual buses have four different functions: an initiator 

opens a bus, defining its configuration and allocating its time-

slots; loads it with transactions, transaction groups or packet 

transfer requests; executes it during an allocated time-slot; and 

closes it when it’s no longer required. There are four different 

types of virtual bus, each with their own implementations of the 

load and execute functions which provide features related to 

different classes of traffic which exist on a data-handling or 

command and control network. 

1) Static Bus 

The Static Bus is the simplest type of virtual bus. It is 

allocated a single time-slot in which it executes a repeating or 

single-shot transaction group. 

2) Dynamic Bus 

The Dynamic Bus can be allocated multiple time-slots and 

loaded with transaction groups. When it is loaded with a 

transaction group, the group is executed within the next 

allocated time-slot that occurs. 

3) Asynchronous Bus 

The Asynchronous Bus can be allocated multiple time-slots 

and loaded with prioritised transactions. These transactions are 

held in a queue and in the time-slot preceding one of the 

allocated time-slots, a subset of transactions is pulled from the 

head of the queue until no more will fit in the time-slot or the 

queue is empty. This transaction group is then executed in the 

allocated time-slot. 

4) Packet Bus 

The Packet Bus can be allocated multiple time-slots and 

loaded with requests to transfer a packet between the initiator 

and a target. The packet transfer operation takes place in three 

stages: firstly, the initiator checks the status of a packet channel 

within the target to make sure the target is ready to receive or 

send a packet; secondly, the packet is transferred in one or more 

segments via RMAP read or write transactions depending on if 
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the initiator is receiving or sending a packet; lastly, the initiator 

executes an EOP transaction with the target to inform it that the 

packet has been transferred and that the packet channel may be 

used to transfer another packet. 

III. DEMONSTRATION SYSTEM 

The SpaceWire-D demonstration system consists of two 

LEON2-FT based PXI processor boards, acting as the initiators 

and controlling the execution of all RMAP transactions; three 

STAR-Dundee PXI RMAP interface boards [4], each containing 

four individual RMAP targets with separate memory regions, 

resulting in a total of 12 RMAP targets; one STAR-Dundee PXI 

RMAP interface board acting as the network manager, used to 

receive and store statistics and error information reported by the 

initiators; two STAR-Dundee PXI 8-port SpaceWire routers, 

providing the network connecting the devices; and one PXI 

system controller, running Windows 7, acting as the host PC and 

running a suite of software used to configure, control and 

monitor the other devices on the network. A photograph of the 

SpaceWire-D demonstration system is shown in Figure 4. 

 

 

Figure 4: SpaceWire-D Demonstration System 

In Figure 4, the PXI rack contains the following boards, 

from left to right: initiator 0, initiator 1, router 0, router 1, the 

network manager, target interface 0, target interface 1 and target 

interface 2. To the left of initiator 0, partially in shot, is the host 

PC. 

There are 11 SpaceWire 0.5m cables providing the network 

between the initiators, targets, routers and network manager. 

The network architecture and logical addressing has been 

designed so that both initiators can communicate with targets 

on the same target interface board without sharing links. This 

allows, for example, Initiator 0 to communicate with two 

targets in Target Interface 0 and Initiator 1 to communicate with 

the other two targets within the same time-slot, without 

violating the rules of SpaceWire-D. A network architecture 

diagram for the SpaceWire-D demonstration system is shown 

in Figure 5. 

 

 

Figure 5: Network Architecture 

In Figure 5, the network architecture diagram shows that 

initiator 0 is connected to router 0 and initiator 1 is connected 

to router 1. If initiator 0 wants to send an RMAP command to a 

target, the command is routed from router 0 to SpaceWire port 

1 of the relevant target interface board and if initiator 1 wants 

to do the same, the command is routed from router 1 to 

SpaceWire port 2 of the target interface board. Commands sent 

to the network manager from the initiators are routed in a 

similar manner. 

Each of the target interface boards contains four individual 

RMAP targets with their own logical address and region of 

memory. Targets 0-3, 4-7 and 8-11 are contained within 

interface 0, interface 1 and interface 2, respectively. The 

network manager uses two of its targets; the first is allocated to 

receive initiator 0’s statistics and error reports and the second is 

allocated to receive reports from initiator 1. 

The SpaceWire-D demonstration system uses logical 

addressing throughout the network to route packets between 

nodes. The logical addresses and the available memory regions 

of each device in the network are listed in Table 1. 

Table 1: Logical Addresses and Memory Regions 

Device LA Memory (Start) Memory (End) 

Initiator 0 (I) 0x30 N/A N/A 

Initiator 0 (T) 0x90 0x60000000 0x61000000 

Initiator 1 (I) 0x31 N/A N/A 

Initiator 1 (T) 0x91 0x60000000 0x61000000 

Target 0 0x40 0x00000000 0x10000000 

Target 1 0x41 0x00000000 0x10000000 

Target 2 0x42 0x00000000 0x10000000 

Target 3 0x43 0x00000000 0x10000000 

Target 4 0x50 0x00000000 0x10000000 

Target 5 0x51 0x00000000 0x10000000 

Target 6 0x52 0x00000000 0x10000000 

Target 7 0x53 0x00000000 0x10000000 

Target 8 0x60 0x00000000 0x10000000 

Target 9 0x61 0x00000000 0x10000000 
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Target 10 0x62 0x00000000 0x10000000 

Target 11 0x63 0x00000000 0x10000000 

 

As listed in Table 1, each node has a logical address and, if 

the node is a target, a memory region. Each initiator device also 

contains an RMAP target with a 16 Mbyte region of memory 

starting at address 0x60000000 and each of the targets within 

the target interface boards has a 256 Mbyte region of memory 

starting at address 0x00000000. The target within the initiator 

devices is used to contain the transaction read and write buffers 

and to allow the host PC to write data to them before executing 

a test. 

Figure 5 shows that the target interface boards, the network 

manager and the host PC are connected to the backplane PXI 

bus. The backplane is used by the host PC to read and write to 

target memory and receive RMAP command notifications from 

the targets, as described in Section E. 

The interactions between the different devices are 

illustrated in Figure 6. 

 

 

Figure 6: Device Interactions 

As shown in Figure 6, each device interacts with one or 

more other devices in the SpaceWire-D demonstration system. 

The initiators send RMAP commands to the targets and the 

targets send RMAP replies back. The initiators report statistics 

and error information to the network manager, which is then 

read by the host PC. The host PC configures the initiators using 

RMAP commands and uploads automated test scripts to control 

their operation. The targets are configured by the host PC using 

a combination of RMAP commands and reading/writing to 

memory on the backplane. 

A. Initiators 

The initiators are LEON2-FT based PXI processor boards 

with extensive SpaceWire support. The boards have a 

SpaceWire router with eight external ports and three internal 

ports, each connected to independent SpaceWire protocol 

engines containing three DMA controllers, an RMAP initiator 

and an RMAP target. 

In addition to the embedded SpaceWire-D software layer 

running on the initiators, which is built on top of the RTEMS 

real-time operating system [5], there is a demonstrator 

application. The application is responsible for interpreting 

scripted commands which are uploaded to the initiators by the 

Host PC in order to automate test scenarios. 

The automated test scripting system allows the user to 

describe transactions, transaction groups, packet bus operations 

and time-triggered commands as a text file which is parsed, 

compiled and uploaded to the initiators by the host PC software. 

For example, an automated test script could be created that 

describes 10 transactions encapsulated within 2 transaction 

groups and a packet bus operation to send a packet from an 

initiator to a target. The script could then list commands to open 

two static buses and a packet bus at the start of the test and load 

them with the transaction groups and packet bus operation at 

specific times during the execution of the schedule. The 

automated test scripting system was used to implement all test 

scenarios during the SpaceWire-D verification activity. 

B. Targets 

The targets are STAR-Dundee PXI RMAP interface boards 

which contain a SpaceWire router with four external ports and 

four internal ports, each connected to an individual RMAP 

target. The boards have 1 Gbyte of DDR3 memory which can be 

divided between the four targets as configured by the user. In the 

case of the SpaceWire-D demonstration system, the targets are 

configured so that they each have access to 256 Mbytes of 

memory. 

The target boards have the ability to notify a host application 

whenever certain events occur such as the execution of an 

RMAP command or a request for command authorisation. The 

notifications are sent as data structures contained within 

SpaceWire packets to STAR-System channel 1 on the backplane 

and can be received using the STAR-System API [6]. 

Each RMAP comment notification contains the command 

header parameters as well as the value of the current time-code 

value in the target board’s router so that the time-slot in which 

the command was executed can be identified. In the SpaceWire-

D demonstration system, this information is extracted from the 

SpaceWire packets by the host PC’s software so that it can be 

used to record and display the activity between the initiators and 

targets as described in Section E. 

C. Routers 

The routers are STAR-Dundee PXI routers [4] containing 

eight external ports and they provide the network for the 

SpaceWire-D demonstration system, allowing each initiator to 

be routed to each interface board without sharing any links. 

D. Network Manager 

The network manager is another STAR-Dundee PXI RMAP 

interface board. It is controlled by the host PC software to act as 

the time-code master for the SpaceWire-D network and it also 

receives statistics and error information reported by the initiators 

via RMAP write commands to two of the targets within the 

board. 

Each initiator is assigned a separate RMAP target and 

memory address to write its statistics and error information into 

at the end of each schedule epoch. Initiator 0 is assigned address 

0x00000000 within target 0 and initiator 1 is assigned the same 

address within target 1. 

The host PC’s Network Manager software is used to listen 

for RMAP event notifications coming from the board, which it 
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parses and uses to read the statistics and error information from 

address 0x00000000 in the corresponding target. The 

information is then read from the target by the software and 

displayed in the Network Manager program running on the host 

PC. The statistics include the number of completed transactions, 

incomplete transactions, RMAP errors and early, late and 

missing time-code errors. Further error information is provided 

in the error list which describes the time-slot, the virtual bus 

related to the error and the class and type of error. 

Errors are detected at three stages: firstly, if an RMAP 

command has incorrect header parameters or an error occurs on 

the initiator where the command cannot be sent, it is reported as 

an encoder error; secondly, if an RMAP reply is returned to the 

initiator with an error or if an error occurs on the initiator where 

the reply cannot be processed, it is reported as a decoder error; 

lastly, if an RMAP transaction is outstanding at the end of its 

allocated time-slot, it is cancelled and reported as an incomplete 

transaction error. The initiators are responsible for detecting and 

reporting the errors and the network manager is responsible for 

receiving the error list and informing the host PC, but no further 

action is taken. It is the responsibility of a higher-level protocol 

or the application to handle the errors.  

E. Host PC 

The host PC is an ADLINK PXI-3950 system controller with 

an Intel Core2 Duo T7500 2.2 GHz processor and 4 GBytes of 

667 MHz DDR2 running Windows 7 32-bit. It is responsible for 

initialising the other devices within the SpaceWire-D 

demonstration system and running a suite of Qt4.8 based C++ 

applications used to configure and control the initiators, targets 

and network manager; and display network activity reported to 

the network manager via RMAP commands by the initiators, 

and across the backplane by the targets. 

1) Initiator Configuration 

The Initiator Configuration program is used to configure and 

control each of the LEON2-FT processor boards acting as the 

initiators. It has the ability to read and write the network and 

target parameters, used by the initiators to calculate RMAP 

execution times; create different types of virtual buses and 

assign them to the initiator’s schedule; parse, compile and write 

automated test scripts to the initiators; and send commands to 

the initiators to enable and disable the schedule and other 

features like local-timer synchronisation. 

2) Target Configuration 

The Target Configuration program is used to configure and 

control each of the RMAP targets in the three PXI interface 

boards. It has the ability to read and write the RMAP command 

authorisation parameters; set the packet channel buffer locations 

and lengths; write data to, and read data from, the target 

memory; and enable the target interface board as a babbling 

node. A screenshot of the Target Configuration program is 

shown in Figure 7. 

 

 

Figure 7: Target Configuration Program 

In Figure 7, the top section allows the user to select which 

target they would like to configure. In the middle section, the 

authorisation parameters can be set to define the valid key 

range, valid target logical address range, accessible memory 

region and permitted commands. In the bottom section is a tab 

layout with three separate tabs. The first tab contains a menu to 

select a packet channel and fields to set the location and length 

of the receive and transmit buffers used by the packet bus to 

transfer packets between an initiator and the selected packet 

channel. The second and third tabs allow the user to write data 

to, and read data from, the target’s memory. Finally, in the 

second main tab, the user can enable target interface boards as 

babbling nodes, which send out randomised RMAP commands 

on the network. 

3) Network Manager 

The Network Manager program is used to configure the 

time-code master and receive and display statistics and error 

information reported to the network manager by the initiators. It 

has the ability to set the time-code rate and enable or disable the 

time-code master; display the statistics reported by the initiator 

in a table, divided by type and time-slot; and display the error 

information as a list. A screenshot of the error list is shown in 

Figure 8. 

 

 

Figure 8: Network Manager Error List 

In Figure 8, the screenshot shows a list of errors reported by 

the initiator during a test in which a STAR-Dundee Link 

Analyser Mk2 is periodically injecting disconnect errors in the 

link between router 0 and target interface 0. The columns are: 
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virtual bus ID, target index, virtual bus type, transaction ID, 

error category and error type. In this example, two types of 

errors are detected and reported: firstly, if the disconnect causes 

the command packet to be truncated, it will not have a 

corresponding reply so at the end of the allocated time-slot, the 

transaction is cancelled and reported as an incomplete 

transaction; and secondly, if the disconnect causes the reply 

packet to be truncated in its data section, it is reported as a data 

EEP decoder error. 

When the Network Manager program is initialised, it starts 

to listen for RMAP event notifications from the Network 

Manager RMAP interface board by receiving SpaceWire 

packets on the backplane through STAR-System channel 1. 

When a notification is received, the software checks that the 

parameters of the RMAP command match those expected by an 

initiator statistics and error report. If so, the report is read from 

the target memory and the statistics table for the relevant 

initiator is updated and any errors detected during the last 

schedule epoch are added to the initiator’s error list. 

4) Target Monitor 

The Target Monitor program is used to display the network 

activity visually and statistically through a series of views. It has 

the ability to display activity in real-time, by updating a grid that 

shows if any of the targets were read from or written to during 

each time-slot. It shows the number of completed transactions, 

bytes read from and written to the target in total and per second, 

and it also breaks this information up for each time-slot. Finally, 

it shows a list of detailed information about all RMAP 

transactions taking place across all targets. There are three views 

in the Target Monitor program: the schedule view, the target 

statistics view and the command list view. 

A screenshot of the Target Monitor schedule view, which 

shows network activity as a grid, is shown in Figure 9. 

 

 

Figure 9: Target Monitor Schedule View 

In Figure 9, the screenshot shows the Schedule View during 

the execution of a test where each initiator is executing two 

static buses and one dynamic, asynchronous and packet bus. 

The virtual buses in initiator 0 are executing transactions with 

targets 0x40-0x43 and 0x50-0x51, taking up the left side of the 

diagram. Initiator 1’s virtual buses are executing transactions 

with targets 0x52-0x53 and 0x60-0x63, shown on the right side 

of the diagram. There are two static buses executed by each 

initiator, shown as dark blue cells, and allocated to time-slots 0 

and 2. The dynamic bus executed by each initiator, shown as 

green cells, are allocated time-slots 8, 10 and 12. The 

asynchronous bus executed by each initiator, shown as magenta 

cells, is allocated time-slot 16. Finally, the packet bus executed 

by each initiator, shown as cyan cells, is allocated time-slots 32, 

34 and 36. 

The target statistics view lists the number of errors, 

commands and bytes read/written in total, per second and 

divided by time-slot. Figure 10 shows an image of the Target 

Statistics View section for target 0x40. 

 

 

Figure 10: Target Monitor Target Statistics View 

In Figure 10, the screenshot shows the Target Statistics 

View for target 0x40 during the execution of a schedule 

containing network activity in time-slots 0 and 8. The total and 

per second statistics are shown in the top section and the per 

time-slot statistics are shown in the scrollable table. 

The final section of the Target Monitor program is the 

Command List View, which displays a detailed description of 

every RMAP command received on all targets. An image of the 

Command List View is shown in Figure 11. 

 

 

Figure 11: Target Monitor Command List View 

In Figure 11, the screenshot shows the start of the Command 

List View during the execution of a schedule containing at least 

three static buses. The columns are: virtual bus ID, target 

logical address, target index, initiator logical address, 

transaction ID, RMAP key, command type, memory address, 

data length and status. In this case, there are nine transactions 

executed by static buses 0, 8 and 16. The first three, to targets 
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0x40, 0x50 and 0x60, and the last three, to targets 0x41, 0x51 

and 0x61 are executed by initiator 0x30. The middle three, to 

targets 0x40, 0x50 and 0x60, are executed by static bus 8 in 

initiator 0x31. 

IV. CONCLUSIONS 

SpaceWire-D is an extension to the SpaceWire protocol that 

provides deterministic capabilities over existing equipment. It 

does this by using time-division multiplexing and a virtual bus 

system to schedule traffic on the network so that no blocking can 

occur, resulting in reliable RMAP transaction execution times. 

The SpaceWire-D demonstration system was designed to 

verify the SpaceWire-D standard and demonstrate its 

capabilities. It consists of a PXI rack containing two initiators, 

twelve targets, a network manager, a host PC and a routed 

SpaceWire network to connect the devices together. An 

embedded SpaceWire-D layer and automated test scripting 

system was designed, built on top of the RTEMS real-time 

operating system; and a software suite, running on the host PC, 

was designed to configure, control and monitor the other devices 

on the network. 
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Abstract—The paper presents analysis and comparison of Quality 

of Service (QoS) mechanisms in SpaceFibre draft H4 and in RapidIO 

rev 4.0. SpaceFibre and RapidIO standards are currently used in 

aerospace instrumentation field. SpaceFibre standard is developed by 

ESA, JAXA, NASA, ROSCOSMOS agencies for aerospace industry in 

accordance to different requirements and limitations such as a high 

speed data transmission, a low data transmission time, a guaranteed 

packet delivery, a guaranteed throughput, a possibility to establish 

real-time systems in conjunction with compact VLSI design and low 

energy consumption. RapidIO standard is developed for a high 

performance computing systems with a globally shared distributed 

memory (GSM) model. At the present time NASA applies this standard 

as a main standard for aerospace field. 

These standards provide data transmission with different QoS. In 

these standards there is a feature of guaranteed packet delivery, they 

support several priority levels. Also they provide a mechanism of 

virtual channels allowing to distribute throughput between different 

data streams. In this paper authors have presented the information 

about comparison QoS mechanisms of SpaceFibre draft H4 and 

RapidIO rev 4.0. Moreover similarities and differences of supported 

technologies are demonstrated. Also author have evaluated the 

reachable characteristics of data transmission and overheads for each 

standard. Advantages and effective range of application of SpaceFibre 

QoS are shown.  

Index Terms—SpaceWire, SpaceFibre, RapidIO, Quality of 

Service. 

I. INTRODUCTION 

In this paper we compare QoS mechanisms of SpaceFibre 

[1] and RapidIO [2] standards. We provide information about 

overheads for payload transmission using these standards. We 

analyse payload with different size. Also main features of QoS 

mechanisms are presented in this paper. Authors consider their 

advantages and disadvantages. 

The rest of this paper is organized as follows: the second 

section presents the main features of SpaceFibre and RapidIO 

standards. In the third section, we show how overheads are 

changed according to different operation modes of the 

considered standards. The fourth section delivers some 

conclusion remarks. 

II. FEATURES OF SPACEFIBRE AND RAPIDIO STANDARDS 

In this paper, we consider of SpaceFibre and RapidIO 

standards. They are used in modern onboard data transmission 

systems. 

At first, we correlate SpaceFibre and RapidIO standards to 

the Open Systems Interconnection model (OSI model). OSI 

model is a conceptual model that describes and standardizes the 

communication functions of a telecommunication or computing 

system without regard to their underlying internal structure and 

technology. OSI model introduces 7 layers: application, 

presentation, session, transport, network, data and physical. List 

of special functions is defined for each layer. Five layers are 

presented in SpaceFibre standard specification. These are 

Network, Data Link, Multi-Lane, Lane and Physical layers. 

Three global layers are presented in RapidIO standard 

specification. These are Logical, Transport and Physical layers. 

Each global layer consists of several specifications. For 

example, Input/Output Logical Specification, Message Passing 

Logical Specification, Globally Shared Memory Logical 

Specification are part of Logical layer. Correspondence between 

OSI model layers, SpaceFibre and RapidIO layers is presented 

on Fig.1. 

Five SpaceFibre layers correspond to the three lowest OSI 

layers. Transport layer is not specified in SpaceFibre standard. 

However, it is possible to use transport layer packets of different 

transport protocol. For example, Remote memory access 

protocol (RMAP) [3] can be used. Three RapidIO global layers 

correspond to the four lowest OSI layers. Transport layer is 

specified in RapidIO standard. In this paper, we consider QoS 

mechanisms which are used in physical, data and network 

layers. 

SpaceFibre QoS mechanisms are supported on Data Link 

layer. RapidIO QoS mechanisms are supported on Physical 

layer. 
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Fig. 1.  Correspondence between OSI model layers, SpaceFibre and RapidIO 
layers 

A. SpaceFibre QoS mechanisms 

SpaceFibre provides a coherent quality of service 

mechanism which is able to support bandwidth reservation, 

scheduling, priority based qualities of service and guaranteed 

data delivery. 

All data packets are transmitted through network using 

virtual channels. Maximum 32 virtual channels are supported. In 

particular network device implementation quantity of virtual 

channels can be less than 32. It is recommended to use virtual 

channel 0 for configuration data transmission. It must be 

implemented in each network device. Other virtual channels 

shall have a unique number in the range from 1 to 31. Each 

virtual channel has a priority level, reserved bandwidth and a list 

of time-slots during which this virtual channel can be scheduled 

to send data. 

SpaceFibre packets can be of any size from 1 byte to infinity. 

The packets are split into segments before they are transferred 

over a data link. Each segment is sent in a data frame. Data frame 

consists of Start of Data Frame, data payload and End of Data 

Frame. Start of Data Frame and End of Data Frame have size of 

4 bytes. Maximum size of data payload is 256 bytes. Data 

payload of frame can consist of one or several packets. Also data 

payload can possibly include end of one packet and start of 

another. Using frame mechanism with fixed maximum data 

payload size helps to process packets with unlimited length and 

at the same time provide different QoS. 

Credit mechanism is used for managing the flow of 

information over a SpaceFibre link using one or more virtual 

channels with independent flow control. One flow control token 

(FCT) corresponds to 256 bytes. Each input virtual channel 

buffer contains the counter of FCT according to free buffer 

space. Each output virtual channel buffer shall keep track of the 

number of data words written into it and the number read out 

using an FCT credit counter, which indicates how much more 

data it is allowed to send. At the beginning, input virtual channel 

buffer sends FCTs which match its buffer space. When output 

virtual channel buffer receives FCT, it increments its FCT credit 

counter. Output virtual channel buffer can send data within 

current FCT credit counter. When a data segment is sent by a 

particular virtual channel to the medium access controller, the 

number of data words sent shall be subtracted from the FCT 

credit counter. An input virtual channel buffer shall request an 

FCT to be sent when the network layer reads data words from 

the input virtual channel buffer. Usage of this mechanism helps 

to avoid data words loss and retransmission of data words 

between output and input virtual channel buffers due to the lack 

of free space in input virtual channel buffer. 

Priority mechanism is associated with virtual channels, not 

with packets. A SpaceFibre port shall support N priority levels 

numbered 0 to N-1, where 0 is the highest priority level. There 

shall be a minimum of four priority levels: 0 to 3, where priority 

level 0 has the highest precedence and 3 has the lowest 

precedence. Each virtual channel shall be able to be assigned any 

of the priority levels. Also it shall be possible to set more than 

one virtual channel to the same priority level. 

Bandwidth reservation mechanism determines the 

precedence of a virtual channel based on the link bandwidth 

reserved for that virtual channel and its recent link utilization. 

Each virtual channel has the link bandwidth reserved for it. 

Virtual channel can utilize a link according to this value. The 

standard contains a formula which allows to determine which 

one of several ready virtual channels is permitted to send. 

Priority level and the link bandwidth reserved for the virtual 

channel are taken into account. 

Also SpaceFibre supports scheduled quality of service. 

Scheduled quality of service provides a means of ensuring fully 

deterministic allocation of SpaceFibre network resources. 

Schedule mechanism is based on Time Division Multiple 

Access (TDMA) principles. Time is separated into a series of 

time-slots during which a virtual channel can be scheduled to 

send data. Duration of each time-slot is the same. When a time-

slot arrives in which a virtual channel is scheduled, it can send 

data based on its precedence. During all the other time-slots, 

when the virtual channel is not scheduled to send data, it is not 

permitted to send any data even when no other virtual channel 

has data to send. It shall be possible for several virtual channels 

to be scheduled to send data in the same time-slot. 

A virtual channel shall compete with other virtual channels 

for sending segments over the link, based on the current 

precedence of the virtual channel and its schedule. At first, 

among all virtual channels ready to send a data segment the 

medium access controller chooses virtual channels that have 

permission to send data at current time-slot. Then the precedence 

of a virtual channel shall be determined by its quality of service 

parameters such as priority level and the link bandwidth 

reserved for the virtual channel. 

SpaceFibre supports error detection and retransmission to 

protect packets against loss or corruption due to transmission 
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errors. This mechanism provides guaranteed data transmission. 

All SpaceFibre data types are subject to retransmission. It is not 

possible to disable the retry mode. If an error in a frame is 

detected, then all frames in all virtual channels of port are 

retransmitted. 

B. RapidIO QoS mechanisms 

RapidIO provides the following quality of service 

mechanisms: priority, bandwidth reservation and guaranteed 

data delivery. 

Data payload is transmitted in packets. RapidIO supports 

virtual channel technology. The protocol supports up to nine 

virtual channels (VC0-VC8). Virtual Channel 0 (VC0) is always 

active. It provides backward compatibility with previous 

versions of RapidIO specifications. VC0 shall be supported by 

all LP-Serial ports. VCs 1-8 are optional, and if implemented, 

may be disabled for backward compatibility. The number of 

optional virtual channels for VCs 1-8 may be 0, 1 (VC1), 2 

(VC1, VC5), 4 (VC1, VC3, VC5, VC7) and 8 (VC1-VC8). 

The LP-Serial protocol defines two methods or modes of 

flow control. These are named receiver-controlled flow control 

and transmitter-controlled flow control. Every RapidIO LP-

Serial port shall support receiver-controlled flow control. LP-

Serial ports may optionally support transmitter-controlled flow 

control.  

In the receiver-controlled flow control the receiving port 

provides no information to its link partner about the amount of 

buffer space it has available for packet reception. If there is 

enough buffer space available, the port accepts the packet and 

transmits a packet-accepted control symbol to its link partner 

that contains the ackID of the accepted packet in its 

packet_ackID field. The port optionally acknowledges multiple 

packets with a single packet-accepted control symbol. 

Transmission of a packet-accepted control symbol informs the 

port’s link partner that the packet (or packets) has been received 

without detected errors and that it has been accepted by the port. 

On receiving the packet-accepted control symbol, the link 

partner discards its copy of the accepted packet (or packets) 

freeing buffer space in the partner, [2]. In this case transmitter 

will repeat packet transmission when buffers space is not 

enough. This situation is not possible in SpaceFibre. 

In transmitter-controlled flow control, the receiving port 

provides information to its link partner about the amount of 

buffer space it has available for packet reception. The value of 

the amount of buffer space is the number of maximum length 

packet buffers currently available for packet reception up to the 

limit that can be reported in the field, [2]. If transmitter get status 

information from receiver during packet transmission, then 

transmitter get not accurate information about free receiver 

buffer space. Packets transmitted in excess of the 

free_buffer_count are transmitted on a speculative basis and are 

subject to retry by the transmitter. That results in a number of 

retries and discarded packets can reduce the effective bandwidth 

of the link. Also such flow control approach can lead to 

ineffective buffer space utilization for series of short packets. In 

comparison with RapidIO, SpaceFibre’s credit counter is 

measured in bytes. It helps to control available receiver buffer 

space precisely and avoid data retransmission due to the lack of 

buffer space in a link receiver. 

RapidIO supports packet transmission based on priority. 

Only packets within VC0 have ordering rules based on priority, 

all other virtual channels do not support them. Maximum 

number of priorities is 8. Packet priority is formed on LP-Serial 

Physical Layer Specification. It is based on the flow identifier 

set on Logical Layer. There are tables for mapping flow 

identifier (flowID) of the transaction into the priority field (and 

optionally the CRF bit) of the packet. Also it is interesting to 

notice, that transaction requests that require responses, and their 

corresponding responses, must use VC0 with the appropriate 

priority. 

Bandwidth reservation mechanism is partially provided in 

RapidIO. In comparison with SpaceFibre, rules for control 

bandwidth reservation in RapidIO are not specified by the 

specification. These rules are vendor dependent. According to 

Part 6: LP-Serial Physical Layer Specification 3.1 section 6.11 

“Transaction and Packet Delivery Ordering Rules” the whole 

link bandwidth is uniformly divided into ‘N’ portions and each 

portion is 1/N of the whole link bandwidth. Each VC is 

configured to have a guaranteed bandwidth. The method of 

bandwidth division among VCs is also vendor dependent. But 

VC0 may be treated with strict priority, getting whatever 

bandwidth is required when it has traffic to transport. In this 

condition, the remaining VCs will divide up whatever portion of 

bandwidth remains, [2]. 

As well as SpaceFibre, RapidIO supports error detection and 

retransmission to protect packets against loss or corruption due 

to transmission errors. In comparison with SpaceFibre, RapidIO 

provides unreliable delivery of packets. This means that packets 

are not retransmitted and virtual channel operates in continuous 

traffic (CT) mode. VC0 should always operate in reliable traffic 

(RT) mode. Any of VC1 through VC8 that are implemented 

shall support operation in RT mode and may optionally support 

and be configured for operation in CT mode, [2]. RT virtual 

channels operate as a “RT Group”. It means that when the error 

recovery protocol is used to recover a damaged packet, the 

unacknowledged packets for all virtual channels in RT mode are 

retransmitted. 

III.  QOS ESTIMATION FOR SPACEFIBRE AND RAPIDIO 

STANDARDS 

A. Overhead estimation for data transmission 

In this section, we present overhead estimation for data 

transmission using SpaсeFibre and RapidIO standards. At first 

we determine data transmission parameters for these standards. 

RapidIO links operate at Baud Rate Class 1. Baud Rate Class 1 

is used for lanes running at 1.25 Gbaud, 2.5 Gbaud, 3.125 Gbaud 

or 5 Gbaud (1, 2, 2.5, 4 Gbps). 8b/10b encoding scheme is used 

for Baud Rate Class 1. Also 8b/10b encoding scheme is used in 

SpaceFibre. The overheads occurring due to this encoding 

scheme are not considered in this paper. Control Symbol 24 is 

used in RapidIO for Baud Rate Class 1. This means that each 

control symbol has size of 24 bit. Packet Delimiter Control 

Symbol (/PD/) or Start of Control Symbol (/SC/) are used to 

delimit a control symbol. They both have the size of 1 byte. 
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Control symbol with additional delimiter has the size of 4 bytes. 

Control symbol of SpaceFibre has the size of 4 bytes as well. 

We use the following format of packet to compare data 

transmission overheads in SpaceFibre and RapidIO standards. 

Type 6 (SWRITE transaction) is RapidIO packet (Fig. 2). Write 

command (Fig. 3) formed by RMAP transport protocol is used 

in SpaceFibre. 

We use data payloads of different size in our research. Size 

of data payload constitute 16, 32, 64, 256 bytes, 2KB, 20 KB, 

1 MB and 2 MB. We analyze two cases. In the first case, we 

estimate minimum overhead when all packet’s fields have 

minimum size and the packet does not contain optional fields. In 

the second case, we estimate maximum overhead when all 

packet’s fields have maximum size and the packet includes all 

possible optional fields. We analyze data transmission in single 

lane mode. 

 
Fig. 2.  Format of RapidIO packet 

 
Fig. 3.  Format of RMAP write command 

On the Fig. 4 and Fig. 5 the relation between overheads and 

payload is shown for short (16-64 bytes) data payloads when 

overheads have minimum and maximum possible values 

correspondingly. From these figures, it can be concluded that for 

minimum and maximum overheads the relation between 

overheads and payload for RapidIO is less than for SpaceFibre 

when operating in the mode of remote memory write. For short 

packets (16-64 bytes of data payload) and lowest possible 

overheads for RapidIO the overheads constitute from 162% to 

40% of the payload, while for SpaceFibre - from 225% to 56% 

respectively. For short packets (16 to 64 bytes of data payload) 

and maximum possible overheads for RapidIO they constitute 

from 225% to 56% of the payload, while for SpaceFibre – from 

375% to 93%. In case of bigger payload, the relation decreases 

as expected. 

 

Fig. 4.  The relation between overheads and payload when the overheads have 
minimum possible values 

 
Fig. 5.  The relation between overheads and payload when the overheads have 

maximum possible values 

On the Fig. 6 the overheads for medium (256 bytes, 2KB and 

20KB) size data payloads are shown for the cases when the 

overheads have minimum and maximum possible values 

correspondingly. In accordance to SpaceFibre standard, 

considered data payload is transmitted in one RMAP packet. 

This packet is divided into frames on Data link for further data 

transmission process. Size of each frame payload is 256 bytes. 

Also start of frame and end of frame are added. Size of start of 

frame and end of frame is 4 bytes accordingly. In accordance to 

RapidIO standard, considered data payload is divided into 

several packets with maximum size of payload (256 bytes). Each 

packet has its own header. From Fig. 6 it can be concluded that 

for minimum and maximum overheads the overheads for 

SpaceFibre is less than for RapidIO in case when data payload 

is 20 KB. On the Fig. 7 and Fig. 8 the relation between overheads 

and payload is shown for medium (256 bytes, 2KB and 20KB) 

size data payloads when the overheads have minimum and 

maximum possible values correspondingly. 
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Fig. 6.  Overheads for medium size data payload 

 
Fig. 7.  The relation between overheads and payload when the overheads have 

minimum possible values 

 
Fig. 8.  The relation between overheads and payload when the overheads have 

maximum possible values 

On the Fig. 9 the overheads for large (1MB, 2MB) size data 

payloads are shown for the cases when the overheads have 

minimum and maximum possible values correspondingly. In 

accordance to SpaceFibre standard, considered data payload is 

transmitted in one RMAP packet. This packet is divided into 

frames on Data link for further data transmission process with 

additional overheads as in the previous case. In accordance to 

RapidIO standard, considered data payload is divided into 

several packets as in the previous case. From Fig. 9 it can be 

concluded that for minimum and maximum overheads the 

overheads for SpaceFibre is less than for RapidIO in case when 

data payload is large. On the Fig. 10 and Fig. 11 the relation 

between overheads and payload is shown for large (1 MB, 2MB) 

size data payloads when the overheads have minimum and 

maximum possible values correspondingly. 

 

Fig. 9.  Overheads for large data payload 

 
Fig. 10.  The relation between overheads and payload when the overheads 

have minimum possible values 

 

Fig. 11.  The relation between overheads and payload when the overheads 

have maximum possible values 

From the previous figures it can be concluded that for large 

size data payloads SpaсeFibre standard is more efficient than 

RapidIO from the overheads point of view. However, for short 

size data payloads RapidIO is more efficient. 

Besides RMAP packets, SpaceFibre supports data 

transmission in SpaceWire packets. Format of SpaceWire 

packet is presented on Fig.12. Each packet contains destination 

address, cargo/payload and end of packet. The destination 

address shall consist of a list of zero or more destination 

identifiers, [3]. The case of zero destination identifiers in the 

destination list (i.e. the destination list is empty) is intended to 

support a network which is simply a single point-to-point link 
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from source to destination. We do not consider this case. A 

destination identifier shall comprise one byte. The cargo shall 

contain one or more bytes. Maximum size of cargo is not 

specified by SpaceWire standard. Size of end of packet is 1 byte. 

Number of destination identifiers in list depends on routing 

rules. When network supports routing table it may be enough to 

have only one destination identifier. When path routing is used 

in the network, then number of destination identifiers depends 

on the length of data transmission path. 

Destination address

Cargo

End of packet

 

Fig. 12.  Format of SpaceWire packet 

When comparing RapidIO’s and SpaceFibre’s with 

SpaceWire packets we use SpaceWire packet which consists of 

destination address (1 byte), cargo/payload (from 16 bytes to 

20 KB) and end of packet (1byte). Also we take into account 

control symbols such as ACK, FCT which are used for data 

transmission process in SpaceFibre standard. 

Below we present figures where we show overheads for data 

payloads when SpaceFibre and RapidIO standards are used. 

From Fig. 13 it can be concluded that overheads for SpaceFibre 

are 1.4 times less than for RapidIO in case when data payload 

has size of 16,32,64 bytes. On the Fig. 14 the relation between 

overheads and payload is shown for short (16-64 bytes) size data 

payloads when overheads have minimum possible values for 

RapidIO and SpaceWire packet is transmitted by SpaceFibre. 

From this figure, it can be concluded that the relation between 

overheads and payload for RapidIO and SpaceFibre is the same 

for payload of 64 bytes. 

 
Fig. 13.  Overheads for short data payload 

 
Fig. 14.  The relation between overheads and payload when the overheads 

have minimum possible values for short data payload  

From Fig. 15 it can be concluded that overheads for 

SpaceFibre and RapidIO are the same for data payload of 256 

and 2048 byte sizes. But overheads for RapidIO are 1.25 times 

bigger than overheads for SpaceFibre in case when data payload 

has size of 20 KB. 

On the Fig. 16 the relation between overheads and payload 

is shown for medium (256 bytes-20 KB) size data payloads 

when overheads have minimum possible values for RapidIO and 

SpaceWire packet which is transmitted by SpaceFibre. From this 

figure, it can be concluded that the relation between overheads 

and payload for SpaceFibre is less than for RapidIO for payload 

which has size of 20 KB and more. 

 

Fig. 15.  Overheads for medium data payload 
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Fig. 16.  The relation between overheads and payload when the overheads 
have minimum possible values for medium data payload 

B. Evaluation of the possibility of several data flows 

transmission in one virtual channel 

One terminal node can send several data flows in one virtual 

channel according to RapidIO standard due to the limited 

number of virtual channels. For example, different applications 

use one virtual channel (VC0) when it is required to get response 

transactions on logical layer of RapidIO. Number of virtual 

channels in SpaceFibre is more than in RapidIO. However, 

number of virtual channels in SpaceFibre systems is limited due 

to hardware costs. Therefore, the situation is possible when 

several data flows transmit using the same virtual channel with 

the similar QoS characteristics. 

In accordance to SpaceFibre and RapidIO standards, the case 

is possible when different data flows being transmitted in the 

same virtual channel of different output ports, can be merged 

into one input port. Example of this situation is presented on the 

Fig.17. Maximum size of RapidIO packet is 256 bytes. It helps 

to predict the delay of packet transmission in RapidIO network. 

Maximum size of SpaceFibre packet is not limited. 

Therefore, when we send a long packet, the delay of packet 

transmission can hardly be predicted for the situation when 

several data flows are merged into one virtual channel. For 

example, “orange” data flow and “blue” data flow use virtual 

channel 3 for data transmission. These data flows are merged in 

port 3. Packet 2 waits until the whole packet 1 is transmitted. 

However, developer of SpaceFibre network can take into 

account this information and can use packets of optimal size in 

accordance to system requirements. 

Port 3Input Buffer VC 3 

Packet 1

Packet 2Input Buffer VC 3

Output Buffer VC 3

wait 

Port 1 

Port 2 

packet 2 waits until whole packet 1 
will be transmitted

 
Fig. 17.  Graphical representation of single packet waiting for transmission 

on the background of the another packet transmission in the same 
virtual channel 

IV. CONCLUSION 

TABLE I.  COMPARISON SPACEFIBRE AND RAPIDIO 

Parameter SpaceFibre RapidIO 

Maximum packet size  not limited payload 256 bytes 

Data flow mechanism Credit mechanism. 

One flow control token 

(FCT) corresponds to 
256 bytes. Input virtual 

channel buffer 

overflow is impossible. 

Supports receiver-

controlled flow control 

and transmitter-
controlled flow 

control. For the 

receiver-controlled 
flow control the 

receiving port does not 
provide information to 

its link partner about 

the amount of buffer 
space it has available 

for packet reception. 

For transmitter-
controlled flow control 

one credit corresponds 

one packet with 
maximum size. 

Input virtual channel 
buffer overflow is 

possible in both modes.  

Support priority 

quality of service 

yes yes 

Minimum number of 

priorities 

4 1 

Maximum number of 

priorities 

not specified 16 

Priorities are 

associated with 

virtual channel packets which are 

transmitted in VC0 

Support of virtual 

channel mechanism 

yes yes 

Minimum number of 

virtual channels 

1 1 

Maximum number of 

virtual channels 

32 9 

Suport bandwidth 

reservation 

yes yes 

Standard determines 

rules for control 
bandwidth reservation 

yes  no 

Support guaranteed 
data transmission 

yes  yes 

Is it possible to 
transmit data without 

guaranteed data 

transmission 

no yes, it is optional for 
VC1-VC9. VC0 

supports only 

guaranteed data 
transmission 

Support scheduled 
quality of service 

yes no 

Support CRC yes (16 bit) yes (16 bit) 

SpaceFibre supports bigger variety of QoS types than 

RapidIO. SpaceFibre is more flexible in regard to the number of 

virtual channels supported in each device, their numeration, 

opportunities of fine tuning of QoS. For a system developer this 

provides additional possibilities for network’s development and 

configuration and therefore allows to create a network which fits 

precisely to the data flows being transmitted. At the same time 

the overheads in case of short packets transmission in 

SpaceFibre can appear a little bit bigger than in RapidIO with 

standard SpaceWire transport protocols (RMAP for example). 

On the other hand, it is important to note that a high speed 
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network usually has the biggest load when transmitting data 

flows consisting of long packets. In this case the useful 

throughput of SpaceFibre appears to be bigger. 

The list of drawbacks of SpaceFibre compared to RapidIO 

includes mandatory retransmission in data link which cannot be 

disabled as well as the necessity of additional mechanism 

controlling packets length when several data flows are 

transmitted using one virtual channels (RapidIO has such 

mechanisms on Logical level). These aspects should be taken 

into account when improving SpaceFibre standard. 
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Abstract— SpaceFibre is a multi-Gbits/s, on-board network 

technology for spaceflight applications, which runs over electrical 

or fiber-optic cables. SpaceFibre supports multi-lane, thus 

allowing data to be sent over several individual physical lanes to 

enhance throughput and robustness. This is required by new 

generation payloads, such as SAR and multi-spectral imaging 

instruments. This paper describes the development of the 

multi-lane capabilities of SpaceFibre and its successful hardware 

implementation on space-qualified devices. The protocol has been 

designed to work with an arbitrary number of bidirectional or 

unidirectional lanes. In the event of a lane failing, SpaceFibre 

multi-lane mechanism supports hot redundancy and graceful 

degradation by automatically spreading traffic over the 

remaining working lanes. User data transfer is resumed in just a 

few microseconds without any data loss. These advanced 

capabilities are not provided in other high-speed link protocols 

available for space applications. 

Index Terms — SpaceFibre, multi-lane, hot redundancy, 

SpaceWire, Networking, Spacecraft Electronics. 

I. INTRODUCTION 

SpaceFibre is a new technology for use onboard spacecraft 

that provides point-to-point and networked interconnections at 

Gigabit rates with Quality of Service. SpaceFibre interoperates 

seamlessly with a SpaceWire network over virtual channels, as 

it uses the same packet definition. It provides broadcast 

capabilities and it is able to operate over a copper or fiber-optic 

communication medium. 

New generation payloads, such as SAR and multi-spectral 

imaging instruments, require the use of multiple parallel high-

speed links to fulfil the increasing bandwidth requirements [1]. 

To accommodate these needs, SpaceFibre supports multi-lane 

operation, thus allowing data to be sent over several individual 

physical lanes to enhance throughput and robustness. 

This paper describes the development of the multi-lane 

capabilities specified in the SpaceFibre Standard [2] and its 

hardware implementation on radiation hardened 

space-qualified FPGAs. 

Multi-lane is an optional capability of a SpaceFibre link 

defined in the Multi-Lane layer of the SpaceFibre protocol 

stack. As shown in Fig. 1, the Multi-Lane layer is defined 

between the Data Link layer and the Lane layer implemented 

for each available lane.  

SERDES 1SERDES 0 SERDES 2

Lane 0 Lane 1 Lane 2

Multi-Lane Layer

Data Link Layer

 

Figure 1. SpaceFibre Multi-Lane layer 

The Data Link layer provides quality of service and flow 

control for a SpaceFibre link. It frames the information to be 

sent over the link to support QoS and multiple virtual channels. 

It also provides error recovery capabilities, detecting any 

frames or control words that go missing or arrive containing 

errors and resending them. 

The Lane Layer establishes a connection across a 

SpaceFibre lane using a lane initialization state machine. This 

ensures that bit, symbol and word synchronizations are 

achieved and that the two ends of the lane are both ready to 

send and receive data with a nominal Bit Error Rate. The Lane 

Layer also encodes data and control words into 8B/10B 

symbols, sends and receives symbols over the lane and decodes 

the received symbols into data and control words. 

The Multi-lane layer coordinates the operation of multiple 

lanes as a single SpaceFibre link, providing higher data 

throughput and redundancy. Because the logic that initialize a 

lane and monitor its status is located below the multilane layer, 

each lane can be initialized and operated independently of each 

other.  

This architecture also supports the implementation of 

graceful degradation, which means that in the event of one or 

more lanes failing, traffic is spread over the remaining working 

lanes automatically. When combined with Data Link layer 

QoS, the bandwidth allocated to lower priority virtual channels 

is reduced when required to ensure that most important 

information gets through and deterministic traffic is 

maintained. Bandwidth overprovision and dynamic power 

management is also possible. These capabilities are very useful 

for space applications where strict power constrains and a high 

level of reliability is required on the harsh space environment.  
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The multi-lane requirements are expanded and consolidated 

in section 2. Section 3 describes the protocol analysis and the 

design of the SpaceFibre multi-lane capabilities. Section 4 

shows the hardware implementation. Finally, conclusions are 

made in section 5. 

II. MULTI-LANE REQUIREMENTS 

The multi-lane capabilities of SpaceFibre have been 

designed to meet the following end-user requirements: 

 Support an arbitrary number of lanes. This allows 

redundancy and graceful degradation without any 

restriction on the number of lanes. 

 Re-synchronize both ends when the number of lanes 

changes, without resetting any lane, and as fast as 

possible. This way user data can be easily buffered 

when a lane is added or removed, until the link is again 

ready. 

 Support hot redundancy. 

 Support dynamic unidirectional lanes to save power 

and mass for asymmetric user data flows.  

 Robust against lane errors and misconfiguration. 

 Keep the same protocol overhead than single lane 

configuration. 

 Number of lanes must be independent on the port 

width of the end-user interface. 

These requirements enable unique capabilities for 

SpaceFibre. Other high speed protocols have limitations in the 

redundancy mechanisms. For example, in RapidIO [3] when 

one lane fails, the link falls back to a single lane. PCI Express 

[4] allows the link to continue using more than one lane, but it 

takes time as the link needs first to be reset. Interlaken [5] 

allows an arbitrary number of lanes to operate but does not 

define a mechanism for link reconfiguration when a lane fails, 

as this is expected to be done by software.  

Fig. 2 shows a use case enabled by the above requirements. 

In this setup, unidirectional lane 6 can be enabled when one 

lane fails or higher data rate is required and bidirectional lane 2 

can be set as a unidirectional lane for power saving reasons. 

Note that at least one bidirectional lane must be working for 

the link to operate. 

 

Lane 3

Lane 4

Lane 3

Lane 4

Lane 5Lane 5

Unidirectional lane

Unidirectional lane

Unidirectional lane

Lane 6Lane 6
Inactive unidirectional lane

Lane 1

Lane 2

Lane 1

Lane 2

Bidirectional lane

Bidirectional lane

 Figure 2. SpaceFibre Multi-Lane layer use case.  

 

 

There are additional requirements related with SpaceFibre 

standardization efforts: 

 Single-lane SpaceFibre implementation must not be 

affected by new rules added by multi-lane capabilities. 

This ensures that legacy single-lane implementations 

are still compatible with future single-lane 

implementations. 

 Minimize modifications to the definition of other 

layers in the SpaceFibre standard. 

Finally, there are the requirements regarding SpaceFibre 

implementation on space qualified devices: 

 Must be feasible to implement in radiation hardened 

FPGAs, which are slower than state of the art COTS 

components. 

 Resource usage in radiation hardened FPGAs must be 

minimized.  

III. MULTI-LANE DESIGN 

The multi-lane specifications of SpaceFibre were designed 

with the following methodology: 

1. Identify and evaluate the key concepts that could 

allow the requirements to be met (e.g. define generic 

protocol sequence diagrams). 

2. Constrain these concepts to work with the more 

specific set of rules already specified in the 

SpaceFibre standard (e.g. adapt to control word 

definitions) 

3. Validate the concepts and derived new set of rules in a 

prototype using a software simulator that can easily be 

modified. If an issue is found, rework the concept 

and/or associated set of rules.  

4. Refine the simulation engine until it validates with 

high accuracy the proposed multilane specifications. 

The resulting main concepts and specifications are 

explained in the following subsections.  

A. Distribution of control and data words over sending lanes 

In this specification, a row is defined as the set of words 

sent over all sending lanes simultaneously. These words can be 

data or control words. Data words contain data from the user 

interface and control words are generated by the Data Link 

layer to support the protocol operation. 

In a single-lane SpaceFibre implementation, control words 

are processed at a rate of 62.5Mhz for a 2.5Gbps link rate, as 

there can only be one single control word for every 40 bits. If a 

row can contain multiple control words, then the processing 

rate required would increase with the number of lanes [6]. It 

would then not be possible to implement multi-lane in some 

radiation hardened devices. Therefore we must enforce that a 

row can only contain one control word. 

The simplest solution is to replicate each control word to be 

sent across all lanes in a row. This avoids to have complex 

rules that deal with mixing data and control words in the same 

row. Fig. 3 shows this solution and the use of the PAD control 

word when the size of a data frame is not a multiple of the 

number of lanes available.  
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Disabled
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Figure 3. Words forming a row across a multi-lane link 

In order to keep the same protocol overhead than single 

lane implementations, the maximum data frame size needs to 

be increased. The maximum data frame size was defined as a 

trade off between latency and protocol overhead. In a 

multi-lane solution, the maximum data frame size can be 

increased without modifying these metrics. 

Another advantage of this solution is that the data frame 

CRC can be computed lane by lane as the CRC is provided in 

the EDF control word. A different CRC value can be included 

in the EDF of each lane. This keeps intact the error detection 

capabilities of the CRC for burst errors and for the amount of 

data covered by the CRC. More important, this solution 

simplifies the computation of the CRC in slow FPGAs as the 

incoming rate of the data covered by the CRC is kept the same 

than in single-lane implementations. 

B. Lane alignment at reception 

At the receiver side, the set of words received from each 

lane need to be aligned to compensate for small differences in 

lane delays. This delays are due to different cable lengths or 

line driver delays. Therefore, data and control words can not be 

passed to the Data Link layer until the multi-lane layer has 

compensated this skew and it is processing the same original 

rows sent by the sender side. 

The lane alignment is usually done with a set of FIFOs that 

compensate the delays of each lane, using a specific control 

word, called ALIGN, that is known to be sent over all lanes 

simultaneously. To cover the case of lane errors, the ALIGN 

word needs to be sent periodically and with a minimum 

separation in between. When the alignment is no longer 

needed, the sending of ALIGNs can be disabled to avoid 

increasing the protocol overhead. 

Fig. 4 shows the set of words received with a skew between 

lanes, which is compensated in Fig. 5 using ALIGN control 

words. 

 

Lane 0 Lane 1
Lane 2

Disabled Lane 3

Word 4 ALIGN - Word 6

ALIGN Word 2 - ALIGN

Word 1 Word 0 - Word 3

Step 1

 
Figure 4. Rows not aligned at reception 

Lane 0 Lane 1
Lane 2

Disabled Lane 3

Word 7 Word 8 - Word 9

Word 4 Word 5 - Word 6

ALIGN ALIGN - ALIGN Row

 
Figure 5. Aligned rows at reception 

 

To avoid data corruption, data words in a row should be 

processed in the same order than they were placed in the row 

by the sending side. To help with this requirement, each lane 

has a lane number associated and it is enforced that words are 

processed starting with the lowest lane number. Then, this 

requirement can be fulfilled if the receiver side knows two 

parameters: 

a) The lane number of each lane  

b) The total number of lanes used by the sending side.  

This information is provided within the ALIGN word itself, 

so the information is up to date when the receiver side use 

these words for the alignment procedure. 

C. Alignment state machine 

It has been stated that data and control words can not be 

passed to the Data Link layer until the multi-lane layer has 

completed the alignment process and both sides are aware of 

the lanes used for sending and receiving. This means that this 

process has to be performed each time the number of lanes in 

active state, i.e. working lanes, changes due to a lane error or a 

lane being enabled or disabled by the user. 

The alignment state machine ensures that no data is being 

transferred to the Data Link layer when the lanes are not 

aligned and that ALIGN words are only sent when it is 

required. Three states are defined: 

a) Not Ready: lanes have not been aligned and only 

ACTIVE and ALIGN words are sent. This state is set 

when the number of lanes in active state changes or an 

alignment error is detected. 

b) Near-End Ready: lanes are aligned and the Data Link 

layer is being used to send and receive data and 

control words. However, ALIGN words are sent as 

the far-end has still not sent any data word. 

c) Both Ends Ready: data words were received 

indicating that the far-end has aligned the lanes. No 

ALIGN words are sent. Link is ready. 

The ACTIVE control word sent by the multilane layer has 

three functions: 

a) Stop the flow of words from the Data-Link layer when 

the lanes are not aligned. 

b) Indicate to the far-end that the lanes are not aligned. 

c) Indicate in the cargo of this word which lanes are in 

active state, so the other end can synchronize the active state of 

the lanes. This is especially important in unidirectional transmit 

lanes, which can not detect if the receiving side has 

disconnected the lane. In a bidirectional lane, the lane 

initialisation state machine can detect if the other side exits the 

active state. 
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Figure 6. Alignment state machine 

 

Fig. 6 shows the alignment state machine. The ALIGNED 

condition is asserted when all receiving active lanes are 

aligned, these lanes are the same active lanes indicated by the 

received ACTIVE words and they are consistent with the 

content of the ALIGN words. The MISALIGNED condition is 

asserted when the active lanes change in the near end or far end 

or there is an error related with the alignment process. 

Fig 7 shows a protocol sequence diagram describing what 

occurs when one lane fails at the far end and becomes not 

active. The near end detects this event when it receives the 

ACTIVE words. It then moves to Not Ready state and starts 

sending ACTIVE words too. When the alignment process is 

completed using ALIGN words, the state machines move to 

Near-End Ready state. Finally when data words are received 

indicating the other side is in Near-End Ready, the state 

machines move to Both Ends Ready state and the link is 

considered to be ready. 

Data&Ctrl words Data&Ctrl words

Active words

Near End Far end

Active words

Align word

Data&Ctrl words

Align word

Data&Ctrl words

Lane fails

Far end 

active lane

change
Not Ready

Both ends 

Ready
Both ends 

Ready

Near-End 

Ready

Both ends 

Ready

Not Ready

Near-End 

Ready

Both ends 

Ready

Figure 7. Link ready protocol sequence diagram 

 

 
Figure 8. Simulator tool screenshot of the alignment process  

 

The time it takes for a multi-lane link to resume sending 

data after a lane has failed or a new lane has been added is less 

than a few microseconds. More precisely, it is the round trip 

delay of the ACTIVE words plus the delay between the 

sending of ALIGN words, which is the time needed to send 8 

words.  

Fig 8 is a screenshot of the simulator tool used for the 

validation of the alignment process and the associated state 

machine. The first set of two columns show the words sent by 

the sender side using two lanes. The ALIGN word indicates 

that two lanes are used for sending and the lane numbers are 0 

and 1. The ACTIVE word indicates that lane zero and one are 

active (bits zero and one are set). The second set of two 

columns show how the row sent is received disaligned at the 

receiver side. The middle Align column shows in yellow when 

the state machine is in Not Ready state. The third set of two 

columns shows how row alignment is achieved using a FIFO 

and the ALIGN word. Finally the last set of two columns show 

the words received by the Data Link layer.  

D. Unidirectional lanes 

Single-lane SpaceFibre implementations must be 

bidirectional even if the end-user data flow is unidirectional, 

because feedback from the receiver side is required for the 

protocol to operate. However in a multi-lane implementation, 

one lane is enough for the protocol related information and the 

other lanes can be unidirectional, saving power and mass. 

The lane layer initialisation state machine was designed for 

a bidirectional lane, however some additional rules can be 

defined to allow a unidirectional lane to reach active state 

without affecting the operation for bidirectional lanes. The 

state machine just needs to know if the lane is receive or 

transmit only and if the far end has the lane in active state. 
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Figure 9. Changes to the lane initialisation state machine 

 

Fig 9 shows in red the required modifications to the lane 

initialisation state machine. First, if the lane is receive only, the 

RxOnly condition is set and the state machine immediately 

moves to Active after reaching the Connecting state. Second, if 

an ACTIVE word is received after the lane is started indicating 

that the lane is active at the far end, the FarEndActive 

condition is set, and the state machine moves to Active. 

Finally, the LossOfSignal state is not reachable if the lane is 

TxOnly. 

Fig 10 shows how a unidirectional lane is initialised. The 

side configured as RxOnly, receives INIT1 words until it 

reaches Connecting state. It then immediately moves to Active. 

Then, the bidirectional lane(s) send ACTIVE words, which 

when received, sets the FarEndActive flag. This moves the 

TxOnly initialisation state machine to ACTIVE. 

Lane 1 
near end
TxOnly

ClearLine

Disabled

Wait
Started

2 µs

Lane_Reset
Lane_Reset

ClearLine

Disabled

Wait

Started

Lane_Start
AutoStart

Connecting

Connecting

Connected

Connected

Active

Active

2 µs

Signal Detected

Rx’ed 1023 words 
including one INIT1/2

FarEndActive

RxOnly

RxOnly

FarEndActive

FarEndActive

ACTIVE word 
rx’ed on lane 0

Lane 1 
far end
RxOnly

 
Figure 10. Initialisation of a unidirectional lane 

 

The TxOnly side can not detect loss of signal or receive 

control words. A mechanism has to be defined in TxOnly lanes 

to exit the Active state when the RxOnly far end is not 

anymore in Active state. The solution is to reset the TxOnly 

lane when ACTIVE words are received in bidirectional lanes 

indicating that the far end is not anymore active, i.e. the 

FarEndActive flag is deasserted. 

One requirement for unidirectional lanes states that it must 

be possible for a bidirectional lane to become unidirectional in 

order to save power. More precisely, a bidirectional lane can be 

set as RxOnly lane by the user when the data rate sent is 

reduced. A mechanism is required for the far end to detect this 

event and change from a bidirectional lane to a TxOnly lane, so 

it matches the RxOnly setting at the near end. 

The solution is for the TxOnly flag to be set when the lane 

initialisation state machine is in Started state and the 

FarEndActive flag is set. The FarEndActive flag will move the 

state machine to Active and the lack of signal at the receiver 

will be ignored as the TxOnly flag will be set. 

E. Hot redundant lanes 

An important requirement is the decoupling between the 

link bandwidth provided by the number of active lanes and the 

maximum data rate of the end user interface. There are two 

possibilities: 

a) The available link bandwidth is lower than the user 

interface. This can occur if one or more lanes fails or are 

disabled. The user interface flow control will limit the data rate 

of the user. 

b) The available link bandwidth is higher than the user 

interface. This can be useful to provide hot redundancy.  

In order to simplify the implementation of the second 

scenario, the concept of hot redundant lanes is introduced. Hot 

redundant lanes are lanes that are initialized in the same way 

than a normal lane, but only send Lane Layer and Multi-Lane 

layer control words and do not send any Data Link layer word. 

When no control words must be sent, they send a PRBS 

sequence that is generated in the same way than the PRBS data 

words of Idle frames. This mechanism ensures that the word 

transfer rate between the Multi-Lane layer and the Data Link 

layer does not exceed the maximum user interface data rate. 

Hot redundant lanes must have lane numbers higher than 

the other lanes. The receiver can identify a hot redundant lane 

by the content of the ALIGN word received. An ALIGN word 

sent by a hot redundant lane has the LANES and the iLANES 

fields both set to zero, which can not occur for non redundant 

lanes.  Hot redundant lanes identified by the receiver are not 

considered for the reception of Data Link layer words. 

F. New control word fields  

The addition of multi-lane capabilities requires two new 

fields in existing control words that do not break compatibility 

with single-lane implementations: 

a) FCT multiplier: Allows to reduce the number of FCTs 

sent when the data frame size is increased. 

b) Multi-Lane capable flag: provided in the INIT3 control 

word to indicate that the lane is part of a multi-lane link. 
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IV. HARDWARE IMPLEMENTATION 

After the new specifications that enable multi-lane 

capabilities to SpaceFibre were successfully simulated in 

software, a hardware prototype was built using commercial 

off-the-shelf (COTS) and space-qualified FPGAs. The new 

multi-lane capable STAR-Dundee SpaceFibre IP Core is an 

optimised and improved version. 

A. Hardware Prototypes 

The multi-lane specifications were first evaluated using the 

STAR-Dundee SpaceFibre PXI board, which has a  set  of  

flexible  interface  connectors  that  can  be  used  to  customise  

the  board, such  as SpFi, SpW and external triggers, etc [7]. 

Fig 11 shows a multi-lane link using two PXI boards with 

one bidirectional lane and two unidirectional lanes. Each 

connector has two activity LEDs. If the upper LED is red it 

indicates that the receiver is disabled. If the lower LED is red it 

indicates that the transmitter is disabled. Blue colour indicates 

data transfer. In addition to the SATA laboratory cables used 

for SpaceFibre, there are two SpaceWire blue cables used for 

device configuration. 

 

 
Figure 11. Unidirectional lanes on a PXI board 

 
Figure 12. RTG4 development board with a multi-lane SpaceFibre link 

 

The design was then optimised and ported to the radiation 

hardened RTG4 FPGA. Fig 12 shows the RTG4 development 

board with a multi-lane link connected to a PXI board using 

two bidirectional lanes.  

For the validation of the new protocol capabilities, the 

STAR-Fire software was updated to support the new multi-lane 

capable features. Fig 13 is a screenshot of the the STAR Fire 

Analyser view. The two middle columns shows the words 

being sent by lane numbers 1 (left) and 0 (right). At each side 

the word is decode in its symbol components. The analyser was 

triggered on the event of the first ACTIVE word sent after the 

link was started with three lanes. As stated, ACTIVE words are 

sent when a lane becomes active until alignment is achieved. 

 

 
Figure 13. Words sent when lanes 0 and 1 become active 
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The left side of Fig 14 shows what happens later when 

alignment is achieved and the alignment state machine moves 

from Not Ready to Near-End Ready. It is allowed then to send 

Data Link layer words such as the FCT control words. The 

ACTIVE words indicate that the first three lanes are active (716, 

1112). The ALIGN word indicates that three lanes are used for 

sending and the lane number of each lane (1910, 1316). The right 

side shows sometime later when data frames are sent with user 

data from virtual channel 1. At this time, the alignment state 

machine is in Both Ends Ready as no ALIGN words are being 

sent. 

 

  
Figure 14. Words sent for alignment (left) and sending data (right).  

 

Fig 15 shows a link with two lanes in which lane 1 fails and 

starts sending LOS control words before disabling the SerDes. 

The alignment state machine moves to Not Ready and 

ACTIVE words sent indicate lane 1 is not anymore active. 

After re-alignment, a NACK control word followed by a 

RETRY control word are sent, so both ends can resume 

sending data.  

 

 

  

Figure 15. Words sent when a lane fails (from left to right)  

Near End 

 

… 

 

Far End 

 

… 

 
Figure 16. Link starts with lane 1 unidirectional with TxOnly set  

 

Fig 16 shows a multi-lane link with three lanes in which 

lane 1 is a unidirectional transmit-only lane. That is why the far 

end has the SerDes transmitter of lane 1 disabled (PLL_OFF). 

In the near end, this lane starts sending INIT1s until the far end 

achieves Active state and sends ACTIVE words indicating this 

lane is active. The near end sends INIT2 and INIT3 and 

reaches active state on the reception of these ACTIVE words. 

B. STAR-Dundee SpaceFibre IP Core 

The STAR-Dundee SpaceFibre IP Core was updated to 

support multi-lane capabilities after the hardware 

implementations were successfully validated and optimised for 

low resource usage and easy of use. 

Table I provides the resource usage for two radiation 

hardened FPGAs, Microsemi RTG4 and Xilinx Virtex-5QV, 
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for different number of lanes and virtual channels. Lanes can 

operate up to 3.125 Gbps. 

TABLE I.  RESOURCE USAGE 

 RTG4  Virtex-5QV 

 LUT DFF 
RAM 
Block  LUT DFF 

RAM 
Block 

2 Lanes 
1 VC 

6494 
4.3% 

5351 
3.5% 

8 
3.8% 

3858 
4.7% 

3938 
4.8% 

8 
2.7% 

2 Lanes 
2 VC 

7314 
4.8% 

6088 
4.0% 

12 
5.7% 

4503 
5.5% 

4382 
5.3% 

12 
4.0% 

3 Lanes 
2 VC 

8997 
5.9% 

7413 
4.8% 

12 
5.7% 

5416 
6.6% 

5226 
6.4% 

12 
4.0% 

 

The IP Core has been designed to fully support the 

redundancy capabilities of multi-lane. When using hot 

redundancy, the data flow of the user is not affected when a 

lane fails, as the data is internally buffered during the time it 

takes to resume sending data, which is less than 2 µs. When not 

using a hot redundant lane, there is a graceful degradation of 

link bandwidth and the QoS mechanism ensures that most 

important data is sent first. If a redundant lane is available it 

will be activated in less than 20 µs, providing warm 

redundancy. 

Fig 17 shows the floorplan of a Virtex-5QV with the IP 

core constrained to be placed in one of the tiles. Using the 

Xilinx transceiver capabilities, the IP Core can work with a 

single clock input signal. The user can write and read data 

to/from the IP Core with the AXI4-Stream interface, using any 

other clock frequency as the IP includes synchronisation 

buffers. 

 

 
Figure 17. STAR-Dundee multi-lane IP Core in Virtex-5QV 

 

V. CONCLUSION 

The new SpaceFibre multi-lane capabilities increase 

dramatically the data throughput of SpaceFibre links to meet 

the requirements of next generation of spacecraft payloads. 

With the designed multi-lane layer, the additional lanes can 

also provide hot or warm redundancy, and graceful degradation 

of the link bandwidth when no redundant lanes are available. In 

the event of a lane failure, the link is again operative in just a 

few microseconds, which is close to the round trip delay of the 

lane, without user intervention and without any data loss. 

Furthermore, the flexibility in the number of lanes of a 

multi-lane link and the support of unidirectional lanes, allows 

for significant savings in mass and power, which are critical in 

space applications. 

The multi-lane specifications have been validated in 

simulation and hardware prototypes. These specifications have 

been designed to be easy to implement in slower radiation 

hardened FPGAs. The STAR-Dundee SpaceFibre IP Core has 

been updated to provide all these new multi-lane capabilities in 

RTG4 and Virtex-5QV FPGAs with low resource usage and 

high performance. 
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Abstract— SpaceFibre is a new standard for spacecraft on-

board data-handling networks, which runs over both electrical 

and fibre optic media. It provides high bandwidth, low latency, 

fault recovery and novel QoS that combines priority, bandwidth 

reservation and scheduling. SpaceFibre is backwards compatible 

with SpaceWire at the network level, allowing existing 

SpaceWire equipment to be incorporated into a SpaceFibre 

network without modification. SpaceFibre is now being designed 

into its first spaceflight missions. This paper describes 

SpaceFibre flight equipment being designed by STAR-Dundee 

for space flight applications. This includes a range of SpaceFibre 

IP cores targeted at radiation tolerant FPGAs and the 

SpaceFibre interfaces in a radiation tolerant many core DSP 

processor. 

Index Terms — SpaceFibre, SpaceWire, Flight Equipment, 

Networking, Spacecraft Electronics. 

I. INTRODUCTION 

SpaceFibre [1][2][3] is a new standard for spacecraft on-

board data-handling networks, initially designed to deliver 

multi-Gbit/s data rates for synthetic aperture radar and high-

resolution, multi-spectral imaging instruments. The addition of 

quality of service (QoS) and fault detection, isolation and 

recovery (FDIR) capabilities to SpaceFibre has resulted in a 

unified network technology. SpaceFibre provides high 

bandwidth, low latency, fault isolation and recovery suitable 

for space applications, and novel QoS that combines priority, 

bandwidth reservation and scheduling and which provides 

babbling node protection [4]. SpaceFibre is backwards 

compatible with the widely used SpaceWire standard [5] at the 

network level allowing simple interconnection of existing 

SpaceWire equipment to a SpaceFibre link or network. 

This paper describes SpaceFibre equipment being designed 

by STAR-Dundee for space flight applications. This includes a 

range of SpaceFibre IP cores targeted at radiation tolerant 

FPGAs, the SpaceFibre interfaces in a radiation tolerant many 

core DSP processor and boards, subsystems and instrument 

processing units, containing these devices. 

II. SPACEFIBRE INTERFACE IN THE RTAX FPGA 

A version of the SpaceFibre IP core targeted for high 

performance and small size in flight qualified FPGAs is 

currently being developed by STAR-Dundee Ltd. This IP core 

is designed to support instrument interfacing with SpaceFibre 

using existing flight proven FPGAs and SerDes devices. It is 

expected that this design will reduce the size of the SpaceFibre 

IP core for instrument interfaces significantly.  

A board that implements this “SpaceFibre-Lite” IP core in a 

Microsemi AX1000 FPGA is illustrated in Figure 1. 

 

 
(a) 

 
(b) 

Figure 1. SpaceFibre-Lite board for Microsemi AX1000 

FPGA; (a) top-side and (b) bottom-side 

On the bottom side of the SpaceFibre-Lite board is a socket 

for an AX1000 FPGA, which is the commercial equivalent of 

the radiation tolerant RTAX1000 FPGA [6]. This FPGA does 
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not include a SerDes so an external SerDes device is required. 

Texas Instruments have a suitable radiation tolerant SerDes 

device: the TLK2711-SP Wizard Link device [7]. This device 

contains both a transmitter and receiver and offers data rates 

from 1.28 to 2.0 Gbits/s (1.6 to 2.5 Gbits/s data signalling 

rates). The transmitter takes in 16-bit wide serial data, encodes 

it using 8B/10B encoding and serialises it for transmission over 

a differential signal pair. The receiver takes the serial data, de-

serialises it, and performs 8B/10B decoding to provide the 16-

bit parallel data. The TLK2711A (commercial version) can be 

seen on the top-side of the board, at the top of Figure 1. 

The SpaceFibre-Lite interface has two virtual channels and 

a broadcast message interface. One virtual channel is used for 

sending or receiving high data-rate application data, which 

requires substantial link bandwidth. The other virtual channel 

is used for receiving configuration, control and housekeeping 

requests from a remote computer and for returning status and 

housekeeping information. This latter virtual channel is 

typically set to high priority, but uses little bandwidth. 

The SpaceFibre-Lite board has an FMC connector for 

connecting to a host system, e.g. another FPGA development 

board. A 32-bit interface is provided on this FMC connector 

for sending and receiving data between the host system and the 

SpaceFibre virtual channels in the AX1000 FPGA. This 

interface can also be used for configuring the SpaceFibre 

interface and for accessing the broadcast message interface. 

For test purposes, a pair of Mictor connectors are provided on 

the parallel interface to the FMC connector for connection to a 

logic analyser. 

The SpaceFibre serial interface is connected to an eSATA 

connector which is used in SpaceFibre electrical ground 

support equipment. This connector can be seen on the bottom 

left of Figure 1 (b). 

All of the major components on the SpaceFibre-Lite board 

are commercial equivalents of radiation tolerant, spaceflight 

grade components. It operates at a data signalling rate of 2.5 

Gbits/s and demonstrates that SpaceFibre is at TRL5, ready to 

fly. 

III. SPACEFIBRE IN THE RTG4 FPGA 

The Microsemi RTG4 is a new generation radiation tolerant 

FPGA [8]. It has extensive logic, memory, DSP blocks, and IO 

capabilities and is inherently radiation tolerant, having triple 

mode redundancy built in. The RTG4 has a flash configuration 

memory built into the device. In addition the FPGA 

incorporates 16 SpaceWire clock-data recovery circuits and 24 

multi-Gbits/s SerDes lanes to support high-speed serial 

protocols like SpaceFibre. The integrated radiation tolerant 

SerDes make the RTG4 ideal for the implementation of 

SpaceFibre.  

A SpaceFibre interface has been implemented in the RTG4 

FPGA and tested extensively [9]. The test design incorporates 

two SpaceFibre interfaces and four SpaceWire interfaces. One 

SpaceFibre interface has eight virtual channels and the other 

has four. These two SpaceFibre interfaces are connected back 

to back with VC4-7 on one interface connected to VC4-7 on 

the other interface. The four SpaceWire interfaces are 

connected to VC0-3 on the SpaceFibre interface with eight 

virtual channels. This is illustrated in Figure 2. 

RTG4

SpW SpW SpW SpW

SpaceWire

SpaceFibre
Interface

SpFi 4
5
6
7

SpaceFibre
Interface

SpFi4
5
6
7

0
1
2
3

 

Figure 2. Functional block diagram showing 

interconnection between SpaceFibre and SpaceWire 

interfaces in an RTG4 FPGA 

The design is implemented on the Microsemi RTG4 

development board with SpaceWire and SpaceFibre connectors 

provided via an FMC board, as shown in Figure 3. 

 

 

Figure 3. Microsemi RTG4 development board used to test 

the SpaceFibre interface 

The SpaceFibre interfaces operate at up to 3.125 Gbits/s. A 

multi-lane interface has also been implemented in the RTG4 

and validated [10]. The multi-lane IP core has two-lanes with a 

third lane available in hot or cold standby.  

The SUNRISE SpaceFibre routing switch [11] is currently 

being transferred to the RTG4 FPGA, using a specially 

designed board [12], which is shown in Figure 4. 

 

 

Figure 4. Prototype board for SUNRISE SpaceFibre 

Routers 
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IV. SPACEFIBRE MULTI-LANE INTERFACE IN THE RTG4 

FPGA 

The multi-laning capabilities of the SpaceFibre protocol 

allow several lanes to operate in parallel to provide enhanced 

throughput [10]. For example, with four lanes running at 2.5 

Gbits/s each an aggregate throughput of 10 Gbits/s is achieved. 

SpaceFibre multi-laning can operate with any number of lanes, 

from 1 to 16. Each lane is normally bi-directional, but to 

support spaceflight instruments with very high-data rate in one 

direction and to save mass and power, it is possible to have 

some uni-directional lanes in a multi-lane link, provided that at 

least one lane is bi-directional. SpaceFibre multi-laning also 

supports graceful degradation in the event of a lane failure. If a 

lane fails, the multi-lane link will rapidly reconfigure to use the 

remaining lanes so that important (high priority) information 

can still get through. It takes a couple of microseconds for this 

reconfiguration to occur, which happens without loss of 

information. Clearly, with reduced bandwidth some 

information will not be sent over the link, but this will be less 

important, low priority, information. If a redundant lane is 

available in the link, it can be enabled and full capacity 

operation will resume.  

 

 

Figure 5. Demonstration of SpaceFibre Multi-Laning 

The photograph in Figure 5 shows a demonstration of the 

multi-laning capability of SpaceFibre. A four lane link was 

demonstrated with low-priority, high-bandwidth traffic flowing 

over some virtual channels and high-priority video data over 

another virtual channel. Lanes were unplugged with 

corresponding loss in bandwidth, but the link continued to 

operate sending the "critical" video data without interruption. 

Only when all four lanes were unplugged, did the video data 

stream cease. As soon as any of the four lanes were plugged 

back in, the video stream continued once more. 

V. SPACEFIBRE ENGINEERING MODEL 

 STAR-Dundee is currently designing a flight Engineering 

Model level board for the RTG4 which will support SpaceWire 

and SpaceFibre applications. The architecture of this board is 

illustrated in Figure 6. 
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Figure 6. SpaceVPX-RTG4 Board Block Diagram 

The SpaceVPX-RTG4 board is a 3U board designed to 

conform to the emerging VITA78.1 SpaceVPX-Lite standard 

[13]. The main component on the board is the RTG4 FPGA 

(PROTO Silicon). It is connected to two independent banks of 

DDR memory, each supporting Error Detection and Correction 

(EDAC). Two SpaceWire and two SpaceFibre interfaces are 

provided on the front panel. The SpaceVPX-Lite backplane 

supports a SpaceWire control plane and a SpaceFibre data 

plane along with standard utility plane functions. An FMC type 

daughterboard connector allows connection to various 

daughterboards. A dual, 3 Gsamples/s ADC FMC board is 

available supporting demanding DSP applications. Other 

daughter boards are planned. The board is conduction cooled. 

The board can be configured to operate as a SpaceVPX-

Lite System Controller or as a versatile SpaceVPX-Lite 

Payload Processing board. The System Controller incorporates 

an ARM Cortex M1 processor running in the FPGA, and has 

two SpaceWire and two SpaceFibre interfaces on the front 

panel. It provides the VITA78.1 radial REF_CLK and 

AUX_CLK signals to each of up to six Payload boards. It can 

provide either SpaceWire or SpaceFibre radial control plane 

connections to each Payload board. These control plane 

interfaces also provide the Payload management function using 

RMAP [14]. The System Controller is designed to operate in a 

dual redundant configuration with control plane cross strapping 

to each Payload board. Cold sparing of the RTG4 is addressed 

in the board design. 

The SpaceVPX-RTG4 board can also act as a Payload 

board, with control plane connections to each of the two 

system controller boards. Data plane connections are provided 

on the board to support full mesh interconnection between the 

six payload boards. 

The components on the board are commercial equivalents 

of flight grade components. 

This board is currently being used to implement the 

engineering model of a wideband spectrometer for a THz 

radiometer instrument, being developed in the UK [15]. When 

fitted with the ADC FMC board each SpaceVPX-RTG4 board 

will be able to process 1-2 GHz bandwidth signals into 1-

5MHz spectral components. The design of the FFT processor is 

324



currently underway based on previous designs implemented 

and tested in Xilinx Virtex 5 FPGAs.   

At present the board is in the PCB layout stage. A physical 

model of the SpaceVPX-RTG4 board is illustrated in Figure 7.  

 

 

Figure 7. SpaceVPX-RTG4 Physical Model 

SpaceVPX-Lite Power Switches and Power Supply 

modules are also under development along with a backplane 

and conduction cooled rack. 

 

VI. RAMON CHIPS RC64 

Ramon Chips are developing a many core DSP processing 

chip in radiation tolerant technology. The RC64 [16], is a novel 

rad-hard 64-core digital signal processing chip, with a 

performance of 75 MACS, 150 GOPS and 38 GFLOPS (single 

precision) and low power consumption, dissipating less than 10 

Watts. The RC64 integrates sixty-four advanced DSP cores, a 

hardware scheduler, 4 MBytes of multi-port shared memory, a 

DDR2/DDR3 memory interface, and twelve 3.125 Gbps full-

duplex, high-speed SpaceFibre serial links, four of which can 

also support serial Rapid IO.  

The RC64 architecture is illustrated in Figure 8. A central 

scheduler assigns tasks to processors. Each processor executes 

its task from its cache storage, accessing the on-chip 4MByte 

shared memory only when needed. When task execution is 

done, the processor notifies the scheduler, which subsequently 

assigns a new task to that processor. Access to off-chip 

streaming channels, DDR2/DDR3 memory, and other 

interfaces happens only via programmable DMA channels. 

This approach simplifies software development and it is found 

to be very useful for DSP applications, which favour 

streaming over cache-based access to memory. Hardware 

events, asserted by communication interfaces, initiate software 

tasks through the scheduler. This enables high event rates to 

be handled by the many cores efficiently. 
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Figure 8. RC64 Many Core DSP Processor Block Diagram 

(only 8 DSP processors are shown) 

The RC64 is implemented as a 300 MHz integrated circuit 

on a 65nm CMOS technology, assembled in a hermetically 

sealed ceramic CCGA624 package and qualified to the highest 

space standards. Supported communication applications 

include frequency multiplexing, digital beam forming, 

transparent switching, modems, packet routing and higher-

level processing. The 12 SpaceFibre interfaces on the RC64 

were designed by STAR-Dundee.  

STAR-Dundee is currently designing a SpaceVPX-Lite 

board containing an RC64 many core DSP processor. A block 

diagram of this board is shown in Figure 9. 
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Figure 9. SpaceVPX-RC64 Board Block Diagram 

The SpaceVPX-RC64 board contains an RC64 DSP 

processor attached to DDR memory. The board is designed as a 

SpaceVPX-Lite Payload board. It receives nominal and 

redundant REFLCK, AUXCLK and SYSRST signals from the 

backplane. These signals originate from the nominal and 

redundant System Controller boards. Nominal and redundant 

control plane interfaces are also provided from the System 
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Controller boards via the backplane connectors. The control 

plane can be either SpaceWire or two-lane SpaceFibre.  

There are a pair of SpaceWire interfaces and a pair of 

SpaceFibre interfaces on the front panel. An FMC connector 

on the board allows for the connection of a range of FMC type 

boards to be added. All components on the board are 

commercial equivalents of radiation tolerant parts. Like the 

SpaceVPX-RTG4 board the SpaceVPX-RC64 board is 

conduction cooled. 

VII. SPACEFIBRE INTERFACE CHIP 

The SpaceFibre ECSS standard is close to being published 

and SpaceFibre is already being considered for several space 

missions. There is a need for a range of radiation tolerant 

SpaceFibre chips to support the missions that plan to use this 

technology. STAR-Dundee has won a contract from ESA to 

develop such a device, which is able to meet the instrument 

interface and avionics equipment requirements for high-speed 

serial links. This design will build on the extensive experience 

that STAR-Dundee has with SpaceFibre and in particular on 

the experimental SpaceFibre interface device designed by 

STAR-Dundee with European Commission Framework 7 

research funding [17]. 

CONCLUSIONS 

SpaceFibre is a new generation of the widely used 

SpaceWire spacecraft on-board data-handling network 

technology, which has over ten times the performance (per 

lane) and operates over electrical or fibre optic media. 

Integrated quality of service and fault detection, isolation and 

recovery mechanisms enable SpaceFibre to be used for 

guidance and navigation control, time-distribution, event 

signalling, command and control, as well as very high data-rate 

payload data-handling, all with a single, unified network. This 

reduces cost, mass and risk, improves reliability and simplifies 

redundancy. 

STAR-Dundee has developed a range of SpaceFibre IP 

cores for spaceflight applications including a single-lane and 

multi-lane interface targeted for the Microsemi RTG4 and 

Xilinx Virtex-5QV FPGAs. A SpaceFibre routing switch IP 

core for the RTG4 is currently under development. STAR-

Dundee’s IP cores are also being used in a range of radiation 

tolerant ASIC devices including the Ramon Chips RC64 many 

core DSP processor and the ESA SpaceFibre Interface Chip. A 

range of engineering model level boards is being designed by 

STAR-Dundee based on the emerging VITA 78.1 SpaceVPX-

Lite standard. This equipment is targeted at a range of 

spaceflight signal and image processing applications and is 

already being designed into the UK LOCUS TeraHertz sounder 

instrument. 
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Abstract—High-speed onboard networks for the space 

industry with a lot of tasks that could be solved only by 

transmitting large data streams in a short time, with minimum 

overheads and accepted latencies. Particular tasks for data 

transmission require various types of traffic and onboard 

network topologies. Video data in many applications generate 

high throughput real-time data streams, from most demanding 

onboard traffic. The SpaceFibre protocol, which gives an 

ability to transmit data with high speeds and different quality 

of services (QoS), could be prospective technology for the 

spacecraft tasks and missions. Implementation of SpaceFibre 

and considering its application for Russian space missions is 

going on. 

The paper presents use cases for SpaceFibre based onboard 

networks for real-time video data streams in prospective 

missions. We consider features and characteristics of raw, non-

compressed video data streams for processing and real-time 

control (e.g. to support docking), data streams of compressed 

motion imagery to record video, science experiment high 

quality video, robotics, high definition television frames to 

monitors, etc. The paper considers requirements and 

restrictions for building SpaceFibre onboard networks for 

real-time video data streams. Streaming Data Transport 

Protocol is mapped on a SpaceFibre network for transmission 

of streaming data from onboard cameras (video stream), to 

onboard monitors and to a high rate downlink. 

Index Terms — Spacecraft onboard networks, Streaming 

data, SpaceFibre, Motion imagery. 

I. INTRODUCTION 

Modern onboard networks for space industry include a lot 

of streaming traffic sources. Examples of such sources are 

video cameras. Its traffic typically has high rate and 

requires essential part of network resources. In many cases 

delivery time and jitter of delivery time for video traffic is 

strongly constrained. Influence of this traffic to other traffic 

may be dramatical. 

Main features of streaming traffic are: 

- PDUs have equal size; 

- Intervals between sequential PDUs generations are 

equal; 

- PDUs are structurally homogenous 

- PDUs arrives continuously 

- Loss of an individual PDU is not critical [1]. 

II. VIDEO DATA STREAMING CHARACTERISTICS 

The parameters of video from CCSDS 766.1-B-1 Digital 

Motion Imagery (hereinafter referred to as CCSDS) standard 

are presented Table I. It is a standard that identifies which 

television and video industry standards should be utilized for 

interoperability in a spacecraft, between spacecrafts and 

between a spacecraft and Earth. The CCSDS specification 

describes real-time video data transmission and video 

streaming (telecasting). Transmitted data can be 

uncompressed, compressed or encrypted (Secure JPEG2000) 

[2]. 

TABLE I.  PARAMETERS OF VIDEO TRAFFIC DESCRIBED IN AVIATION 

STANDARD CCSDS 766.1-B-1 

Traffic Resolution 
*Frame size, 

Kbyte 

*Line size, 

Kbyte 

Playback 

frequency, Hz 

Personal video 

conferencing 

320х240..1280

x720 
150..1800 0,625..2,5 10 – 60 

Medical 

conferencing 

320х240..1280

x720 

Standard 

resolution 

640x480 

150..1800 

600 

0,625..2,5 

1,25 
10 – 60 

Situational 

awareness 640x480..1280

x720 
600..1800 1,25..2,5 

25 – 60 

Public affairs 24, 25, 60 

High Resolution 

Digital Imaging 

1920x1080..40

96х2160 
4050..17280 3,75..8 24 – 120 

* - all evaluations are done when color depth is 16 bit 
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III. SHORT INFORMATION ABOUT THE SPACEFIBRE  

The layers from the Physical layer until the Network 

layer are defined in the SpaceFibre protocol. 

В текущей версии стандарта SpaceFibre определены 

уровни протокола до сетевого. 

A. Evaluation of data transmission overheads on a 

SpaceFibre data link  

The 8B/10B coding is used at the Lane layer for data 

transmission via physical link. Correspondingly the useful 

throughput on this layer is 0,8 (80%) from the physical 

throughput.  

Data are transmitted via data link in frames. The 

maximal payload size of a frame is 256 bytes of data, FILL 

or EP symbols. (The SpaceFibre frame can contain one or 

some SpaceWire packets or parts of consequent packets.) 

The size of the frame header and the size of the frame tail 

is four bytes. The credit mechanism is used for flow control. 

A receiving side sends credits in accordance with free space 

in its buffers. One credit (FCT) corresponds to 256 NChars 

(data bytes, FILLs , EOPs, EEPs). The length of FCT 

symbol is 4 bytes. The receiving side sends responses for 

received frames. (ACK response indicates that the frame is 

received correctly, NACK response indicates any errors.) 

The length of response symbol is four bytes. To avoid 

essential overheads of physical channel by responses, one 

response may be sent for some sequential frames with small 

length. However, if a frame has the maxima length the 

response is sent for every frame. 

Thus for the useful throughput evaluation we suppose 

that one ACK and one FCT correspond to every data frame. 

These ACK and FCT are transmitted in opposite direction 

than data frame, therefore they influence to useful 

throughput only when data traffic is transmitted in both 

directions. 

Accordingly to this, if data are transmitted in one 

direction and frames with maximal size are used for data 

transmission, the useful throughput of data link will be 97% 

from throughput of Lane layer, and, correspondingly, 77% 

from throughput of the physical channel.  

If data are transmitted in both directions the useful 

throughput of data link will be 94% from throughput of Lane 

layer, and, correspondingly, 75% from throughput of 

physical channel. 

If frames with smaller size are used for data 

transmission, the useful throughput would be less. 

B. QoS at the Data link layer  

The QoS mechanisms in SpaceFibre standard are 

supported at the Data link layer: 

- Priorities 

- Reserved bandwidth 

- Scheduling 

- Guaranteed delivery 

Virtual channels are used for QoS implementation. The 

Data link layer may support up to 32 virtual channels. 

Particular implementations may support less quantity of 

virtual channels, because hardware cost of this mechanism is 

essential. 

The priority layer, reserved bandwidth and set of timeslots 

for data transmission should be assigned for every virtual 

channel. 

These parameters and QoS mechanisms determine 

sequence of data frames transmission to physical channel for 

different virtual channels. 

The priority mechanism. The priority level should be 

assigned to every virtual channel. Several virtual channels may 

have same priority level or every virtual channel can have 

uncial priority. If several virtual channels have data for 

transmission (and credits) the first will be transferred a frame 

from the virtual channel with highest priority. When several 

virtual channels have the same (and highest) priority selection 

will be made by other QoS parameters. 

Priorities of virtual channels are used only at the data link 

layer. In general case they do not correlate with packets’ 

priorities at the network layer. 

Reserved bandwidth. The portion of channel’s throughput 

should be reserved for every virtual channel. This portion 

should include not only data payload but overheads also 

(SpaceFibre frame header and tail, ACK|NACK, FCT).  

The virtual channel may use more bandwidth than reserved 

when other channels with highest and same priority do not 

have any data for transmission. It can use all channel 

bandwidth during long time (implementation dependent) to the 

prejudice of the channels with lower priorities. 

Selection of next virtual channel for data transmission is 

made after transmission of every frame. Frame borders may be 

not match with the packet’s borders. Thus after transmission 

via physical channel of a part (in a frame) belongs to one 

packet, the a part of another packet (transmitted via other 

virtual channel) will could be transmitted. Thus transmission of 

rare part that belongs to the first packet may be essentially 

delayed. 

Selection of next virtual channel for data transmission is 

made after transmission of every frame. Frame borders may be 

not match with the packet’s borders. Thus after transmission 

via physical channel of part belongs to one packet, the part of 

other packet (transmitted via other virtual channel) will be 

transmitted. Thus transmission of rare part belongs to the first 

packet may be essentially delayed. 

The mechanism of virtual channels allows to rationale 

divide physical channel’s bandwidths between virtual 

channels. The bandwidth of a single virtual channel may be 

used inefficiently.  

The mechanism of virtual channels allow to rationale 

division of physical channel’s bandwidths between virtual 

channels. The bandwidth of one virtual channel may be used 

no effectively.  

III. ON-BOARD NETWORK FOR VIDEO DATA STREAMING 

Let’s consider the part of onboard network represented on 

Fig. 1 as the use case. 
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Fig. 1.  An example of the part of onboard network  

 

The types of traffic are transmitted via this network: 

- Command traffic (packets with constrained size – 

64 Bytes, transmission rate is very low, delivery 

time is critical); 

- Real time video traffic (size of video frames could 

be about some Mbytes, they may be transmitted by 

one or some packets, data rate is high, delivery time 

and jitter of delivery time are important parameters) 

- Other data – Best Effort (BE) traffic 

In our use case data paths of these traffics are competing. 

All considered traffic types may be transmitted via one data 

link. Let’s evaluate influence between the traffic types. It 

essentially depends on virtual channels parameters; therefore 

we make some decisions about these parameters. 

We plan to use separate virtual channels for every traffic 

type. There are several sources of same traffic type (for 

example, several video cameras). Separate virtual channels 

could be used for traffic from every source or traffic from all 

sources could be transmitted via one virtual channel. (The 

quantity of virtual channels in the SpaceFibre is constrained 

by 32, but concrete device may support much less channels 

due to hardware constraints.) 

A. Command traffic  

The command traffic is most critical for the onboard 

network. Therefore we assign the highest priority to a virtual 

channel hat is selected for this traffic. The command could 

be transmitted via fixed or random timing intervals. Thus, its 

transmission could be permitted in all timeslots. The reserved 

bandwidth for this virtual channel should correspond to the rate 

of command traffic, in our use case this rate is 1 – 3%. If in a 

certain time moment the rate of command traffic would be 

higher than the reserved bandwidth, the commands will be 

transmitted as this virtual channel has highest priority during 1 

ms – 1s (implementation defined). In most cases duration of 

increasing of command traffic is essentially less than this 

interval. 

Let’s evaluate influence of other traffic to command traffic 

delivery time. In worst case a command will wait for 

transmission of one SpaceFibre frame in every data link. A 

virtual channel for Command traffic has highest priority, 

therefore frames from it could wait for transmission of only 

one frame independently from quantity of virtual channels and 

its traffic. If transmission rate in a physical channel is 

1,25 GBit/s transmission time of a frame with maximal length 

is 264 ns. 

The graphs of dependency between command delivery time 

and quantity of transit routers are represented in Fig. 2. The 

graph «without other data» corresponds to the case when no 

other data is transmitted via the network; the SpaceFibre frame 

with a command will be translated via all data links without 

delays. The graph «with other data» corresponds to the case 

when the command waits for transmission of one SpaceFibre 

frame in every data link. The graph «with other data, 

Broadcast, FCT, ACK» corresponds to the case when the 

command waits for transmission of one SpaceFibre frame, one 
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Broadcast, one ACK and one FCT in every data link. These 

graphs show that maximal delivery time grows essentially 

with increasing of routers quantity, but in all cases is less 

than 35 us. 

 

Fig. 2.  The graphs of dependency between command delivery time and 

quantity of transit routers (transmission rate in the physical channel is 
1,25 GBit/s)  

B. Real time video traffic  

The length of video frames is essentially bigger, than the 

length of commands. Transmission of video frames is 

periodic. If uncompressed video is used, the length of all 

video frames is equal, it can be 1 – 2 Mbytes and even more. 

If compressed video is used, the size of video frame depends 

from its type. The size of I-frame may be some Mbytes 

(typically a bit more than size of one uncompressed video 

frame). The size of P- and B- frames is about ten times less 

than the size of I-frames. 

The maximal delivery time and jitter (jitter of delivery 

time) are critical parameters for real time video traffic. 

Therefore, we assign next level of priority after command 

traffic to a virtual channel that used for real time video 

transmission. The reserved bandwidth for this virtual 

channel depends on size of video frames and its rate. Video 

traffic is periodic, thus potentially we may use scheduling 

QoS for this traffic. 

One video frame may be transmitted via the network by 

one or several packets at the transport/network layer. 

Correspondingly to the SpaceFibre standard, packet size 

does not lead to changes in delivery time for traffic that is 

transmitted via other virtual channels. Data are transmitted 

by frames with constrained maximal length at the data link 

layer. Selection of next virtual channel for transmission is 

implemented after transmission of every frame. Thus data from 

virtual channel with a high priority will be delayed no longer 

than transmission time of one SpaceFibre frame of maximal 

size. 

Let’s consider transmission of uncompressed video with 

the size of video frame 1 – 2Mbytes and the rate of 24 frames 

per second via the network. Required bandwidth for 

transmission of video frames with 1 Mbytes size is 25%, for 

transmission of video frames with size 2 Mbytes is 50%, when 

the channel rate is 1,25Mbit/s. 

The graphs in Fig. 3 represents transmission time of one 

video frame via the path that includes one router and tree 

routers when other traffic does not transmit via the network 

(video data transmitted continuously). 

These graphs shown that transmission time strongly 

depends from size of a video frame and practically does not 

depend from quantity of transit routers – delay of a SpaceFibre 

frame in one router is essentially less than delay of frame 

transmission via physical channel. 

 

Fig. 3.  The graphs of dependency between video frame transmission time 

and video frame size (channel rate 1,25Mbit|c)  

When video flow transmission is realized by whole video 

frames a sequence of SpaceFibre frames, which belongs to one 

video frame, is transmitted to the network continuously 

(including the case when some transport/network packets are 

used for transmission of one frame). As result the SpaceFbre 

frames will be transmitted via every data link during long time 

(about 9 ms for 1 Mbyte length, about 18 ms for 2 Mbytes 

length). (Then data will not be transmitted via this virtual 

channel during long time.) 

The width of Bandwidth credit counters in the network 

equipment should be enough for count during 9 ms (18 ms) 

without achieving Minimum Bandwidth credit Threshold. 

If Minimum Bandwidth credit Threshold will be achieved 

the lowest priority level will be assigned automatically to this 
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virtual channel. In this case the video frame delivery time 

may be grow dramatically if other traffic is transmitted via 

the network. 

Let’s consider influence of other types of traffic to 

streaming (video) traffic. In our sample rate of command 

traffic is very low, packet length is 64 Bytes << max frame 

length. Therefore increasing of delivery time for video traffic 

is less than 1%. 

Traffic with lower priority (for example, Best Effort 

traffic) may be transmitted via the network together with 

streaming traffic (compete with streaming traffic in routers). 

Therefore in the worst case every SpaceFibre frame, which 

belongs to the streaming traffic, will wait for transmission of 

one frame from BE traffic in every data link. It leads to 

increasing of streaming PDU’s (video frame) delivery time 

in two times. If BE traffic may appear and disappear in 

different time moments, jitter of delivery time for streaming 

traffic will be about 9 ms (for PDU length 1 MByte), and 

about 18 ms (for PDU length 2 MByte). 

There are some flows of video traffic between different 

sources and destinations in the network, which compete in 

routers. Let’s suppose that all these flows are transmitted via 

one virtual channel (let’s mark it VCi). If transmission of a 

packet from one source (let’s mark it packet_1) to the output 

port of the router has started, the packet from other source 

(let’s mark it packet_2) would not be transmitted to the same 

virtual channel (VCi) of this output port. The packet_2 will 

be transmitted to the output port only after transmission of 

packet_1 is finished. The next portion of data, which belongs 

to the packet_1, may be not ready (e.g. corresponding 

SpaceFibre frame may be delayed in a previous router), 

therefore the VCi in this case can stay idle during long time. 

The packet_2 should wait of the virtual channel releasing 

in the router all this time. Therefore, delivery time of the 

packet_2 is increased in some times. The waiting time is 

proportional to the packet size. Therefore if one virtual 

channel is used for some data flows, the packet size at the 

transport/network layer should be strongly constrained (and 

should be essentially less than the size of video frame). 

However it will lead to essential increasing of overheads due 

to packets headers (and correspondingly decreasing of useful 

throughput). 

If there is possibility of using a separate virtual channel 

for every source of video traffic (if tis traffic is competed in 

the network), then any constraint to SpW packet length is 

not required. If video traffic from all these sources has same 

parameters, the equal settings may be assigned to all virtual 

channels used for this traffic. 

Let’s consider the part of the network where video traffic 

from tree sources is competing. Size of a video frame is 

1 Mbytes, and rate is 24 video frames per second. The equal 

priority (next priority after command traffic) and equal 

portion of bandwidth/throughput (25%) is set for every 

virtual channel assigned to video traffic. 

In the best case all sources will transmit video frames in 

different time periods and BE traffic will not present in the 

network in these periods. In such case the video frame 

delivery time will be about 9 ms. In the worst case all sources 

will transmit video frames in one time and BE traffic will be 

also transmitted in this time. In this case worst delivery time 

for every SpaceFibre frame, which belongs to video traffic 

may be represented as the sum of waiting time (transmission 

time of one SpaceFibre frame, a frame from BE traffic and two 

SpaceFibre frames that belongs to video traffic from other 

sources) and transmission time of the considered frame. In our 

case, delivery time of video frame in this case will be in four 

times bigger than in case of empty network; its value will be 

about 36 ms, and, correspondingly, jitter will be about 27 ms. 

Thus if there are Lv video data flows with same parameters 

and BE data flows (its parameters do not play any role) in the 

network, and they compete, the maximal delivery time of video 

frame is in Lv times bigger than delivery time of such video 

frame in empty network (without any other data). 

In general case if in the network there are Lh data flows 

with priority higher than considered, (Lv-1) data flows with 

same priority and some data flows with lower priority (its 

quantity in not important), the maximal delivery time of a 

SpaceFibre frame, which belongs to the considered data flow, 

may be evaluated by next formula: 

TbTvThTv
Lv

v

i

Lh

i

i  
 11

max  (1) 

where Thi – transmission time of SpaceFibre frame of 

maximal length, which belongs to highest priority traffic, 

Tvi – transmission time of a SpaceFibre frame of maximal 

length, which belongs to traffic with same priority as the 

considered;  

Tb –transmission time of a SpaceFibre frame of maximal 

length, which belongs to the traffic with lowest priority. 

The maximal length of a SpaceFibre frame (and, 

correspondingly, its transmission time) for the concrete traffic 

in the network can be less than maximal length in the standard 

(256 bytes). This situation takes place when the packet length 

for considered traffic type is less, than 256 Nchars, and the 

data flow rate is small. In this case every packet will be 

transmitted in a separate SpaceFibre frame. 

Jitter may be evaluated by the formula: 

TvTbTvThTvTvTvj
Lv

i

i

Lh

i

i  
 11

minmax  (2) 

These evaluations show essential jitter for streaming 

(video) data flow. The jitter is in some times bigger than 

minimal delivery time of video frame. 

Let’s consider using of SpaceFibre scheduling QoS for 

jitter decreasing. We analyze an approach, when the timeslots 

and epoch changes in all data links of the network 

synchronously. The duration of a timeslot corresponds to 

transmission of every possible SpW packet in the network 

between source and destination.  

In our use case rate of video frames is 24 frames per 

second. Correspondingly, every data source should have 24 

timeslots for data transmission of every second. The timing 

interval between generation of two sequential video frames is 
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about 41,7 ms. Transmission time of one video frame via the 

network (when does not transmitted any other data) is about 

9 ms (1Kbytes length), about 18 ms (2Kbytes length). We 

consider the sample of network with tree sources of video 

with length of video frame 1Kbytes. We select duration of 

epoch equal to 41,7 ms, and divide it to four timeslots with 

duration about 10,4 ms. Tree timeslots we assign to virtual 

channels for video traffic. Forth timeslot is used for BE 

traffic. As noted above the command traffic may be 

transmitted in all timeslots (also separate timeslot for this 

traffic is not required). With these settings the video traffic 

from one source can compete in the network with one 

SpaceFibre frame belongs to command traffic (influence of 

this traffic is minimal), and with one SpaceFibre frame 

belongs to other video traffic or BE traffic (waiting time is 

not more than time of one SpaceFibre frame transmission 

time). As result jitter is less than 1 us. 

However, the sources of streaming data with different 

PDU’s length (for example, compressed video) may be exist 

in the network. Using of such approach can lead to 

ineffective using of channel throughput. The duration of 

timeslots should be corresponds to transmission time of 

PDU’s with maximal length. For example, in case of 

compressed video duration of timeslot should be enough for 

transmission of I-frame. But P-frames and B-frames length 

can be less than I-frame length in ten times. Quantity of 

transmitted P- and B- frames in dozen times greater than 

quantity of I-frames. Therefore in most timeslots the channel 

will be not used (data will be not transmitted) about 90% of 

timeslot’s duration. 

If there are some sources of streaming traffic with 

different and aliquant period of PDU’s generation in the 

network, the task of timeslot duration’s selection and 

quantity of timeslots in epoch selection is nontrivial. 

C. Best effort traffic 

The lowest layer of priority can be assigned for virtual 

channel, selected for Best Effort traffic (BE), because 

typically does not exist any restrictions for transmission time 

of this traffic type. Rate of BE traffic in some cases may be 

known, but in other cases it may vary essentially during 

system operation (BE traffic may have periodic or aperiodic 

nature). The portion of bandwidth reminder from other 

virtual channels, may be assigned for the BE traffic virtual 

channel. Data transmission via this virtual channel will be 

possible when there is no data for transmission in other 

virtual channels with higher priorities. In our use case the BE 

traffic compete in the network with command traffic and 

video traffic, therefore the maximal delivery time for BE 

traffic is about 27 ms. 

In general case, if there are Lh command flows, Lv data 

flows of streaming (video) traffic (with equal parameters) 

and the Best Effort data flow (its parameters do not play any 

role) competing in the network, the maximal of transmission 

wait time for the BE traffic can be evaluated by the formula: 





Lv

i

i

Lh

i

i TvThTb
11

max    (3) 

Where Tvi – transmission time of a SpaceFibre frame that 

belongs to command traffic; 

Tvi – transmission time of a SpaceFibre frame that belongs 

to streaming (video) traffic (in the empty network) 

IV. CONCLUSION 

In the paper we show that quantity and packet sizes of low 

priority traffic does not affect maximal delivery time of 

command traffic (highest priority traffic). The maximal 

delivery time of command traffic depends only from the 

number of transit routers. When path of the command traffic 

includes ten routers the maximal delivery time is less than 35 

us; it is acceptable for most systems. 

The evaluations of delivery time and jitter for streaming 

traffic (for example, video traffic) with real time requirements, 

when other traffic is transmitted via network, are represented in 

our paper. We show that when streaming (video) traffic from 

some sources is competed in the network it is appropriate to 

transmit the traffic from different sources via different virtual 

channels. If it is impossible (quantity of virtual channels 

implemented in the network equipment is not enough), the 

video traffic should be transmitted by small size packets (on 

the transport and network layer). However using of small size 

packets leads to increasing of transmission overheads, 

increasing of delivery time and decreasing of useful 

throughput. 

We evaluate achievable timing parameters for streaming 

(video) traffic for considered use case when guaranteed 

bandwidth QoS is used (a separate virtual channel is used for 

every video traffic flow). The maximal delivery time of the 

video frame is less than 36 ms and jitter is less than 27 ms. 

These values do not depend on Best Effort traffic parameters in 

the network. 

In this paper we show possibilities and constraints of using 

QoS scheduling when timeslot duration allows transmission of 

whole a PDU (for example whole video frame) between source 

and destination. The epochs and timeslots change 

synchronously in all data links of the network. 

We show that this type of QoS allows to essentially 

decrease jitter for streaming traffic with equal sizes of PDUs 

(for example video traffic without compression). In our use 

case jitter is less than 1 us (jitter is equal 27 ms without 

scheduling). But this approach leads to essential decreasing of 

useful throughput when PDUs with different sizes are 

transmitted (for example compressed video). If there are some 

sources of streaming traffic with different and aliquant period 

of PDU’s generation in the network, the selection of timeslot 

duration and quantity of timeslots in the epoch is nontrivial 

task for developer. 

We show dependency between maximal transmission wait 

time for the Best Effort traffic and parameters of other traffic 

in the network. We evaluate maximal wait of transmission time 

for considered use case; it is about 27 ms. 

ACKNOWLEDGEMENT 

The research leading to these results has received financial 

support from the Ministry of Education and Science of the 

332



Russian Federation under grant agreement no. 

RFMEFI57814X0022. 

 

REFERENCES 

1 I. Korobkov “Adaptive Data Streaming Service for 

Onboard Spacecraft Networks”, Proceedings of 17th 

Conference of Open Innovations Association Finnish-Russian 

University Cooperation in Telecommunications (FRUCT), 

2015, pp. 291-298. 

2 CCSDS 766.1-B-2 Digital Motion Imagery 

Recommended  Standard 

 

 

 

333



 

 

 

  

 Test & Verification (Long) 

 

 

 

 

 

334



 

How to design, test and verify the physical layer of 
SpW networks   

 
 SpaceWire Test and Verification session, Long Paper 

 
Giorgio Magistrati (Author), Norbert Bonnici, Wahida 

Gasti, Farid Guettache, Jorgen Ilstad 
Data Systems Division ESA ESTEC 

Noordwijk, The Netherlands 
Giorgio.Magistrati@esa.int, Norbert.Bonnici@esa.int, 

Wahida.Gasti,@esa.int, Farid.Guettache@esa.int, 
Jorgen.Ilstad@esa.int 

 

 James Windsor, Science Directorate 
ESA ESTEC 

Noordwijk, The Netherlands 
james.windsor@esa.int 

Alex  Palacios, Earth Observation directorate 
ESA ESTEC 

Noordwijk, The Netherlands 
alex.palacios@esa.int 

 
 

Abstract 
The AIT/AIV spacecraft test campaign undergoes an electrical 
verification program for all the units and instruments. The 
SpaceWire standard calls for LVDS signals in the physical layer 
and these are considered critical because the present LVDS 
technology is capable to drive signals up to 400 Mbit/s with low 
common mode voltage. Reliable SpaceWire communication can 
be difficult in the presence of induced noise, ground level 
differences, impedance mismatches, failure to effectively bias for 
idle line conditions, and other hazards associated with 
installation of a SpW network within the spacecraft. Therefore, 
the verification steps of SpW signals are very important and they 
shall be addressed with special care.  
Moreover, the new revision of the SpaceWire standard ECSS-E-
ST-50-12C* rev.1 (currently under review) defines new 
requirements for the SpW signals in particular for the skew and 
the jitter budget and the margins. In addition, responsibilities for 
the two main actors (i.e. the unit manufacturer and the cable 
assembly manufacturer) are defined via jitter and skew budget 
calculation. All these aspects motivated ESA to the internal 
development of boards to perform the new requirement tests. 
This paper will summarize the related test campaign and the test 
coverage of various clauses of the new revision of the standard. A 
comprehensive plan and recommendations for the validation 
measurement of SpW link from the design to the final 
qualification/acceptance is proposed, distinguishing 
responsibilities among system architect, component 
manufacturer, unit supplier, cable assembly manufacturer and 
system integrator.  

References to on-going ESA projects will be presented.. The 
effect on the overall skew and jitter budget calculation is 
discussed as well. 

Index Terms—SpaceWire, Networking, Spacecraft 
Electronics.) 

I. INTRODUCTION 
After a mission is adopted, the related project planning and 
implementation encompass all of the processes carried out in order to 
plan and to execute a space project from initiation to completion at 
all levels in the customer‐supplier chain in a coordinated, efficient 

and structured manner. Project breakdown structures provide the 
basis for creating a common understanding between all actors. They 
break the project down into basically 3 tree structures that are: the 
function tree, the specification tree and the product tree. The primary 
project product is the spacecraft. Following [1], the spacecraft  
product development is closely linked to specification, design, 
manufacturing and test activities on all the levels related to the 
spacecraft product tree supported by a V-Model process involving a 
succession of decisions based on reviews. 

The V-Model process is thus designed as guidance for planning 
and executing the spacecraft product development taking into account 
the entire system (i.e. on-ground and on-board system products) life 
cycle development. It defines the results to be achieved and it 
describes the actual approaches for developing these results. At all 
levels of the product tree, the acceptance decision is linked to test 
results. In addition the V-Model specifies the responsibilities of each 
participant involved in each level. Thus, it is describing in detail, 
"who" has to do, "what" has to be done and "when" it has to be done 
within a spacecraft project.  

 
Figure-1: Basic structure of the V-model  
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Figure 1 indicates the basic structure of the V-model. It shows a 
top-down approach starting from the system specification down to the 
detail design of products at the lowest level. The first top-down phases 
are concluded by the Critical Design Review which should initiate the 
bottom-up approach. The bottom-up approach is punctuated with tests 
ranging from lowest level products tests (e.g. the units, the 
instruments, the harness etc.) to the final integration/assembly 
spacecraft acceptance tests.    

Thus specifying the appropriate test cases for each requirement is 
essential to the V-model. The top-down structure of the requirement 
specifications and the design corresponds to a bottom-up structure of 
the requirement test cases.  

The introduction of the V-model as a paradigm in the engineering 
flow of a spacecraft system results in  a significantly more structured 
way of development within the supplier chain. The more the 
requirements are specified in detail, the more obvious the limited test 
coverage of complex assistance systems becomes.  

In this paper, we present the specific case of how to design, to test 
and to verify the physical layer of SpW networks implemented within 
a spacecraft. The spacecraft SpW network specification at system 
level is based on the ECSS-E-50-12C. The paper will not address the 
SpW physical layer implementation over a backplane. The SpW 
standard covers three (physical, data-link and network) of the seven 
layers of the OSI model (ISO/IEC 7498-1) for communications. The 
ECSS-E-50-12C physical layer requirements are considering a point-
to-point serial Data Link Interface depicted by Figure 2. The SpW 
Data Link Interface is constituted by a pair of LVDS driver/receiver 
exchanging signals via PCB tracks, connectors and an assembled 
cable with connectors as depicted by Figure 2.   

 
Figure 2: SpW Data Link Interface 

 
The ECSS-E-50-12C is a specification made applicable to the 

overall supplier chain involved in the SpW Data Link Interface 
procurement.  This standard does indicate any system apportionment 
requirements, thus it does not take into account the V-Model process 
so it does not cover the  "who" has to do "what" and "when" 
responsibility aspects.   

 
This is an issue for the spacecraft AIT/AIV work when the SpW 

Data Link Interface constituents are provided by different suppliers 
(i.e. unit supplier, instrument supplier and harness supplier). These 
suppliers have designed only one constituent of the SpW Data Link 
Interface, e.g. the driver node, and accordingly they have tested it only 
at their level and with EGSE representative to their level. The test 
coverage is only partial w.r.t the one related to the spacecraft. It is not 
addressed by the SpW standard how these supplier tests can be 
complemented at system level to ensure a reliable data communication 
over the SpW link. . 
 

The new version of the SpaceWire standard [3], still under 
revision, describes a more thorough set of measurements for the 
SpaceWire Physical Layer under section 5.3 but it is still missing the 
top-down V-Model specification and design, and the bottom-up test 
approach.    

  
Thus, this paper reports on the test of a sub-set of requirements 

related to the physical layer to introduce a discussion on the physical 
layer requirements of the SpW Standard and its revision 1 w.r.t to the 
V-model spacecraft development process.  To this end,  

• section II indicates the selected set of requirements supporting 
the discussion 

• section III provides the review of the revision of the SpW 
standard 

• section IV describes the test bench developed by ESA for the 
review of the new Standard  

• Section V provides the test results and the preliminary 
comments 

• The paper’s conclusion (section VI) provides recommendations 
on how to design, test and verify the physical layer of SpW 
networks  

  

II. SPW PHYSICAL LAYER SELECTED REQUIREMENTS  
In this section parts of the physical layer requirements presented in 
the new SpW standard currently under revision. The SpW Data Link 
interface requirements are falling under mainly three categories that 
are design requirements, signaling requirements and timing 
requirements. The signaling and timing requirements are linked to 
performance aspects that are mainly affected by  the spacecraft 
grounding aspects (signaling) and with the spacecraft SpW network 
data rate aspects (timing). They are the two categories of 
requirements that have different test perspectives and constraints 
when addressed at unit or instrument level and when addressed at 
spacecraft level. The following Sub-sections are indicating the related 
set of requirements extracted from [3] for test and review. 

 

A. SpW Physical Layer Signaling Requirements 
The SpW signaling requirements are specified in section 5.3.5. 
Tables 1 and 2 contain the selected sets of requirements for 
which a test bench has been implemented and measurement test 
procedures have been established to ensure that a unit or an 
instrument is compliant with the standard. 

The requirements  are  categorized in two parts: 
1. The LVDS transmit signals requirements specified in section 

5.3.5.2.2  (see Table 1) 
 

Req.ID Requirement description  
a When terminated, for measurement purposes, by 

two 50 Ω ± 1% termination resistors in series 
forming the required 100 Ω ± 1% termination 
impedance, the two outputs of the LVDS line driver 
(Out+ and Out-) shall have a common mode 
voltage, Vcm, measured at the junction of the two 
50 Ω ± 1% termination resistors, of 1.125 V to 1.45 
V 

b When terminated, for measurement purposes, by a 
100 ± 1 Ω termination resistor, the two outputs of 
the LVDS line driver (Out+ and Out-) shall have 
amplitude, Vtx, of +250 mV to +450 mV, as 
illustrated in Figure 5-8, and a differential 
amplitude  (Out+ minus Out-) of 2Vtx 

c When a logic 1 is to be transmitted +Vtx shall be 
greater than –Vtx 
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d When a logic 0 is to be transmitted +Vtx shall be 
less than –Vtx 

e The steady state difference  in magnitude of the 
common mode voltage, Vcm, when transmitting a 
logic 1 compared to when transmitting a logic 0 
shall be less than 50 mV. 

f The steady state difference  in magnitude of +Vtx 
or –Vtx when transmitting logic 1 compared to 
when transmitting logic 0 shall be less than 50 mV. 

g The differential output of the line driver, Out+ - Out-
, shall rise and fall monotonically with a rise time  
(Tr) and fall time (Tf) of at least 260 ps and less 
than 0.3 times the bit period (T), as illustrated in 
Figure 5-9, with the rise time being from 20% to 
80% of the difference between the two steady state 
values of the line driver differential output and the 
fall time being from 80% to 20% of those values. 

h The differential output of the line driver, Out+ - 
Out-, should rise and fall monotonically with a rise 
time (Tr) and fall time (Tf) of less than 3 ns . 

i Ringing on the differential output of the line driver, 
Out+ - Out-, shall not be greater than ±0.4Vtx. 

j The maximum dynamic difference  in magnitude 
between +Vtx or –Vtx shall be less than 150 mV. 

 
TABLE 1: LVDS transmit signal requirements 

 
2. The LVDS receive signals requirement specified in section 

5.3.5.2.3 (see Table 2) 
 

Req.ID Requirement description  
a The receive signals shall be terminated by a 100 ± 10 

Ω termination resistor. 
b The receive signals should be terminated by a 100 ± 1 

Ω termination resistor when an external termination 
resistor is being used. 

c The SpaceWire LVDS line receiver input 
characteristics and sensitivity shall be as defined in 
TIA-644-A. 

d A differential signal greater than +100 mV (i.e. 
+Vrx is greater than –Vrx by more than 100 mV) shall 
result in logic 1 at the line receiver output. 

e A differential signal less than -100 mV (i.e. +Vrx is 
less than –Vrx by more than 100 mV) shall result in 
logic 0 at the line receiver output. 

f The line receiver shall maintain correct operation for 
differential input voltages of up to 600 mV magnitude. 

g The line receiver shall tolerate  a voltage on the 
receiver inputs  in the range 0 V to +2.4 V relative to 
the line receiver ground and operate correctly. 

h The line receiver should tolerate  a voltage on the line 
receiver inputs  beyond the range 0 V to +2.4 V 
relative to the line receiver ground and operate 
correctly. 

 

TABLE 2: LVDS receive signal requirements 
 

B. The SpW Physical Layer Timing Requirements 
The new SpW standard rev.1 [3] introduces an informative 

Annex A for the measurement of Data-Strobe Skew and Jitter. The 
requirements of Annex A contain the selected set of requirements for 
which a test bench has been implemented and measurement test 
procedures have been established to ensure that a unit or an instrument 
is compliant with the standard. 

III. REVIEW OF THE NEW SPW STANDARD  

A SpW communication channel implemented using a LVDS 
physical layer is depicted in fig. 5-7 of the standard and here below 
(see Figure 3): 
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Figure 3: SpW Communication channel  

 
However the figure presented in the Annex A of the new standard 

is considered more detailed: all the elements including source logic, 
PCB, connectors, cable assembly and destination logic that play an 
important role, are shown as per Figure 4. 

 

 
Figure 4: Elements of a SpW Communication channel (Sending 

node transmitting to receiving node from left to right) 
 
Starting from Fig.4 we can add information related to the various 

stakeholders that are namely:  Equipment Suppliers, harness (i.e. 
Cable Assembly) Manufacturer and Prime. The Prime role usually 
performed by two different people or entities: the System Architect 
that at the beginning of the project has to take care of the correct 
definition and specification of the various elements and the System 
Integrator that has to perform the integration and the verification at 
integrated level of the various units (and harness). 
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Figure 5: Elements and Responsibility of a SpW Communication 

channel (one direction) 
 
Section 5.3.5.2.6 of the standard specifies requirements for the 

signal characteristic (edge separation) and quality (essentially 
differential amplitude) of the LVDS signal at the line receiver inputs. 
A test method is provided: repeated sequence of packets (composed 
by PSR stream and 0x55 pattern) to be measured across the line 
receiver termination resistor.  The editor of the Standard is clearly 
aware that measurement at termination resistor level is not feasible, 
when the unit is closed and this is indeed the situation when an a 
model of an equipment is integrated on a test bench or on the 
Spacecraft for test, therefore clause  5.3.5.2.6e states: “When access to 
the termination resistors is not possible, the receive signal may be 
measured at the connector adjusting for the transfer impedance 
between the connector and the termination resistor or other equivalent 
method”. This is a quite crucial point and we have severe doubts 
related to the feasibility of the first proposed method:  the transfer 
function of the receiver board has to be provided and validated by the 
Equipment supplier but according to our experience this transfer 
function is usually not calculated by an Equipment supplier, 
additionally the transfer function of the connector that is part of the 
overall receiver board transfer function is usually not provided by the 
connector manufacturer. 

A. SpW LVDS “Port Replicator” 
 
We propose to follow a different approach: a LVDS port 

replicator could be interposed between the cable assembly and the 
Equipment’s SpW LVDS circuitry and as such emulates this. This 
LVDS port replicator is essentially a LVDS receiver + driver. The 
interposition of the LVDS port replicator will affect the overall 
propagation delay of the SpW communication channel and it will add 
as well an extra contribution to the overall skew and jitter budget but it 
will allow to measure accurately the characteristic of the incoming 
LVDS signal in the specific implementation mainly in term of 
amplitude (differential and absolute) and timing. 

For what concerns the amplitude of the signal it is important to 
underline that not only the differential amplitude (min and max as 
defined by 5.3.5.2.6a2&3) has to be measured but also the min and the 
max absolute voltages (as defined by 5.3.5.2.5k clause “A line 
receiver input should withstand without failing a direct connection to 
a voltage between -0,3 V and +3,9 V relative to the driver [to be read 
as receiver] ground reference” that means that the incoming signal 
should stay within this limit). The LVDS port replicator has to be 
electrically connected to the signal ground of the Unit under Test ( and 
this could be done using the pin 3 of the connector in case of AL 
assembly). The LVDS port replicator  must contain active parts and 
the voltage supply should be provided by batteries or receiver unit 
power supplies 

The insertion of this LVDS port replicator would allow as well to 
measure the difference in the common ground as specified by 

5.3.5.2.4a : “The maximum potential difference between the local 
ground at one end of a SpaceWire link and the local ground at the 
other end of that SpaceWire link shall be between -1 V and 1 V”. It is 
assumed that the verification of this requirement is falling under the 
responsibility of the Prime(s): the system Architect during the 
architectural definition has to verify this aspect by analysis and system 
integrator during the integration phase will perform the final 
verification by test. 

 

B. Integrating SpW Units on a test bench or on a spacecraft 
 
Even if the LVDS port replicator makes it possible at the time of 

integration, to  verifythe quality of the incoming signals in the case of 
an ideal implementation , w/o  the transfer function of the Receiver 
unit ( from connector to the  receiver termination resistor ), the real 
quality  of the signals at the input of the receiver component cannot be 
assessed of a closed unit.  In absence of the transfer function an 
estimation of the degradation in amplitude (in dB) and frequency 
spectrum could be proposed and applied to the measurements 
performed on the LVDS port replicator: the obtained figures could be 
finally compared with the requirements defined in section 5.3.5.2.6 of 
the standard. 

Alternatively and this is indeed what it has been proposed by the 
Prime of Solar Orbiter in the Electrical Integration Test Plan signal 
characteristics to be measured directly at connector level of the unit 
have been specified. 

The proposed values are applicable to both the SpW Input (Data 
and Strobe IN) and the Output (Data and Strobe Output) signals. The 
measurements are proposed to be taken using an ad-hoc test box, an 
Integrated Test Box (ITB), that has to have a minimum impact on the 
signal quality. The values proposed by the Prime are assuming a 
degradation introduced by the circuit and the Prime estimate that this 
degradation will not be worse than 7.6dB ( from 240 mV down to 
100mV that is the minimum specified as differential amplitude by the 
ANSI TIA 644 standard and section 5.3.5.2.2 of the standard). This 
degradation has not been independently confirmed and should be 
taken as a working hypothesis. Ultimately the impact of the 
attenuation is clearly a function of the data rate sought operated at and 
the length of the transmission line i.e. lower data rate means 
attenuation of the high frequency components of the rising and falling 
edges is affecting less the LVDS receiver’s ability discriminate 
between 0’s and 1’s. 

 
For the MTG Project the prime produced a technical note that 

synthesizes the context of the MTG-I and MTG-S Spacewire links, the 
definition of the grounding rails dedicated to these links, and the 
testing approach at unit level and system level. The technical note 
defines the measurement to be done at unit connector level for SpW 
signals and in particular eye diagram are required to be performed 
while triggering on the Data and Strobe signal positive and negative 
edge at +100mV for rising edge and -100mV for falling edge and also 
at 0V level. The eye diagram are used to derive the minimum edge 
separation without taking into consideration the possible effect of the 
unit connector and PCB on signal degradation. The applicability of 
figures and values defined by ANSI-TIA-644-A at unit level created 
some Non Conformances: e.g. the measurements of the LVDS 
dynamic output voltage during EQM qualification tests showed a 
variation higher than the 150 mV specified at the LVDS circuit by the 
ANSI-TIA-644-A and several clarification sessions within the MTG 
team were needed to resolve the non-conformance. 

For BepiColombo, System AIT performed electrical 
measurements on the SpW interface following mounting of a SpW 
unit on the spacecraft. These tests involved inserting a dedicated 
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passive test-adaptor on the UUT’s SpW connector and performing 
single-ended measurements of each line against the unit’s signal 
ground (via Pin 3). The disadvantage of this approach is that if a non-
conformance is measured then it is already too late and possible 
damage might have been caused. In cases where additional 
precautions were needed, a  SpaceWire EGSE was used in between 
the units and measurements were taken on the SpW EGSE interface to 
the unit under suspicion because it has been observed that a 
substantially disturbed SpW signal has been cleaned by the EGSE unit 
and does not propagate further along the SpW link. However this 
means that single-ended measurements are made against the EGSE’s 
signal ground and not the UTT so these measurements cannot be used 
to close out the test, meaning the SpW recorder must eventually be 
removed and the measurements repeated in order to complete the 
integration procedure. Ideally, having a means to perform safe 
measurements against the UUT’s input interface vs. signal ground 
combined with having a clear requirement on the limits of the 
differential voltage would have allowed more efficient integration 
testing of payloads and data handling units on the spacecraft.  

A LVDS port replicator can indeed be used to verify the quality of 
the LVDS signals generated by the driver circuit. However, it has to 
be underlined that the requirements defined in section 5.3.5.2.2 of the 
standard (LVDS transmit) are not directly applicable to measurements 
performed at unit/board connector level because they are specified at 
driver level (they are indeed directly taken from the ANSI-TIA-644-
A), therefore also in this case a transfer function including the PCB 
and connector has to be subtracted to compare the obtained 
measurements with the requirements at driver components or even 
better based on the consideration that all the drivers components are 
compliant with the ANSI-TIA-644-A standard (therefore no need to 
verify this…)  it is more important to specify a max degradation  
(induced by the PCB circuit and by the connector of the driver unit) in 
amplitude and timing characteristic of the signal at connector level 
that can be tolerated at system level (and this was what has been done 
by the Prime in Solar Orbiter). 

 

C. Data and Strobe signals : Skew &  Jitter  budget 
 
Section 5.3.6 of the standard defines and specifies how to measure 

the Data and Strobe skew budget and how to evaluate  the maximum 
achievable operating frequency (inverse of minimum bit time) of a 
SpaceWire link. A margin of 10% is applied to the calculated skew 
figure. A more detailed explanation is included in Annex A of the 
standard where the various elements composing a SpW 
communication channel are individually addressed: 

• source logic;  
• driver; 
• connections from driver to unit connector; 
• cable assembly; 
• connections from unit connector to receiver; 
• receiver and destination logic.  
 
Responsibilities are assigned for the specification and the 

measurement of the individual contributions to the overall skew and 
jitter budget, examples are: 

 
5.3.2.6.2a. “The equipment manufacturer shall provide the 

specification for the worst case skew between the differential data and 
strobe output signals at the SpaceWire connector of a unit 
(DSskewOUT), including the effect of transmitter jitter” 

 
and 
 

Annex A- A3a. “The cable assembly manufacturer provides the 
worst case skew between the differential data and strobe signals” 

 
However the proposed principle is not fully in line with a V-model 

verification process where the System Architect is supposed to be in 
charge of the architectural definition of all the communication 
channels and he is supposed, at the beginning of the project, to define 
an apportionment of the skew and jitter budget among the various 
contributors and to specify individual figures for all the units and the 
cable assemblies. The System Architect is in charge of maintaining the 
skew and jitter budget along the project life. It’s a task normally  
shared with the System integrator at the end of the AIT phase. The 
Equipment supplier is in charge of the selection of components 
(source/receive logic and LVDS transmitter) and specification of the 
board/unit design in order to be compliant with the skew and jitter 
figures defined by the system architect. A similar role is performed by 
the Cable Assembly manufacturer for the cables and connectors. To be 
noted that the selection of components has to be done taking into 
consideration radiation, temperature range and aging.  |Indeed all the 
manufacturer datasheets and SMD drawings for qualified components 
are defining values in the full T range and after irradiation. 

The development of the units and cable assemblies supported by 
design justification files and analyses, if approved by the 
Prime/agency, can then be followed by the manufacturing phase. 
Measurements are needed at unit level and at integration level to 
confirm that the specified requirements have been fulfilled. Section 
5.3.6 and Annex A are defining how to measure the jitter and skew 
contribution and the system integrator has to reassess the overall skew 
and jitter budget, to be noted that the measurement specified in section 
5.3.6 and Annex A are done at ambient T and before exposition to 
radiation that will happen in orbit therefore margins or correction 
factor have to be applied on the measured values in order to compare 
the real measured budget with the estimation done at the beginning of 
the project and evaluate possible out of compliance. Availability of 
measurements done at different model (EM, EQM, PFM/FM) will 
make possible early verification of the skew and jitter budget with a 
risk reduction. 

To be noted that the table presented in annex A ( table A-1) and 
table 5-7 of the new standard erroneously does not include the jitter 
contribution of the Receiver unit. 

 
D. Bandwidth of measurement tools  
The standard requires that the operator has to use an oscilloscope 

and differential probes which have bandwidths of at least 1,05 times 
the reciprocal of the signal rise time. 

BW(BandWidth) = 1,05/(signal rise time). 
A justification note states that the factor of 1,05 is a rule of thumb 

requiring the bandwidth of the oscilloscope and probe to include the 
third harmonic of the signal edge bandwidth. The signal edge 
bandwidth is given by 0,35/rise-time (the bandwidth of a signal is 
0,35/rise-time). The fastest signal rise time for LVDS is specified in 
ANSI-TIA-644-A to be 260 ps, resulting in a minimum combined 
oscilloscope and probe 3-dB bandwidth of 4 GHz. Allowing some 
margin the standard gives a recommended combined oscilloscope and 
probe 3-dB bandwidth of 5 GHz (which is the figure recommended in 
TIA-644-A). 

The specified rule of thumb gives a quite accurate representation 
of the signal to be measured. All fast edges have an "infinite" 
spectrum of frequency components. However, there is an inflection (or 
"knee") in the frequency spectrum of fast edges where frequency 
components higher than Fknee are insignificant in determining the 
shape of the signal. To calculate Fknee: 

 
Fknee=0.4/Trisetime (20-80 percent) 
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Fknee=0.5/ Trisetime (10-90 percent) 
See [5]  
Now, the above equations only tell us what the "useful" frequency 

content is in the signal we want to measure. We need further to 
specify to what accuracy we need to reproduce the signal. Depending 
on the frequency response of the scope, which is either Gaussian or 
maximally flat response, the Fknee can be multiplied with different 
accuracy factors to determine the necessary bandwidth required for an 
oscilloscope.  

To achieve 3% accuracy the oscilloscope bandwidth needs to be: 
Fbw= 1.9xFknee (Gaussian response) or 1.4xFknee (Max. flat amplitude 
response). In contrast to achieve 10% accuracy, which is quite 
sufficient in most cases, the result is: BW= 1.3*Fknee (Gaussian 
response) or 1.2*Fknee (Max flat amplitude response).These equations 
are appropriate as a guideline to determine the maximum frequency 
the oscilloscope (including probes) should support to reproduce the 
measured signal sufficiently. 

To be underlined that the recommendation to use a 5GHz BW 
oscilloscope in the standard is present also in section 5.3.5.2.6. where 
“system test” at the receiver unit are described, in this case the 
filtering effect of the parasitic capacitance (PCB, cable) are slowing 
down the edges, therefore the 260ps as fastest edge is not in reality a 
realistic value. 

In Fig 6-8 rise and fall time of SpW signal have been measured at 
the output of a SpW unit, probes with different BW ( 1.5 GHz and 
20GHz ) coupled with High BW DSO and the measurements are 
showing that timing measurements are essentially the same ( appx 340 
ps). 

 
Figure 6: ZD1000 (1 GHz) probe - DSO @ 40 GSps – Data Signal 

(differential) 

 
 

Figure 7: DS2005 (20 GHz) probe - DSO @ 80 GSps – Data Signal 
(differential) – rise time 

 

 
Figure 8: DS2005 (20 GHz) probe - DSO @ 80 GSps – Data Signal 

(differential) – fall time 
 
 

IV. ESA TEST BENCH  
 
A test bench has been defined and developed in order to test the 

set of requirements of the new SpW Standard defining the Physical 
layer of SpW:   
a) Measurements at node level and at component level (to 

compare)  
b) Measurements on Driver side 

–  Common mode (voltage, steady state difference, maximum 
dynamic difference) 

–  Differential mode (amplitude, steady state difference, rise 
and fall time, ringing) 

– Jitter and skew contributions 
c) Measurements on Receiver side 

– Jitter and skew contributions 
– Signal quality of received LVDS signal 
– Absolute maximum ratings  

Additionally significant effort has been spent in order to 
implement non-intrusive measurements techniques and to carefully 
place test point on the boards. 
 

A.Test bench description  
TEC-EDD has developed a board for testing and verification of 

SpaceWire communication channels (see Fig.9). The board hosts six 
(6) SpaceWire interfaces, four of them are nominal channels while 
two are redundant.  

LVDS drivers and receivers from different manufacturers have 
been soldered (SpaceIC SPLVDS031/32 from SpaceIC, 
SN55LVDS31/32–SP from TI, and GR54LVDS049SPW LVDS dual-
transceiver from Cobham Gaisler). Also two different types of Cross-
Point Switches (SN55LVCP22-SP from TI, RHFLVDS2281 from ST) 
have been mounted and tested. SpaceWire codec IPs have been 
instantiated on an FPGA that hosts also the interface logic with the 
host computer. 

 

 
Figure 9 ESA TEC-EDD Test board  
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Several ad-hoc boards have been prototyped in order to perform 

the various measurement steps defined by the standard (Fig 10):  
1. SpW interface mezzanine board (prototype) 
2. SpW Unit Tester 
3. SpW Driver Analyser 
4. SpW Jitter Analyser  

 
 

Figure 10 Test Jigs 
 
The overall test bench is depicted by Figure 11. 
 

 
Figure 11: Test Bench Overview 

 

V. TEST RESULTS 
 
Different techniques and probes with different BW  (500MHz, 

1GHz, 1.5GHz and 20GHz) coupled to DSO with high sampling rate 
and input BW have been used for the signals measurement. 

 

 

 

 
Figure 12 different Probes used on the ESA Test Bench  

 
Several tests defined by the new SpW standard have been 

performed and hereafter the test results for the Eye diagrams 
measurements are  reported: cables  of 50 cm and 5 meters have been 
used and two type of patterns have been used (fixed pattern 0x55 and 
PSeudo Random-PSR pattern).  The measurements have been done 
using or the built-in test point on the board or an external passive test 
jig ( see fig.17) 

 
Fig 14 Eye diagram 1.5 GHz probe, 0x55 (>1000 bytes) using 

built-in test point - 5 mt cable, linkspeed is 100Mbit/s. 

2

1
4

3
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Fig. 15 Eye diagram 1.5 GHz probe, PSR (>1000 bytes) using 

built-in test point - 5 mt cable, link speed is 100Mbit/s. 
 

 
 
Fig. 16 Eye diagram 1.5 GHz probe –PSR (>1000 bytes) using 

external passive test-jig to measure the signal - 5 mt cable, linkspeed 
is 100Mbit/s 

 
 

Fig. 17 External pssive test–jig used to measure SpW signal  
 
Use of passive Test Jig or measurements at connector level of a 

unit can not be compared with ANSI-TIA/EIA-644-A limits unless 
corrected by impedance transfer functions that are particular for any 
given unit implementation. Firstly because it represents a considerable 
different load impedance than that for test fixture defined in the ANSI 
TIA/EIA-644-A standard. Alternatively margins have to be 
considered. 

VI. CONCLUSION AND RECOMMENDATIONS 
The new SpW standard should assign precise responsibilities to 

the various actors involved in the design, development and 
verification of a SpW communication channel. The Prime as system 
architect has the responsibility to define and specify the performances 
of the communication channel at system and element level (unit, cable 
assembly).  The element supplier has the task to provide a design that 

is compliant  to the specified value and the compliance has to be  
demonstrated by analysis (that can refer also to datasheet). The 
verification process shall be started at unit and cable assembly level 
and it shall be again responsibility of the Prime to assess the overall 
compliance of the developed SpW communication channel to the 
system requirements. 

 
Concerning the testing, it has been verified  that in order to obtain 

the best results at board level it is  necessary to place adequately the 
oscilloscope probes,  e.g in the case of an eye diagram measurement at 
the LVDS receiver, the DSO probes should be  preferably located on 
each side of the termination resistor. While for practical reasons it may 
not be feasible, any test point must be placed as close as possible to 
the termination resistor of each differential line. A test point should be 
small to reduce inductive as well as capacitive effects that distorts the 
signal, particularly the high frequency components of the rising and 
falling edges. Because of the fast edges of the LVDS signal low 
capacitance high bandwidth oscilloscope probes are required coupled 
with an oscilloscope with an adequate bandwidth, hence active probes 
that fulfill the previously mentioned rules for bandwidth calculation 
must be considered in order to give an accurate representation of the 
signal being measured (see [6], [8], [9]). 

In case of unit-to-unit level tests the termination resistor within a 
unit may not be possible to access. In order to obtain the quality of the 
signal generated and received by the unit, an external adapter or port 
replicator, as reported in section III, could be introduced which 
presents the required differential impedance. It should as well present 
lowest possible distortion of the LVDS signal while allowing the SpW 
communication link between two end-points to operate at specified 
data rate. It is unfortunately not possible to achieve these overall goals 
using a passive adapter, particular because it does not support very 
well an undisturbed measurement between two end-points.  

Although the circuit is relatively simple it presents some distortion 
to the LVDS signal mainly due to the additional MDM connector that 
is mated to the UUT. However the contribution in terms of distortion 
caused by the repeater board can be characterized using time domain 
reflectometer and subtracted from the measurements [7].  
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Abstract—STAR-Dundee recently released a number of new 

SpaceWire test and development products based on a single 

hardware platform and supported by a single software platform.  

This paper will describe the modular design that makes this 

possible and the advantages, both to STAR-Dundee and to users, 

of this system. 

Index Terms—SpaceWire, SpaceFibre, STAR-Dundee, PXI, 

cPCI, PXIe, Interface, Router, STAR-System 

I. INTRODUCTION 

STAR-Dundee has recently released a number of new 

SpaceWire test and development products based on a single 

hardware platform, using modular FPGA designs, and 

supported by a single software platform.  The hardware, FPGA 

and software platforms each make use of a modular design, 

which allows different features to be included in a number of 

unique products. 

This modular combination allows STAR-Dundee to quickly 

develop new products to support common requirements for 

SpaceWire and SpaceFibre test and development equipment.  

In addition, it provides a framework to explore new concepts 

without requiring completely new hardware, FPGA code and 

software to be developed. 

This paper describes the hardware, FPGA and software 

modules which make up this system, and how they themselves 

have benefited from reusing previous developments.  It then 

describes some of the products that have been released using 

this platform, and some of the projects that have used the 

platform to quickly develop devices to test out new 

technologies.  The paper concludes with information on some 

new products being developed using the modules described. 

II. HARDWARE PLATFORM 

To enable this modular system, a new hardware platform 

was developed.  The STAR-Dundee PXI hardware platform 

has a CompactPCI (cPCI) connector at the rear.  This allows 

the device to be used in cPCI, PXI and PXI Express (PXIe) 

racks.  A photograph of the hardware platform is shown in Fig. 

1. 

 

Fig. 1. STAR-Dundee PXI hardware platform 

The hardware platform has been designed to support a 

number of different interfaces on the front panel, not only 

SpaceWire.  The platform has sockets for sixteen flexi 

connectors, to which a number of different supported flexi 

interfaces can be connected and made available to users on the 

front panel of the device.  The interfaces which can be 

connected currently include: 

 SpaceWire ports 

 SpaceFibre ports 

 CAN bus ports 

 JTAG ports 

 USB UART ports 

 GPIO ports 

 SD card slots 

 SMB trigger connectors 

 Switches 

 Push buttons 

Other new interfaces can be developed and connected in the 

same way.  Each interface includes LEDs which can be used to 

indicate status.  For example, the SpaceWire interfaces have 

one LED which indicates whether packets are being 

transmitted, and another to indicate whether packets are being 

received.  These LEDs can also be used to indicate errors. 

Supporting each of these interface types allows devices to 

be created with a mixture of interfaces, for example a 

SpaceWire to SpaceFibre bridge or a device with multiple 
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SpaceWire ports and triggers, switches and buttons for 

triggering events. 

Front panels must be manufactured to support the specified 

interfaces, but for internal developments or during prototyping 

these front panels can be quickly produced using a 3D printer.  

The PXI card is a 3U (rack Units) card, and the front panels are 

3U high, with 6U versions available.  The width of most front 

panels developed so far is 8HP (Horizontal Pitch), but larger or 

smaller widths such as 12HP or 4HP front panels can also be 

developed if required. 

III. REUSABLE FPGA MODULES 

To support each of the interfaces which can be included in 

the hardware platform, FPGA modules have been developed 

for each interface.  A number of these modules were developed 

for previous STAR-Dundee devices, or are modifications of 

existing STAR-Dundee FPGA modules. 

Similarly, a module is required to interface with software 

over the cPCI interface.  This is an existing module and 

provides the same interface as other STAR-Dundee devices 

such as the SpaceWire cPCI Mk2 [1], an older device with a 

cPCI interface.  As well as minimising the FPGA development, 

this also reduces the software development required to support 

the PXI devices. 

In addition to FPGA modules to support the device’s 

interfaces, there are also FPGA modules to provide additional 

functionality within the device.  For example, SpaceWire and 

SpaceFibre devices can include interface and/or router 

functionality.  Other more advanced features that can be 

included are error injection on SpaceWire links, triggering on 

events and an RMAP (Remote Memory Access Protocol) 

target. 

 

 

Fig. 2. STAR-System Error Injection application screenshot 

IV. STAR-SYSTEM SOFTWARE 

The STAR-Dundee STAR-System software suite [1][3] 

was developed prior to the PXI hardware platform.  It provides 

a full software suite supporting all STAR-Dundee devices 

developed since 2012.  At the bottom level it includes drivers 

for accessing each of the supported device types in the 

supported operating system.  Above this are APIs for accessing 

these devices in software.  At the top level STAR-System 

includes a number of console and Graphical User Interface 

(GUI) applications for accessing the devices.  These include 

applications to transmit and receive packets and time-codes, 

configure the devices and inject errors.  A screenshot of the 

STAR-System Error Injection application is shown in Fig. 2., 

while the Device Configuration application is shown in Fig. 3. 

 

 

Fig. 3. STAR-System Device Configuration application screenshot 

As the PXI devices use the same FPGA interface that is 

used in previous STAR-Dundee cPCI devices, the only 

modification required to the STAR-System drivers to support 

the PXI devices was to update the STAR-System PCI Driver to 

add support for the device identifiers used by each of the PXI 

products.  Similarly the APIs were updated to include 

identifiers for each of the new products.  No changes were 

required to the console and GUI applications, as these 

applications obtain device information from the APIs and 

drivers. 

To support the unique features of the PXI devices, some 

additions were required to STAR-System.  A new RMAP 

Target API was added to support PXI devices which contain an 

RMAP target.  This API contains functions to configure the 

target, such as which commands are to be supported, and to 

receive notifications whenever an RMAP operation is 

performed.  A Trigger API was also added to configure actions 

to be performed when specific events occur on devices 

supporting the triggering functionality.  This is a powerful 

feature which can be used, for example, to transmit packets or 

time-codes when a particular event occurs, such as a time-code 

being received, an external trigger or a time period elapsing. 
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Fig. 4. STAR-System for LabVIEW screenshot 

A. LabVIEW 

Two options are available for using STAR-System devices 

with National Instruments’ LabVIEW environment: a 

Windows LabVIEW Wrapper for STAR-System [4] and a 

LabVIEW VISA Driver [5].  A screenshot of the LabVIEW 

Wrapper is shown in Fig. 4.  This Wrapper provides all the 

functionality of STAR-System within LabVIEW on Windows 

operating systems, while the VISA Driver offers lower level 

access to the device on any LabVIEW supported operating 

system. 

As LabVIEW is often used on PXI systems, it was 

important to support the PXI products in both of STAR-

Dundee’s LabVIEW products.  The VISA Driver required only 

minor modifications to support the additional device types.  

The LabVIEW Wrapper required similar modifications to 

support the additional device types, plus new modules to 

support each of the new APIs added to access the new 

functionality provided by some of the PXI devices. 

V. PXI PRODUCTS 

With the hardware, FPGA and software building blocks in 

place, these were then combined in to a number of different 

products, described below. 

A. SpaceWire PXI Interface 

The SpaceWire PXI Interface device [6], shown in Fig. 5., 

provides four SpaceWire ports, four SMB triggers, two push 

buttons and two switches on the front panel.  The FPGA 

includes support for both interface and router modes, so the 

device can be used to explore SpaceWire routing, as well as 

transmitting and receiving directly on each of the four 

SpaceWire ports. 

The inclusion of trigger connectors allows the device to 

make full use of the triggering functionality included in the 

FPGA, and supported in the STAR-System Trigger API.  The 

Trigger API allows actions to be specified which will occur 

when specific events occur.  The events include: 

 An external trigger 

 A valid time-code being received 

 A counter being decremented or reaching zero 

 An internal trigger 

 A port event, including: 

o Receiving a start of packet 

o Receiving an End Of Packet (EOP) 

o Receiving an Error End of Packet (EEP) 

o Transmitting a start of packet 

o Transmitting an EOP 

o Packet available to be transmitted 

o Port running 

o Port encounters an error 

o Port disconnects 

o Port receives a time-code 

o Port transmits a time-code 

The counter event can be used to delay a trigger for a 

specified period of time, or to trigger once a specified number 

of triggers have occurred. 

The actions include: 

 Output an external trigger 

 Start or stop a counter 

 Transmit a time-code 

 A port action, including: 

o Transmit a queued packet 

o Disconnect the port 

o Inject a parity or escape error 

o Insert or suppress a Flow Control Token 

(FCT) 

o Increment or decrement credit 

The combination of these actions and events allows very 

powerful control of the traffic on a SpaceWire link.  There are 

numerous possibilities and users have been putting them to 

good use.  One common use is to periodically transmit packets 

sent to the device from software, out of one or more SpaceWire 

ports.  This provides deterministic behaviour while using a 

non-real-time operating system such as Windows. 

 

 

Fig. 5. STAR-Dundee PXI Interface device 
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B. SpaceWire PXI Interface with RMAP Target 

The SpaceWire PXI Interface with RMAP Target [6] 

demonstrates how a new product can be created with existing 

hardware.  The device uses the same connectors and front 

panel as the SpaceWire PXI Interface, but in addition to the 

functionality provided with the SpaceWire PXI Interface, it 

also includes an FPGA module which provides four RMAP 

targets.  An additional software API in STAR-System provides 

access to this functionality. 

The RMAP Target module supports multiple targets, each 

of which can be configured to restrict the RMAP commands 

that are to be supported by that target.  Authorisation of 

commands can be performed automatically by the device, or 

each command can be passed to software for authorisation.  

The properties that can be used when configuring automatic 

authorisation include: 

 A logical address range 

 A protocol ID 

 Supported commands 

 A key range 

 A memory address range 

A target can also be configured to notify software whenever 

a command is received and/or completed, while the memory on 

the device can be read or written from software.  This provides 

a powerful system for testing of RMAP initiators and 

simulating RMAP targets, which can be setup very quickly. 

C. SpaceWire PXI Router 

The 16 flexi connectors on the STAR-Dundee PXI platform 

allow large SpaceWire routers to be created.  The SpaceWire 

PXI Router [6] includes 12 SpaceWire ports, in order to fit all 

the ports in the 8HP front panel. 

As with the PXI Interface devices, the SpaceWire PXI 

Router includes both interface and router modes, along with 

other features such as triggering support, although there are no 

external triggers on this device. 

The SpaceWire PXI Router can therefore be used for 

similar purposes to the SpaceWire PXI Interface devices, while 

also offering the ability to explore and test SpaceWire routing 

with a large number of ports. 

 

 

Fig. 6. STAR-Dundee PXI Router device 

 

Fig. 7. STAR-Dundee SpaceWire Recorder 

D. SpaceWire Recorder 

The STAR-Dundee SpaceWire Recorder [7] is a rack 

system with a 1 Terabyte Solid-State Drive (SSD), which can 

record the SpaceWire traffic crossing up to four SpaceWire 

links.  The large SSD allows the traffic crossing a network to 

be recorded for a much longer period of time than with a 

device such as the SpaceWire Link Analyser Mk2 [8], which 

makes use of internal memory for storage. 

The SpaceWire Recorder rack, shown in Fig. 7., includes a 

SpaceWire Recorder PXI device to allow four SpaceWire ports 

to be monitored.  This uses a front panel which is similar to the 

SpaceWire PXI Interface devices with four external triggers, 

two push buttons and two switches.  The only difference is that 

the SpaceWire Recorder PXI includes eight SpaceWire ports. 

The functionality provided by the FPGA of the SpaceWire 

Recorder PXI device is very different to that provided by the 

SpaceWire Interface and Router devices.  It must transparently 

monitor the traffic passing between two ports, and provide this 

to software to be recorded.  Some of the modules required to 

support this functionality were already available within STAR-

Dundee’s other products, however.  For example, the 

SpaceWire Link Analyser Mk2 provides similar functionality, 

so some of this code was reused. 

The software provided with the SpaceWire Recorder 

required much more development, however.  Adding support 

for the device to STAR-System was a simple task, but the 

software to provide the functionality specific to the SpaceWire 

Recorder required considerably more development.  This 

software must record the traffic to the SSD at very high speeds.  

It must then display the very large recordings to the user, 

working within the restrictions of the PC’s limited memory. 

Despite its unique nature, by using the SpaceWire PXI 

platform and other existing modules, the SpaceWire Recorder 

was developed in a very short time period, with a large 

percentage of that effort being focused on software 

development.  The resulting product can be used to view the 

traffic crossing a SpaceWire network over large periods of 

time, quickly find errors, data patterns and time-codes, and can 

be an invaluable tool when debugging issues with a SpaceWire 

network. 
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VI. PROJECTS USING PXI DEVICES 

The PXI platform is of huge benefit for one-off 

developments, for example when developing devices for 

research projects.  Devices can be quickly created using 

existing interfaces, or new interfaces can be developed in a 

relatively short period of time and added to the existing 

platform.  Two projects which have benefited in this way are 

described below. 

A. SpaceWire-D 

As part of an ESA project on deterministic SpaceWire, the 

University of Dundee was required to produce a system 

demonstrating the capabilities of the SpaceWire-D protocol [9].  

STAR-Dundee was given the task of developing a rack system 

with two routers, multiple RMAP targets, and two processors 

with SpaceWire interfaces acting as the RMAP initiators.  The 

resulting SpaceWire-D Demonstration System is shown in Fig. 

8. 

In the Demonstration System, four SpaceWire PXI 

Interfaces with RMAP Targets are used to simulate as many as 

16 RMAP targets.  Two SpaceWire PXI Routers route traffic 

between the initiators and the targets. 

The two RMAP initiators are provided by custom PXI 

devices.  Unlike other STAR-Dundee PXI devices, these have 

a 12HP front panel.  This allows nine SpaceWire ports to be 

included, three USB UARTs, four SMB triggers, two push 

buttons and two switches.  The FPGA on these devices is also a 

custom development, which includes a LEON2 processor. 

The University of Dundee was then able to use the RTEMS 

operating system on the initiators, and develop the SpaceWire-

D initiator software to run on these boards.  Software was also 

developed to run on the Windows operating system, using 

STAR-System and its RMAP Target API, to configure the 

routers and configure and monitor the RMAP targets. 

The PXI hardware platform enabled this system to be 

developed in considerably less time than would have otherwise 

been possible, allowing University of Dundee to concentrate on 

the research and development of the SpaceWire-D software. 

 

 

Fig. 8. SpaceWire-D Demonstration System 

 

Fig. 9. SUNRISE router devices routing SpaceFibre and SpaceWire packets 

B. SUNRISE 

STAR-Dundee has been leading the development of 

SpaceFibre, and has been working on the development of a 

SpaceFibre Router under a Centre for Earth Observation 

Instrumentation and Space Technology (CEOI-ST) activity 

called SUNRISE. 

The hardware for the SUNRISE SpaceFibre Routers is 

provided by the PXI platform.  It makes use of the SpaceWire 

and SpaceFibre interfaces, including eight SpaceFibre ports 

and four SpaceWire ports.  Two SUNRISE routers are shown 

in Fig. 9. routing traffic between SpaceWire and SpaceFibre 

ports. 

The PXI hardware platform allowed devices to quickly be 

created so that work could instead focus on the core objective 

of the activity: developing the FPGA module to perform 

SpaceFibre routing.  This has been a very successful project 

and resulted in the development of the first ever SpaceFibre 

router, enabled by the PXI platform. 

VII. CONCLUSION 

This paper has described the building blocks that make up 

the STAR-Dundee PXI products, and has shown how these 

hardware, FPGA and software modules can be used to produce 

a wide range of products while also providing a platform for 

prototyping and experimentation. 

Work is continuing on this platform, and more products 

will be released, as a result of FPGA and software additions, 

with new front panels designed when required.  Potential future 

products include a SpaceFibre interface device and a 

SpaceWire to SpaceFibre bridge. 

There is work also being performed at STAR-Dundee in a 

slightly different direction, to take advantage of the existing 

interface boards, software and FPGA modules.  A new 

hardware platform has been developed with a PXIe connector 

at the rear, but using the existing front panel interfaces.  This 

platform includes a Microsemi RTG4 FPGA – a flash-based 

radiation tolerant FPGA.  The PXIe-RTG4 platform, shown in 

Fig. 10., offers the same flexibility as the PXI platform, while 
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providing a high quality engineering prototype board for the 

development of RTG4 applications. 

 

 

Fig. 10. STAR-Dundee PXIe-RTG4 device 

The PXI hardware platform, reusable FPGA modules and 

STAR-System software suite provide a powerful combination 

which enables STAR-Dundee to develop bespoke products to 

meet customers’ requirements.  With the possibility of 

alternative hardware platforms, additional interfaces and new 

FPGA and software modules, the platform will continue to be 

developed as new requirements are identified which cannot be 

met with the existing system. 
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Abstract—Compliance or conformance testing is basically a 

kind of an audit which is performed for the system to check 

whether all the specified standards are met or not. 

Implementation of conformance testers for the communication 

protocols is an important task, which is being solved in the 

majority of industrial companies that develop the communication 

equipment.  

On-board equipment always needs a proper testing before the 

integration into a spacecraft. Especially if we talk about 

equipment, that operates according to the newly developed 

communication protocol. Conformance testing is such kind of 

testing, which gives an ability to ensure that a hardware or 

software product, system or a physical link complies with the 

requirements of a specification or any other document. 

There is a number of transport protocols intended to operate 

over SpaceWire. The newly developed transport protocol 

STP-ISS is now among these protocols and provides such services 

as reliability, guaranteed data delivery, scheduling and 

connection-oriented data transmission. In order to test the 

software models or hardware implementation of the STP-ISS 

protocol the authors created a so-called software-to-hardware 

tester. It gives ability to test the real on-board hardware with the 

software implementation of a protocol model. The evolution of a 

tester can provide opportunities for testing other SpaceWire 

oriented transport protocols such as RMAP, CCSDS PTP, 

SpaceWire-R, etc. 

The current paper gives an overview of conformance testers, 

describes main features of the STP-ISS protocol, and, finally 

deals with the implementation of the Software-to-Hardware STP-

ISS tester and its application use cases. 

Index Terms— Conformance Tester, SpaceWire, STP-ISS, 

Transport Protocol. 

I. INTRODUCTION 

Nowadays, it is a common practice that industrial 

companies develop special testing equipment or software in 

order to ensure that standard compliances are met. The widely 

used standards such as USB or Ethernet are developed by large 

organizations and could be tested on all stages of the 

implementation. We do not need a special equipment to test the 

hardware if we buy a USB stick or a networking card, we can 

just plug it into a computer and operation system will do it 

automatically. But if a company develops a new specialized 

protocol and a number of devices that should meet the 

requirements of a new standard, this company should carefully 

test the implemented equipment before integration and 

dissemination. 

On-board equipment is such kind of equipment that needs 

very proper and detailed testing [1]. And if a new protocol for 

on-board communication is developed, then we need to be sure 

that the devices work as expected, before we can integrate it 

into an aircraft or a spacecraft. 

We had a long-term project for the research, development 

and implementation of an STP-ISS transport protocol for the 

on-board communication via the SpaceWire networks. In this 

project we developed two revisions of STP-ISS protocol, 

simulated and investigated them. The first revision of STP-ISS 

is much simpler and compact, but the second one is more 

powerful. Nevertheless, the backward compatibility for these 

revisions is provided. After that we got the task to implement a 

tester for the STP-ISS rev.1 equipment, which could tell the 

manufacturer, that STP-ISS device operates correctly. Tester 

should examine the device with a set of different testing 

scenarios; each scenario should test a particular STP-ISS 

mechanism. So after the testing the manufacturer will know 

what STP-ISS mechanism failed and it can analyse the log-files 

for details. 

For this reason we conducted an overview of different 

approaches for the implementation of hardware conformance 

testers, studied the main examples of conformance testers 

represented at the market. 

II. HARDWARE AND SOFTWARE CONFORMANCE TESTING  

On-board equipment always needs a proper testing before 

the integration into a spacecraft. Especially if we talk about 
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equipment, that operates according to the newly developed 

communication protocol. The conformance testing should be 

provided to prove that this equipment meets the requirements. 

Conformance testing gives an ability to ensure that a 

hardware or software product, system or just a medium 

complies with the requirements of a specification or any other 

document. Various test procedures, testing software or 

hardware testers have been developed either by the standard's 

maintainers or external auditing organizations, specifically for 

testing conformance to standards. Also service providers, 

equipment manufacturers, and equipment suppliers rely on 

such testing to ensure Quality of Service through this 

conformance process.  

Conformance testing may include some of these kinds of 

tests, it has one fundamental difference – the requirements or 

criteria for conformance must be specified in the standard or 

specification. This is usually in a conformance clause or 

conformance statement, but sometimes some of the criteria can 

be found in the body of the specification. Some standards have 

subsequent documentation for the test methodology and 

assertions to be tested. If the criteria or requirements for 

conformance are not specified, there can be no conformance 

testing [2]. 

Many companies that develop or just work with the new 

equipment have such kind of conformance testers and usually 

equipment testing is done by the testing organizations. But 

some standards have no official testing organizations. They 

rely on self-assessment by the implementer and acceptance 

testing by buyers.  

Depending on the available information we can elaborate 

two main approaches for the conformance testing that are 

widely used across the industry: 

 Software testers; 

 Hardware testers. 

Software testers usually consist of a test entity (software) 

that includes a number of test cases. These tests are aimed to 

get the correct responses from the unit that is being tested. 

Testing software is running on a PC or any portable device and 

it is connected with the real hardware, that it tests. 

Conformance testing software usually includes a test tool (e.g., 

tool, suite, and/or reference implementation) and procedures 

for testing (test engine). 

The software may be represented by a set of programs, a set 

of instructions for manual action, or another appropriate 

alternative. It is likely to be platform independent, and it should 

generate repeatable results. A reference implementation is an 

implementation of a standard that is by definition conformant 

to that standard. Such an implementation provides a proof of 

concept of the standard and also provides a tool for the 

developers of the conformance software. The reference 

implementation is of considerable importance on the early 

stages of conformance testing. 

The conformance testing procedures should be agreed and 

implemented before testing begins. This would include the 

implementation of different types of tests.  

There are many examples of the software testers for the 

communication protocols. One of them is the “HDMI 

compliance test software” that is implemented and distributed 

by Tektronix. It automates a comprehensive range of tests on 

conformance to HDMI 1.4a/b and HDMI 2.0 standards 

(see Fig 1) [3].  

 

Fig. 1.  HDMI compliance test software by Tektronix 

The other good example of testing software is R&S®CMW 

– Conformance testing solution for eCall/ERA-Glonass 

implemented by Rohde&Schwartz Gmbh&Co (see Fig. 2). It is 

electronic safety systems for cars, developed by European 

Union and the Russian Federation to have intelligent 

telematics-based vehicle safety systems to speed up emergency 

response times in order to save human lives. This software 

tester is a solution for automated, reliable and reproducible 

end-to-end conformance tests on eCall/ERA-Glonass 

modules [4].  

 

Fig. 2.  Conformance testing solution for eCall/ERA-Glonass implemented by 

Rohde&Schwartz Gmbh&Co 

Also there are a number of good conformance testing 

software implementations based on the formalized methodics 

and algorithms. These examples are described in [5] and [6].  

The other way of conformance testing is using of the real 

hardware testers that produce the test sequences and test the 

remote device. Usually it is a device operating with full respect 

to the standard, which could have a different number of 

parameters and settings. Configuration of this device is 

performed via a special configuration software installed on PC. 
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There are also many examples of hardware testers for the 

widely used communication standards as USB, LAN, RS232 

and others (see Fig. 3).  

 

Fig. 3.  Implementations of hardware testers for different communication 

standards 

There is another example that is related to the on-board 

equipment testing – the SpaceWire Conformance Tester 

implemented by Star-Dundee. It connects to a SpaceWire 

device and, through the host software, executes a variety of 

tests to check the device under test’s (DUT) compliance to the 

SpaceWire Standard. Over 55 tests can be conducted. The user 

can easily select which tests they do and do not want to run. 

With each test, expected and achieved results are displayed, 

including a link to the appropriate clause of the SpaceWire 

Standard to dramatically reduce the time spent debugging the 

DUT. The SpaceWire Conformance Tester can also be used as 

a high speed packet generator, and one of the SpaceWire links 

can act as a data / time-code sink or loop-back [7].  

 

Fig. 4.  SpaceWire Conformance Tester 

III. STP-ISS PROTOCOL FEATURES 

The main task for our research was to decide how to test 

the newly developed devices that should operate in 

conformance to the STP-ISS protocol specification. So firstly, 

we should describe what STP-ISS protocol is, what main 

mechanisms and distinctive features it has. In this section, we 

consider the second revision of the STP-ISS protocol which 

includes all required functionality. 

STP-ISS is a transport layer protocol that describes 

informational and logic interaction between on-board devices, 

packets’ formats and packet transmission rules for SpaceWire 

networks.  

STP-ISS provides transmission of control commands, 

application messages, SpaceWire time-codes, SpaceWire 

distributed interrupts and interrupt-acknowledges. There are 

two types of application messages:  

 urgent messages (higher priority); 

 common messages (lower priority). 

STP-ISS encapsulates applications’ messages into 

SpaceWire packets. Length of each message data block should 

be not less than 1 byte and should not exceed 2048 bytes for 

the connectionless data transmission, and 64 Kbytes maximum 

for the connection-oriented data transmission. Each packet is 

finalized with CRC-16 which covers the packet starting from 

the first byte of the STP-ISS packet header (excepting path 

address) till the last byte of data, excluding the end of packet 

symbol EOP. 

For each transmitted packet STP-ISS protocol has a special 

lifetime timer, which counts the time, when the packet is still 

relevant in the SpaceWire network. Each packet is stored in a 

transmission buffer during its lifetime.  

STP-ISS has two logical buffers at the receiver side. The 

first buffer is used for the connectionless data transmission, for 

all types of packets (control commands, common messages and 

urgent messages). The second buffer is used for the 

connection-oriented data transmission only. The receiving side 

should reserve required space in the buffer for each new 

connection. If one of the receiving buffers is full, then STP-ISS 

should indicate the Application layer about it and discard all 

the packets coming from the SpaceWire. 

The important STP-ISS feature is its configuration 

flexibility. The protocol has a number of configuration 

parameters, which give ability to tune the protocol depending 

on the developer needs. There are some mechanisms that 

should be implemented as mandatory. For example, Priority 

QoS at least for one priority, Best effort QoS, transmit and 

receive buffers. The other mechanisms are extensions and 

could be optionally implemented in different combinations. 

One of the STP-ISS benefits is the possibility to transmit 

data using the following quality of service types:  

 priority quality of service; 

 guaranteed delivery quality of service; 

 best effort quality of service; 

 scheduling quality of service. 

A. Priority Quality of Service 

Priority quality of service is the main quality of service type 

that should be supported by all the network end-node devices, 

which communicate by means of STP-ISS. According to this 

quality of service type, the data with the higher priority should 

be transmitted first. STP-ISS supports 9 levels of priorities.  

B.  Guaranteed Delivery Quality of Service 

Guaranteed delivery quality of service provides 

confirmation for the successful packet transmission by sending 

the acknowledgement packets. In addition, it resends the data 

from the transmitter end-node if the acknowledgement is lost 
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(resending mechanism). Guaranteed delivery is provided by 

resend timers and acknowledges.  

Another feature is duplicate control commands detection in 

the receiver. A duplicate control command can occur in case of 

a loss of an acknowledgement.  

C. Best Effort Quality of Service 

Best effort quality of service provides data transmission 

without acknowledging. When an STP-ISS receiver gets a best 

effort packet it checks the CRC and data length only. In case of 

an error or if the packet ends with EEP, the data packet still 

should be sent to the Application, but with an error indication. 

D. Scheduling Quality of Service  

STP-ISS assumes to have a single data transmission 

schedule for the whole SpaceWire network. This schedule 

gives an opportunity for the node to send data only during 

particular time-slots. The schedule consists of a number of 

time-slots. The schedule table describes one epoch.  

STP-ISS has the timer synchronisation mechanism. 

Synchronisation is performed once in an epoch. During 

synchronisation, a node should calculate a new value for the 

time-slot timer. The newly calculated value will be applied for 

the time-slot timer of a new epoch. The new epoch should start 

when the time-code is received.  

There are K time-slots in each epoch, when the time-code is 

recognized as relevant. These time-slots are called Time-code 

relevancy window. If a time-code is received before the last 

K/2 time-slots of the epoch, or after the first K/2 time-slots of 

the epoch, then this time-code is considered as irrelevant and 

synchronisation should not be performed. If the time-slot timer 

for a last time-slot expires simultaneously with the time-code 

reception, then there is no need to correct the epoch timer 

value.  

E. Connection-Oriented Data Transmission 

Connection-oriented data transmission gives an ability to 

transmit large sized data with minimum overheads. Only 

urgent or common messages could be transmitted over a 

transport connection. Maximum number of transport 

connections should not be more than 8 per one direction. Each 

transport connection is unidirectional: it connects the 

transmitter of the initiator node and receiver of the remote 

node.  

An application, which needs to transmit or receive a large 

portion of data, should initiate the transport connection 

establishment. The maximum size of data, which could be 

transmitted over the transport connection in a packet, is 

64 Kbytes. The transport connection establishment is 

performed by means of classical three-phase 

handshake [9], [10].  

During data transmission, STP-ISS provides the flow 

control, which is performed by sending of information about 

the available free space in the receiving buffer. This 

mechanism is applied only for the transport connections with 

the guaranteed quality of service. 

STP-ISS rev.1 protocol is described in [11] while STP-ISS 

rev.2 protocol was previously described in details in [12]. 

IV. STP-ISS REFERENCE CODE 

STP-ISS specification development was followed by a 

simulation phase [13]. During this simulation stage we 

precisely analysed, investigated and tested the specification. In 

order to check STP-ISS protocol mechanisms we used three 

different models: 

 SDL model; 

 SystemC network model; 

 C++ reference code. 

These modeling and investigation directions for STP-ISS 

were described in more details in [14]. 

The SDL model is needed for the clear formal description 

of the STP-ISS internal mechanisms and specification 

analysis [15]. The SDL specification is used as a separate 

document describing the specified mechanisms, and it is a 

useful part for the main protocol specification document. 

The SystemC model shows the STP-ISS protocol operation 

over SpaceWire network, and it gives an ability to test the 

network configuration and test networking features [14]. 

The reference code is intended to be used as the reference 

for the programmers, who will implement STP-ISS in the on-

board software. The reference code is a software 

implementation of the STP-ISS protocol in C++ language [16]. 

This implementation corresponds to the specification as 

accurate as it is possible. The C++ reference code describes the 

logical structure of the protocol, its interfaces and internal 

mechanisms. All methods, which describe protocol 

functionality, are provided with detailed comments for each 

line. In addition, in order to check and prove the accuracy of 

STP-ISS the model contains a number of test scenarios for 

studying and demonstration of protocol functioning. Each 

scenario launch produces detailed log files with event traces of 

nodes and of a channel. 

This reference code is used for studying of the protocol 

functionality. Moreover, it could be translated into the other 

programming languages and used for the implementation of 

STP-ISS in the on-board software.  

The other possible application of the reference code is an 

implementation of a tester, that could be useful for testing of 

the software models or hardware implementation of the 

protocol. In this case, reference code is used as a black box, 

which works with full conformance to the STP-ISS 

specification [17]. This reference implementation of the 

protocol could be placed on the one side of the connection, and 

the software model or hardware protocol implementation – on 

the other side. That software or hardware implementation is 

called Device Under Test (DUT). Reference code can generate 

different types of packets and the DUT should respond to them. 

Depending on the result of the data exchange we can make a 

decision, if the DUT works in conformance to the specification 

or not. 

V. SOFTWARE-TO-HARDWARE TESTER  

We used the reference code to implement a Software-to-

Hardware Tester (S2HT) for the STP-ISS protocol. This title 

means that we test the real on-board hardware with the 

software implementation of a protocol model (reference code). 
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And this is a software conformance tester, if we refer to the 

overview from the chapter II. 

Software part of the S2HT consists of the following parts: 

 Test engine “stp_testengine”, containing a set of 

testing scenarios; 

 STP-ISS reference code “stp_reference”; 

 Error generation module “error_generator”. 

Test engine is a set of testing scenarios for checking of 

correctness of the testing equipment operation. This module is 

implemented in SystemC, which represents a simulation library 

of C++ programming language [18]. After the start of the tester 

operation the user is able to choose the number of a test 

scenario and a test starts to execute. In the course of the test the 

S2HT performs a fixed number of actions according to the 

particular scenario, for example, protocol configuration or 

transmission of different types of packets. When the test is 

completed the tester displays the results. During execution of 

the test, the tester gathers the information on test operation and 

different events to the log files. 

Error generation module is implemented for testing of the 

non-nominal cases in the communication process. Similarly the 

Test Engine module it is implemented in SystemC. This 

module gets data from the STP-ISS and can inject errors into a 

valid packet depending on a testing scenario. Error generation 

module is able to: 

 Distort the transmitting data; 

 Delete the service packets; 

 Delete the EOP/EEP symbols; 

 etc. 

This module is also responsible for sending and receiving 

data from a hardware driver. 

STP-ISS reference code part of the tester is a reference 

implementation of STP-ISS protocol with some modifications 

to the network level interface. Modifications were made so that 

the reference code can intercommunicate with the Error 

Generation module: we changed network interface primitive 

functions from serial byte to full packet transfer. It was 

necessary for data preparation for passing to the hardware 

driver. These modifications give an ability to work with Star-

Dundee USB Brick and SpaceWire-Ethernet drivers. In the 

tester implementation the reference code is a separate library 

that is used by the software. 

The general architecture of the implemented Software-to-

Hardware tester is shown in Fig. 5.  

This software part of the tester is installed on the PC. 

Current version of S2HT operates under the Ubuntu operation 

system.  

PC should be connected to the DUT via the SpaceWire 

cable. It is possible to use any suitable SpaceWire hardware 

(Hardware in Fig. 5) for connection of the PC to the SpaceWire 

device. For example it can be Star-Dundee SpaceWire Brick 

Mk2 [19] or Ethernet-SpaceWire Bridge [20]. The Ethernet-

SpaceWire Bridge could be used to connect SpW network 

through Ethernet interface to end user which is especially 

useful in testing purposes. 

Test cases

STP-ISS 

C++ reference

Error Generator

User 

Interface

HW Driver

Hardware

SW-to-HW 

Tester

Device Under Test

 

Fig. 5.  Software-to-Hardware tester architecture 

Each of these devices (brick or bridge) provides a special 

driver (HW Driver in Fig. 5) with an API for sending and 

receiving SpaceWire packets, time-codes and interrupt-codes.  

The other side of the connection is the DUT. This device 

should have the SpaceWire port and should satisfy the 

following general requirements: 

 implementation of STP-ISS at least rev. 1; 

 SpaceWire packets sending and receiving 

functionality; 

 indication of data packet or command reception; 

 implementation of a SpaceWire link interface. 

The DUT can be represented by the following devices: 

 real on-board equipment which is a “black-box” in the 

sense that we do not have a model of it, thus, can rely 

only on its observable input/output behavior; 

 PC with the SpaceWire interface (including a special 

SpaceWire networking board). 

If we use another PC as the DUT, we have some additional 

abilities for testing and verification. We can set up the 

reference code of STP-ISS to DUT and observe, how both 

sides of the connection communicate with each other via the 

SpaceWire link. The other beneficial option is to test the real 

VHDL implementation of STP-ISS IP Core [20]. Fig. 6 shows 

a way of connection of STP-ISS IP block to the S2HT.  

Test cases

STP-ISS 
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Interface

HW Driver
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SW-to-HW Tester
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Hardware

DUT

Application Emulator

PC

SpW controller

FPGA

 

Fig. 6.  STP-ISS IP Core interconnection with S2HT 
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Fig. 7 and Fig. 8 show the Software-to-Hardware tester that 

is implemented in our laboratory. This tester consists of a 

laptop with a pre-installed Ubuntu OS and Test Software. This 

laptop could be connected to the DUT by means of Ethernet-

SpaceWire Bridge (see Fig. 7) or SpaceWire Brick Mk2 

(see Fig. 6).  

 

Fig. 7.  SUAI Software-to-Hardware tester for STP-ISS connected with DUT 

via SpaceWire Brick Mk2 

 

Fig. 8.  SUAI Software-to-Hardware tester for STP-ISS connected with DUT 

via Ethernet-SpaceWire Bridge 

VI. APPLICATION OF SOFTWARE-TO-HARDWARE TESTER 

A. S2HT for STP-ISS Protocol Testing 

Current version of the Software-to-Hardware tester is able 

to test the following mechanisms of STP-ISS:  

 assembling and disassembling of STP-ISS user data 

packets and service packets; 

 data transmission mechanisms;  

 best-effort quality of service; 

 guaranteed quality of service; 

 error detection and recovery mechanisms; 

 SpaceWire time-codes transmission and reception. 

Testing should focus not only on normal protocol operation 

checking, but also on operation in exceptional and critical 

situations. 

There is a number of STP-ISS mechanisms the Software-

to-Hardware tester is not able to test: 

 Receiving and Transmitting of SpaceWire distributed 

interrupts and interrupt acknowledges, which are not 

supported by a SpaceWire Brick Mk2;  

 Settings of configuration parameters for DUT; 

 Any problems in SpaceWire link-level functionality 

and other SpaceWire equipment errors (e.g. SpaceWire 

cable and Brick Mk2), because it is out of S2HT scope. 

S2HT provides two alternatives for the user interface: 

console application and graphical user interface. Fig. 9 shows 

launched S2HT graphical user interface with a selected test 

scenario #2. 

  

Fig. 9.  Execution of the test scenario #2 

Test scenario #2 is intended to check assembling and 

disassembling of STP-ISS user data packets and service 

packets mechanisms of the DUT. The tester sends a guaranteed 

urgent packet to the DUT and waits for an acknowledgement. 

If a correct acknowledgement is received, then this mechanism 

is correctly implemented inside the DUT. 

During the S2HT exploitation the user should be always 

sure that all the equipment is correctly connected and 

configured. Moreover, if DUT is not able to send data, thus 

some of the test scenarios could not be executed successfully, 

because the tester needs a response form the remote side of the 

connection.  

B. S2HT for SpaceWire Oriented Protocols Testing 

Although S2HT is aimed for STP-ISS transport protocol 

testing, it can be applied for other transport protocols operating 

over SpaceWire. Figure 9 shows the variety of different 

applications of S2HT. 

In order to get a Tester for another protocol it is necessary 

to implement the transport protocol in C++. An interface with 

the Error Generator module will stay the same as for STP-ISS 

protocol, but the upper interface with Test Cases module will 

be different depending on the protocol. 
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Fig. 10.  Application of the S2HT for other protocols testing 

The DUT, in turn, should be able to operate in accordance 

with the tested protocol. Test cases module should be updated 

in order to perform appropriate conformance testing.  

CONCLUSION 

The implemented Software-to-Hardware tester is a 

promising tool that could help the developers to ensure that 

STP-ISS equipment operates correctly. The implemented list of 

testing scenarios should give the full test coverage for the 

testing devices, so the result of the tester exploitation should be 

simple – true or false. That means, did the DUT successfully 

passed all the tests or not. If there are any faults in particular 

test scenarios, then the developer could analyse log-files and 

find out, which mechanism is implemented incorrectly. 

Current implementation of a tester is able to test the 

equipment that operates in conformance with STP-ISS protocol 

specification rev.1. So the work that is still need to be done in 

this field is updating the tester to the 2nd STP-ISS revision 

conformance.  

Finally, S2HT tester architecture and modules can be used 

for implementation of a Tester for SpaceWire oriented 

transport protocols. 
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AXON’ CABLE 

The Axon’ group designs and manufactures wire, cable, connectors and cable assemblies for 

advanced technology applications in the principal fields of space, aeronautics, medical electronics, 

automotive and scientific research. Headquartered in France (100 Km east of Paris) the Group 

employs some 1700 staff in 14 subsidiaries across Europe, America and Asia, with an annual 

turnover of €115 million euro.   

 

Axon’ Cable has been involved in many space projects, including the International Space Station, 

various LEO and GEO satellites and rocket launchers including Ariane 5, and can boast flight heritage 

dating back to 1997.  

 

The group offers various types of products for space applications:  

- ESCC approved wires, cables and connectors,  

- lightweight aluminium round cables and braids,  

- aluminium bus bars for satellite power distribution,  

- MIL-STD-1553 databus looms for digital transmission systems,  

- high data rate links for Voice-Data-Image transmission including SpaceWire, IEEE1394, Ethernet  

  and Fibre  Channel,  

- solutions suitable for the forthcoming multi-gigabit protocol, SpaceFibre,  

- and custom-designed products for specific applications. 

 

Additionally, Axon’ has been involved either as prime or subcontractor on a number of ESA EMITS 

tenders including the development of high temperature thruster cables, the development of low 

mass SpaceWire, the evaluation of shielding techniques for Spacecraft harnesses, the evaluation of 

Nano-D for Space, the development of Combo Micro-D’s and the provision of cables for the 

SpaceFibre Demonstrator. 

  



 

4LINKS Limited 

4Links test and simulation equipment for SpaceWire will save you time, delay, risk, and money. It 

does exactly what test equipment needs to do. It has proved to be interoperable with every design 

that it has connected to, while detecting faults including many not found by other methods. 

 

Our solutions provide information to resolve faults, including longstanding ones, and often without 

the need to reproduce the fault. And the same hardware can be used - for devices, subsystems and 

complete satellites - at all stages of a mission development. The same innovative design, quality and 

support extends to 4Links’ SpaceWire chips and SpaceWire IP. 4Links SpaceWire test and simulation 

equipment is reliable, accurate and excellent value. This is why more and more users are specifying 

4Links as their SpaceWire products of choice. 

 

 

 

 

 

 

ÅAC MICROTEC 

ÅAC Microtec develops and supplies highly capable components, sub-systems and small satellite 

platforms. End-users include operators of commercial, R&D and educational space missions to 

whom reliability and resilience of the spacecraft are important. Thanks to our design approach 

and system architecture, platforms can swiftly be customized to meet specific mission and 

payload needs. Delivering customer data with high assurance and reliability is ÅAC Microtec’s 

hallmark. Our fault-tolerant systems combine affordable performance with high mission 

confidence. For high-end payloads, our satellite solutions are the first choice of operators 

worldwide. 

 

ÅAC has a strong competitive advantage in that it operates in the high-end segment of the small 

satellite market, and that the offered products are ITAR free. The products are flight proven and 

has strong heritage. Examples of products are On-board computers (OBCs), Mass Memory Units 

(MMUs/TCM), Power Control & Distributing Units (PCDUs), and Bluestone. Bluestone is an 

efficient way of distributing image data from satellites. 

 

Contact info 

ÅAC Microtec AB 

Uppsala Science Park 

Dag Hammarskjölds väg 48 

SE-751 83 Uppsala 

Sweden 

Phone: +46 18-560130 

info@aacmicrotec.com  

  

mailto:info@aacmicrotec.com


 

 

 

COBHAM SEMICONDUCTOR SOLUTIONS 
Cobham Semiconductor Solutions provides HiRel standard products, ASICs, and radiation testing 

services.  Our Cobham Gaisler site in Goteborg, Sweden provides IP cores and supporting 

development tools for embedded processors based on the SPARC architecture along with SpaceWire 

Routers and boards.  

  

The key product is the LEON synthesizable processor model together with a full development 

environment and a library of IP cores (GRLIB). Our personnel have extended design experience, and 

have been involved in establishing European standards for ASIC and FPGA development. Cobham 

Gaisler has extensive experience in the management of ASIC development projects, and in the 

design of flight quality microelectronic devices. The company specializes in digital hardware design 

(ASIC/FPGA) for both commercial and aerospace applications. 

 

 

 

SHIMAFUJI ELECTRIC 
Since 1990, Shimafuji Electric has been developing microcomputer boards including transmission, 

graphics and other complex peripheral functions and also producing small number of products for 

some OEMs.   

 

Shimafuji have joined the Japan SpaceWire user Group since early days.  We developed the 

SpaceWire compliant cubic computer - Space Cube with JAXA, and we have some SpaceWire 

function boards, like the Universal FPGA Board, The Sampling ADC, The Digital I/O, and ETC since 

2005. Then, our one of latest model is the 4 port Space Wire to Gigabit Ether R2 Unit and we are 

developed the 24-link SpaceWire Packet Recorder and 48-port SpaceWire Packet Generator based 

on the 12-slots microTCA SpaceWire Backplane system. We also developing the Grand Use 

SpaceWire for Industries. 

 

In this year, we opened The SpaceWire Test Lab facility in our office for small space businesses, 

students and anyone who are interesting SpaceWire. This lab has clean booth, high function 

instruments, and off coarse SpaceWire testing instruments etc.  

  



 

 

STAR-DUNDEE LTD. 
STAR-Dundee is an aerospace engineering company, which designs network and related 

data-handling technology for use on-board spacecraft. STAR-Dundee provides electronic test 

and development equipment and chip designs for spaceflight applications. 

Our highly experienced engineers were instrumental in the development of SpaceWire, 

writing the ECSS standard with inputs from international spacecraft engineers. SpaceWire is 

now widely used on-board spacecraft with over 100 space missions already in orbit or 

currently being designed using SpaceWire technology. Our engineers are currently leading 

the research, technical development and standardisation of the next generation of 

SpaceWire technology, SpaceFibre, which is a substantial leap forward, offering much higher 

data rates, quality of service, fault detection, isolation and recovery, deterministic data 

delivery, low latency time-synchronisation and event signalling, and many other features 

and benefits. 

Since 2002, STAR-Dundee has provided SpaceWire evaluation, test and development 

equipment to the world’s space agencies and aerospace companies. Our SpaceWire 

interface boards and units are used in Electronic Ground Support Equipment (EGSE) for 

integrating and testing many spacecraft. Our IP cores are integrated in spaceflight systems 

monitoring the Earth, exploring our Solar System, studying the universe and supporting 

commercial space applications. 

STAR-Dundee is committed to providing the best possible solution for your application. Our 

team of highly qualified and experienced engineers understands the challenges of designing 

systems for space applications. Our well proven technology has flown on many high profile 

space missions. Part of our commitment to our customers is the effort that we spend on the 

research, development and standardisation of data-handling technology. SpaceFibre is the 

latest manifestation of our commitment to engineering excellence and international 

standardisation. 

  



 

GLENAIR 

Glenair – out of this world of interconnect solutions  

SpaceWire cable assemblies: 

Glenair offer a complete range of SpaceWire cable assemblies for laboratory and flight use.  

In support of the SpaceWire protocol Glenair also offer a complete range of Micro D connectors for 

vacuum chamber and router interface use.   

For more information on Glenair’s space products portfolio please contact:   

Ross Thomson, Business Manager - Space Interconnect Systems 

Glenair UK Ltd  

40 Lower Oakham Way  

Oakham Business Park  

Mansfield, Nottinghamshire  

NG18 5BY, UK  

e-mail: rthomson@glenair.co.uk 

Office: +44 (0) 1623 638100 

Mobile/ cell: +44 (0) 7711 029 715 

  

SpaceFibre:  

Glenair designs and manufactures a full range of fiber-optic interconnect products to support 

spacecraft systems.   

These include radiation-tolerant high-speed opto-electronic transceivers supporting SpaceFibre, 

sRIO and other high-speed protocols up to 10 Gbps per lane, as well as fiber-optic cable assemblies, 

connectors, inspection and cleaning kits, and training of personnel to insure mission success.    

For more information on Glenair’s fibre optic product portfolio and capability please contact:     

Ronald T. Logan Jr., Ph.D. 

Chief Technologist, Sr. Director Active Components 

Glenair Inc.  

1211 Airway,Glendale  

California 91202 -2497, USA  

e-mail: rlogan@glenair.com 

Office: +1 818 247 6000 

  

www.glenair.com 

 

  

mailto:rthomson@glenair.co.uk
mailto:rlogan@glenair.com
http://www.glenair.com/


 

INGENIARS S.R.L 

IngeniArs S.r.l. is a spin-off company of the University of Pisa born in May 2014, built upon the large 

experience (more than 20 years) of its co-founders. Main focus of the company is the space business with 

a wide range of services and products such as: 

 Specific products for design and validation of on-board high speed data communications based 

on SpaceWire and SpaceFibre standards 

 Development of ad-hoc on-board data processing and data-handling HW/SW systems  

 Development of ad-hoc Electrical Ground Support Equipments (EGSEs) and Validation 

Platforms for Space Equipment 

As far as SpaceWire/SpaceFibre system is concerned IngeniArs offers an extensive portfolio of products 

(http://www.ingeniars.com/english/products/space.html) allowing the final user to design and validate 

systems based on such standards. In particular IngeniArs products portfolio is composed of: 

 SpaceWire Codec, Spacewire Router and SpaceFibre Codec IP Cores 

 Spacewire/SpaceFibre Link Analyser (Stand-Alone Real Time Validation Platform)  

 Spacewire/SpaceFibre NI PXI Link Analyser (Real Time Validation platform fully compatible with 

National Instrument Platforms based on PXI interfaces)  

Despite its recent foundation IngeniArs already counts important customers such as Finmeccanica-

Leonardo and Thales Alenia Space as well as a strategic partnership with National Instrument for 

development of EGSEs and validation systems. IngeniArs was also recently awarded with contracts as 

prime by ESA and H2020 SME instrument. 

Further information about IngeniArs S.r.l. can be found at http://www.ingeniars.com/. 

 

 

MITSUBISHI ELECTRIC CORPORATION 
Mitsubishi Electric's space technology includes the manufacture and implementation of satellites, 

satellite components, and ground systems. Over the past four decades, we have completed more 

satellite projects for communications concerns, government agencies, and other large-scale clients 

than any other Japanese company, making Mitsubishi Electric the leading company for space 

systems in Japan. We have a distinct advantage when it comes to designing, building, launching and 

controlling satellites, because we also excel in the solar panel, antenna, amplification, tracking, 

control and ground station system technologies that make satellites practical to own and operate. 

 
http://www.mitsubishielectric.com/ 

http://www.ingeniars.com/english/products/space.html
http://www.ingeniars.com/


 

 

MITSUBISHI HEAVY INDUSTRIES, LTD 

More than 130 years have passed since Mitsubishi first leased the Nagasaki Shipyard from the 

government’s Ministry of Industry in 1884. The technologies of the MHI Group supported Japan 

through unbridled changes in its quest for modernization and globalization. 

The Group uses the technological foundation accumulated over these long years to provide products 

and innovations in a wide range of fields. In 2014, the company completed its transition to a domain 

system, achieving even greater synergy and contributing even more to the development of society. 

 

As Japan’s leading defense and space systems integrator, the Integrated Defense & Space Systems 

Domain combines the technology and expertise of each of its businesses, resulting in a system that 

makes it possible to coordinate land, sea and air defense initiatives, as well as reinforcing MHI’s 

international competitiveness in the space industry. 

 

MHI provides launch services with the H-IIA, Japan's primary launch vehicle, and has also 

participated in the development and production of KIBO, the Japanese Experiment Module (JEM) on 

the International Space Station, contributing to space development in Japan. 

 

https://www.mhi-global.com/company/aboutmhi/outline/index.html 

https://www.mhi-global.com/company/aboutmhi/outline/index.html


 

NEC CORPORATION 
NEC is a multinational provider of information technology and network solutions & products to 

business enterprises, communications services providers and government agencies since established 

in 1899. In addition, NEC is a few companies which have both Space technology and ICT. NEC has 

more than 50 years of expertise in space business, and has been providing wide diversity of space 

products including various satellite systems and optical and radio wave sensors.  

 

We also offer solutions of ICT which use data from sensors. NEC contributes to advanced urban 

development with biometric identification technology, versatile sensing technology and analytic 

technology that makes high-precision forecasting and prediction possible. NEC also leverages 

sensing technologies and big data analysis technologies to support the advancement of lifelines 

through ICT. 

 

As the industry makes the shift from Space development to Space utilization, NEC’s space business 

intends to transform itself into an enterprise that provides space solutions. NEC can offer space 

solutions by fusing space technologies and IT/Network technologies such as for remote sensing area 

which is the focus of increasing attention. The NEC space solution aims to provide information 

services that can provide “any” user with “any” information that need “anytime” and “anywhere” by 

processing, formatting and storing both the observation/survey data acquired from space systems 

and the various kinds of sensor data collected from terrestrial sources. 

 

Via the space solution, NEC contributes to realize an information society friendly to human and the 

earth. 

 

For more information, visit NEC space system solutions at: 

http://www.nec.com/space/ 
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