

SpaceWire-2016

Proceedings of the 7th

International SpaceWire Conference

Yokohama 2016

Editors: Steve Parkes and Carole Carrie

Space

Technology

Centre

University of Dundee

SpaceWire-2016

Proceedings of International SpaceWire Conference

Yokohama 2016

ISBN: 978-0-9954530-0-5

© Space Technology Centre

 University of Dundee

 Dundee

 2016

All rights reserved. No part of this publication may be reproduced

or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior written

permission of the publisher.

Space

Technology

Centre

University of Dundee

3

Preface

These proceedings contain the papers presented at the 2016 International SpaceWire

Conference, held in Yokohama, Japan between 24th and 27th October, 2016. The International

SpaceWire Conference brings together international spacecraft engineers and academics who are

working on spacecraft on-board data-handling technology. It is of benefit to product designers,

hardware engineers, software engineers, system developers and mission specialists interested in and

working with SpaceWire, enabling them to share the latest ideas and developments related to SpaceWire

and SpaceFibre technologies.

SpaceWire is now being used or designed into well over one hundred spacecraft, covering

science, exploration, Earth observation and commercial applications. High profile missions like James

Webb Space Telescope, GAIA, ASTRO-H, ExoMars, Bepicolombo, Sentinels 1, 2, 3 and 5 precursor,

and GOES-R are using SpaceWire extensively. SpaceWire is being used in Europe, Japan, USA, Russia,

China, India, and other countries of the World.

SpaceFibre is the next generation of SpaceWire technology, offering higher data-rates and

substantially enhancing the capabilities of SpaceWire. It runs over electrical or fibre optic cable

covering distances of 5m and 100 m respectively while running at data rates of up to 3.125 Gbits/s with

6.25 Gbits/s currently under development. SpaceFibre incorporates quality of service, providing

multiple independent virtual networks for transferring information over the physical network, each

virtual network having its own priority, bandwidth allocation and schedule. These capabilities enable

SpaceFibre to provide deterministic data delivery without loss of network bandwidth for combined

control and payload data-handling networks. It also provides integrated, rapid fault detection, isolation

and recovery technology, which makes SpaceFibre a highly robust network for use in applications

where reliability and availability are critical. SpaceFibre multi-laning technology extends the bandwidth

of a link using multiple lanes and provides hot and cold redundancy and graceful degradation.

Asymmetric links are also possible, using uni-directional lanes provided at least one lane is bi-

directional. SpaceFibre uses the same packet format and addressing concepts as SpaceWire making it

trivial to connect existing SpaceWire equipment into a SpaceFibre network. IP cores for radiation

tolerant FPGAs and ASICs with SpaceFibre interfaces are available and under development. A wide

range of test and development equipment is now available.

The conference covers many different aspects of SpaceWire and SpaceFibre technology and

includes both academic and industrial presentations. Sessions address recent developments of the

SpaceWire set of standards, space missions and other applications using SpaceWire, new components,

sensors and cables which support the SpaceWire standard; products supporting SpaceWire including

onboard equipment, instruments and related onboard software; methods and equipment to aid the test

and verification of SpaceWire components, units and systems; and SpaceWire networks, their

architecture, configuration, and discovery, as well as higher level protocols and related hardware and

software design issues. The new sessions on SpaceFibre illustrate how this next generation of

SpaceWire technology is gaining momentum, already being designed into spaceflight systems. It is an

exciting time in the SpaceWire community as this latest technology literally begins to take off.

Technical seminars at the conference cover SpaceWire-D which provides deterministic data

deliver using existing SpaceWire devices and SpaceFibre.

The community of engineers working on SpaceWire meet regularly at the SpaceWire Working

Group meetings to help with the further development of SpaceWire, SpaceFibre and related standards

and technologies. This group includes engineers from many parts of the World with substantial

contributions from Europe, USA, Japan, and Russia. The SpaceWire Conference complements these

Working Group meetings with more formal presentations from a wider range of contributors.

4

The conference committee would like to acknowledge the support and hard work of the many

individuals who made International SpaceWire Conference 2016 a reality. First, we thank the authors

and the keynote speakers for their high-quality contributions. We express our gratitude to the Technical

Committee for their assistance in the review process. We thank all people supporting us at JAXA, the

Space Technology Centre, University of Dundee, and the European Space Agency. Finally, we would

like to give a special thanks to Carole Carrie at STAR-Dundee for making the conference happen.

The Conference Chairpersons,

Masaharu Nomachi, Osaka University, Japan

Steve Parkes, Space Technology Centre, University of Dundee, UK

Dirk Thurness, European Space Agency, The Netherlands

5

Technical Committee

Brice Dellandrea – Thales Alenia, France

Seisuke Fukuda – JAXA/ISAS, Japan

Wahida Gasti - ESA, The Netherlands

Sandi Habinc – Cobham Gaisler, Sweden

Hiroki Hihara – NEC, Japan

Christophe Honvault – ESA, The Netherlands

Torbjörn Hult - RUAG Space, Sweden

Jørgen Ilstad - ESA, The Netherlands

Paul Jaffe - Naval Research Laboratory, USA

David Jameux- ESA, The Netherlands

Clifford Kimmery – Honeywell Inc., USA

Alexander Kisin - MEI, USA

Robert Klar - South West Research Institute, USA

Jim Lux - NASA JPL, USA

Keiichi Matsuzaki – JAXA, Japan

Giuseppe Montano – Airbus, UK

Minoru Nakamura – Mitsubishi Electric, Japan

Masaharu Nomachi – University of Osaka, Japan

Olivier Notebaert - Astrium SAS, France

Steve Parkes - University of Dundee, Scotland, UK

Paul Rastetter - Astrium GmbH, Germany

6

Alan Senior – Thales Alenia Space UK Ltd, UK

Yuriy Sheynin - St. Petersburg State University of Aerospace Instrumentation, Russia

Tatiana Solokhina - ELVEES, Russia

Martin Suess - ESA, The Netherlands

Antonis Tavoularis – Teletel, Greece

Dirk Thurnes – ESA, The Netherlands

Raffaele Vitulli - ESA, The Netherlands

Takahiro Yamada - JAXA/ISAS, Japan

7

Programme Overview

Monday 24 October

14:00 – 17:30 Registration

14:00 – 17:30 Tutorials of SpaceFibre and SpaceWire-D

Tuesday 25 October

09:15 – 17:00 Registration

09:30 – 10:35 Conference Opening / Keynote Presentations (65 min)

10:35 – 11:05 Missions & Applications Short (30 min)

11:35 – 12:50 SpaceFibre 1 Long (75 min)

14:05 – 15:20 Networks & Protocols Short (75 min)

15:45 – 17:30 Components Short (105 min)

Wednesday 26 October

09:15 – 11:30 Registration

09:15 – 10:55 Missions & Applications Long (100 min)

11:30 – 11:45 Test & Verification Short (15 min)

11:45 – 12:30 SpaceFibre Short (45 min)

13:45 – 15:50 Networks & Protocols 1 Long (125 min)

15:50 – 17:00 Poster Session (70 min)

Thursday 27 October

09.15 – 11:00 Registration

09:15 – 10:30 Components Long (75 min)

11:00 – 12:40 Networks & Protocols 2 Long (100 min)

13:55– 15:10 SpaceFibre 2 Long (75 min)

15:40– 16:55 Test & Verification Long (75 min)

Programme is subject to change

8

Tuesday 25 October

9

 Missions & Applications (Short)

10

Using SpaceWire Time Codes for Spacecraft Time
Synchronization

SpaceWire Missions and Applications, Short Paper

Susan C. Clancy, Mazen M. Shihabi, Krisjani S. Angkasa
Flight Communications Systems Section

Jet Propulsion Laboratory
Pasadena, California 91109 USA

Susan.Clancy@jpl.nasa.gov, Mazen.M.Shihabi@jpl.nasa.gov, Krisjani.S.Angkasa@jpl.nasa.gov

Abstract— This paper describes how SpaceWire Time
Codes can be used for synchronizing time within various
subsystems of a spacecraft as well as, maintaining a common
time reference needed for coordinating operations within a
spacecraft. The algorithms to account for inaccuracies in the
time distribution method were based on the NASA-4009
Space Telecommunication Radio System (STRS) standard
[1], which defined an interface for synchronizing clocks
running at different tick rates and tick resolutions.

Index Terms— Relevant indexing terms: SpaceWire,
SpaceWire Time Codes, SpaceWire Time Distribution
Protocol, CCSDS Unsegmented Time (CUC), Space
Telecommunications Radio System (STRS).

I. INTRODUCTION
Spacecraft systems are typically comprised of many

subsystems, each with their own clock running at different
tick rates and with varying performance, which can degrade
over time. Clock synchronization becomes very important in
cases where commands and activities need to be correlated
with a common time reference and for attitude determination
based on current time or predicted position propagated over a
period of time.

Subsystems needs to know what time it is in order to
perform synchronized activities, or to time-tag telemetry that
can be correlated with operations in other subsystems. One
subsystem equipped with a Ground Navigation Satellite
System (GNSS) receiver can maintain an accurate reference
of time and can act as the time “master” to distribute the time
to other nodes connected via SpaceWire.

II. SPACECRAFT TIME SYNCHRONIZATION METHODS
There are two common methods used for synchronizing

time on a spacecraft: (1) a periodic “message” based method
performed in software and (2) a periodic “hardware tick”
based method performed in hardware or firmware.

The “message” based method uses a “master” to generate
a “tick” message at specific intervals and sends a time
message to the “slaves” at a specific “tick”. The “slaves”
update their time at a time boundary after the time message

is received. In the example below, the “tick” message is sent
100 times per second, and the time message is sent once per
second prior to the one second time boundary.

Fig. 1. Time Synchronization “Message” Based Method

 The “hardware tick” method uses a “master” to send a
“tick” signal to all the “slaves”, who will then increment
their own slave clock. The hardware clock oscillator used to
generate the clock tick signal is usually a Temperature
Compensated Crystal Oscillator (TCXO) or Ovenized
Crystal Oscillator (OCXO) with accuracy better than 1 part
per million.

Fig. 2. Time Synchronization “Hardware Tick” Method

11

III. SPACECRAFT TIME SYNCHRONIZATION CHALLENGES
The challenges in synchronizing spacecraft time are

similar to those in ground-based systems:
A. Latency – the time it takes to transfer and respond to

a time update. Each spacecraft subsystem must
account for latency and be tolerant within a measured
minimum and maximum range. A technique for
measuring latency is described in the SpaceWire
Time Distribution Protocol [2].

B. Jitter – the intermittent delay in the path between the
master sending the time and the slave receiving and
updating their time. Each spacecraft subsystem must
tolerate a measured maximum jitter.

C. Drift – the variation in the clock tick rate due to
oscillator performance, which typically degrades over
time and varies with temperature. The time “master”
clock must be calibrated periodically to account for
the drift in the time conversion. The drift can be
accounted for as a clock rate correction [2] to mimic
the actual clock rate changes.

D. Time conversion – the different clocks may tick at
different rates and a conversion from the hardware
clock value to the time representation unit (usually in
seconds) is applied using the clock tick rate, clock
hardware value, and an offset, which typically
includes drift. The conversion algorithm needs to
account for latency, varying jitter, and clock
degradation.

A further complication is that the performance of the
clock oscillators in various parts of the system may be
orders of magnitude different: a spacecraft computer may
have a clock with 10 ppm performance, while spacecraft
radios and GNSS receivers may be accurate to parts per
billion (ppb). The system design, however, may be that all
systems need to follow the time kept by the spacecraft
computer, so the time distribution method must allow a
better clock to follow a poorer clock, which is different
than the typical Network Time Protocol (NTP)
architecture, where clocks at a lower stratum follow more
accurate clocks at a higher stratum.

IV. STRS TIME SYNCHRONIZATION METHOD
The NASA-STD-4009 Space Telecommunications

Radio System (STRS) architecture standard [1] defines some
time related functions and corresponding Application
Programming Interfaces (APIs) for getting, setting, and
synchronizing time. These functions are used by
applications to maintain and coordinate time derived from
different clocks that may have different tick rates and
resolutions.

Note that the reference clock may or may not have a
higher performance and stability than the monitored clock.
The purpose is to synchronize the clocks and not to maintain
the correct time. The reference clock and managed clock can
exist on the same local host or on different hosts but can be
synchronized to report the same time.

The core concept of the STRS clock model is that the
underlying clock is allowed to run unhampered, and the
relationship between the raw clock and “time” is
encapsulated in the API which provides a standardized way
of getting and setting time based on calling API functions
that can account for latency, jitter, and drift using conversion
data. This conversion data is set to values that initially
synchronize the reference clock with the managed clock.
The conversion data can be updated periodically to
continuously account for drift.

The linear conversion algorithm commonly used to
compute time, converts hardware clock ticks to time in
seconds using the oscillator clock rate and hardware clock
ticks as follows:

time = (clock_rate × clock_ticks) + offset
The STRS time conversion algorithms include additional
adjustments to the rate and offset to account for the
difference between two clocks plus the latency, drift, and
even jitter as follows:

STRS time = ((clock_rate + adjust_rate) × clock_ticks) +
(offset + adjust_offset)

Figure 3 below shows an implementation of an STRS
time interface that synchronizes a local reference clock and a
local managed clock. The conversion data is applied when
getting the time via the STRS_GetTime API function which
converts the clock value to a time in seconds and sub
seconds.

Fig. 3. STRS Time Synchronization Method

12

V. SPACEWIRE SPECIFICATION FOR TIME CODES

The SpaceWire Protocol Standard [3] includes the
definition of the time interface with Time Codes and the
TickIn and TickOut signals. The key features in any
implementation are:

A. Time Code generation or receipt can be enabled or
disabled.

B. The Time Code rate is generated by a “master” and
can be configured to send Time Codes at a specific
rate

C. The Time Code is a specific type of SpaceWire
message containing a Time Code identifier and Time
Code counter. The Time Code counter is an
incrementing 0 to 63 integer value and any missing
Time Code can be detected and reported by firmware
using this counter.

The Time Code TickIn / TickOut signals can support an
interface to a software interrupt line and/or hardware signal
going to a hardware clock. The time “master” (aka initiator)
can generate a software interrupt for each tick using the
TickIn signal. Using this TickIn interrupt, a “slave” (aka
target) can implement a SpaceWire “derived clock” to align
the tick generation with the time message.

VI. CCSDS TIME MESSAGE FORMAT
The CCSDS Unsegmented Code (CUC) Time

Specification [4] is a proposed standard for specifying time
as a number of seconds and sub-seconds.

Fig. 4. CCSDS Unsegmented Code (CUC) Format

The fields in the time announced message are as follows:

Fig. 5. Time Announced Message Format

VII. TIME SYNCHRONIZATION DEMO
The first goal was to demonstrate the ability to

compensate for time distribution inaccuracies due to latency,
jitter, and drift using the STRS time API. The second goal
was to demonstrate time distribution using SpaceWire Time
Codes and the CCSDS CUC formatted time message.

In the first test, the time synchronization was performed
on the SDR using the Clock Calibration waveform
component (CLKCAL) to synchronize two different clock
“kinds” on the SDR. The CLKCAL waveform (1) computes
the delta between the reference clock time and managed
clock time, (2) computes the drift detection value for each
clock, (3) reports any time delta or drift detection, and (4)
synchronizes the managed clock to report the same time as
the reference clock. The STRS time API is used by
CLKCAL for getting, setting, and synchronizing the time.

Fig. 6. Clock Synchronization Test

In the second test configuration, the CLKCAL waveform
was integrated with the SpaceWire Time interface. The
SpaceWire time interface on the SDR “slave” was
implemented as a “waveform” component with counterparts
running in both firmware on a Field Programmable Gate
Array (FPGA) and software running on the SDR Sparc
computer.

The SPW waveform continuously (1) receives the time
codes, (2) maintains a Time Code tick counter, (3) captures
the time sent in the SpaceWire time messages, (4) sends
periodic notifications at synchronization intervals and (5)
makes the time available to other waveforms.

Fig. 7. Clock Synchronization with SpaceWire Test

The time delta is computed by CLKCAL and is expected
to be constant unless inaccuracies are introduced by jitter or
drift.

A set of “threshold” values (minimum, maximum, and
rate adjustment maximum) is used to determine when to
synchronize the clocks and which method to use (time jump,,
incremental update, or a rate adjustment).
The threshold minimum accounts for expected jitter
introduced by the time distribution interface itself. The

13

minimum should not be 0 since there will always be some
amount of jitter. The threshold minimum value can be
determined by analyzing the delta values over a period of
time.

Any delta above the threshold minimum but below the
rate adjustment maximum will cause a rate adjustment
update to synchronize the clocks. The rate adjustment is
included in the conversion data used in the time conversion
algorithm. This is the smoothest update method. Any delta
between the minimum and the incremental adjustment
maximum will use an incremental adjustment over a period
of time. Incremental updates will be made until they add up
to the desired delta. This adjustment period can be longer to
make smaller incremental updates or shorter to make bigger
incremental updates. Any delta above the incremental
adjustment maximum will cause a time “jump”. A “jump” is
not desired when the managed clock is used for time based
computations or activities but is a common method used for
updating or synchronizing time during initialization.
The clock drift is obtained by capturing a counter for each
clock at specific intervals. This counter should remain
constant unless the clock is drifting. Watermarks are used to
track the range of drift for each of the clocks. A drift
watermark reporting threshold maximum value is used to
determine when to report drift. This reporting threshold can
be 0 to always report any detected drift or a value that must
be exceeded before the drift is reported.

VIII. TEST RESULTS
The initial tests run on the SDR show the STRS time

interface successfully synchronizing two different clock
“kinds” that exist on the same SDR. The data below (in red)
shows the software detecting the delta above the threshold,
and performing the synchronization.

Fig. 8. Clock Synchronization

The clock delta and drift reported by the CLKCAL
waveform used inputs distorted by the jitter introduced by
the software itself due to running in a multitasking
environment on both the “master” and “slave”. This
artificial input data was useful in developing and testing the
clock synchronization thresholds and synchronization
response. The use of an independently generated counter
latched at fixed intervals as described in earlier work in [2]
and a “distributed” interrupt generated via the TickOut signal

as described in [6] are needed to account for the real
inaccuracies introduced by latency, jitter, and drift.

The synchronization parameters that were tested included
thresholds to control whether time was updated gradually or
immediately in one-time jump.

The following test result shows the “threshold min.”
should be set to 6 usec to avoid synchronization for changes
smaller than the expected. 1 to 5 usec range. Based on this
example, the changes above 5 usec would result in a clock
synchronization.

Fig. 9. Synchronization Delta Values

In earlier tests on the SDR, the CLKCAL waveform
attempted to poll the received Time Code counter value to
increment the Time Code virtual clock ticks. These tests
intermittently failed when generating Time Codes at 100 per
second. The “slave” reported a missed tick error when the
Time Code value did not increment as expected, although
this issue was not encountered when Time Codes were
generated at once per second.

The TickOut interrupt interface and a latched counter
interface have since been implemented in the SDR FPGA
firmware to mitigate these issues. The TickOut interrupt unit
tests showed that software increments the SpaceWire DCLK
virtual ticks properly. However, tests using these
mechanisms integrated with CLKCAL are planned for the
future.

IX. CONCLUSIONS AND FUTURE WORK
The STRS time API does accommodate synchronizing

various clock "kinds" using clock compensation data to
mitigate inaccuracies (latency, jitter, drift) in a time
distribution system.

Synchronization tolerance ranges (i.e. thresholds) can be
used to determine which method to use for synchronizing
clocks and when to correct for drift. Future work is needed
to establish the tolerance ranges for synchronizing clocks
using the SpaceWire Time Distribution Protocol such as
those described in [2] and [6].

The SpaceWire Time Codes are useful for creating a
virtual clock on hosts connected via SpaceWire. This
SpaceWire virtual clock can be implemented on a "slave"
host that may not have a clock.

14

ACKNOWLEDGEMENT
The authors wish to acknowledge the following

individuals for their significant contributions: James P. Lux,
Minh Lang and David E. Robison from the Jet Propulsion
Laboratory, and David Chelmins and Larry M. Vincent from
the NASA Glenn Research Center.

This work was carried out at the Jet Propulsion
Laboratory in Pasadena (JPL), California, under contract
with the National Aeronautics and Space Administration, for
the SCaN Testbed Project. References herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute or
imply its endorsement by the U.S. Government or the Jet
Propulsion Laboratory.

©2016 California Institute of Technology. Government
sponsorship acknowledged.

REFERENCES
[1] NASA-STD-4009 Space Telecommunication Radio System

(STRS) architecture standard
[2] A. Sakthivel, J. Ekergarn, D. Hellström, S. Habinc, M. Suess,

“SpaceWire Time Distribution Protocol Implementation and
Results,” 6th International SpaceWire Conference, [September
2014]

[3] ECSS-E-ST-50-12A-C SpaceWire Protocol Standard
[4] CCSDS Time Code Format Recommended Standard, Issue 4

CCSDS-301.0-B-4 Blue Book November 2010
[5] Space Communications and Networking (SCaN) Test Bed

Experiment
https://spaceflightsystems.grc.nasa.gov/sopo/scsmo/scan-
testbed/

[6] S. Habinc, A. Sakthivel, M. Suess, “SpaceWire – Time
Distribution Protocol,” International SpaceWire Conference,
[June 2013].

15

Maturation of a Scalable Form Factor System
Standard for Interoperable Spaceborne Processing

and Interconnect Needs
Missions and Applications, Short Paper

Joseph R. Marshall, Richard W. Berger
BAE Systems

Manassas, VA 20112
joe.marshall@baesystems.com

Abstract— This paper will briefly review the SpaceVPX

standard with special emphasis on the interconnect planes
between the modules. Comparisons to other form factor
standards will be included. SpaceWire and its usage as the
control plane in a SpaceVPX system or as a medium speed data
plane will be discussed. A summary and status of any updates or
future efforts involving the SpaceVPX standard will be included.1

Index Terms—Standards, SpaceWire, networking, spacecraft
electronics, SpaceVPX, MicroTCA, CompactPCI, PC/104,
RapidIO, form factor, fault tolerance, redundancy

I. INTRODUCTION
Future spaceborne systems will require additional onboard

processing and much greater interface connectivity. Many
efforts worldwide are starting to address these needs.
SpaceVPX, a recently released ANSI/VITA standard, was
created to provide the structure and definition for interoperable
modules that will be created to meet these needs. It provides a
multi-layer set of fabrics using serializer/deserializer
(SERDES), LVDS and LVCMOS devices to provide
interconnections in a scalable and fault tolerant way. Initial
fabrics used by SpaceVPX are RapidIO, SpaceWire and I2C.
Provisions are provided for heritage or user defined interfaces
to interact with these within the structure. SpaceWire is setup
as both a control plane for command and data handling
throughout the box as well as a medium speed data plane.
SpaceVPX was approved and released by ANSI and VITA in
April 2015 as VITA 78. Since then, multiple organizations are
utilizing it to create interoperable modules.

Building on previous SpaceWire network elements, BAE
Systems is creating a set of silicon application specific standard
products (ASSP) [1] [2] [3] to provide power efficient general
purpose building blocks for the creation of scalable SpaceVPX
modules across these three fabrics. These building blocks are
key to a new family of SpaceVPX processing and network
modules [4] being developed for a wide variety of space
applications. One of the advantages of using SpaceVPX is the
significant industry heritage of OpenVPX modules,
backplanes, chassis, power supplies and test equipment.

1 Approved for Public Release – ES-ISR-082316-0109

Exploring optimal methods for leveraging these elements is an
important part of the development of the BAE Systems
SpaceVPX modules.

The SpaceVPX working group is monitoring the usage of
the standard identifying potential upgrades and enhancements.
For instance, SpaceVPXLite (VITA 78.1) will focus on
building more limited and smaller 3U sized systems of smaller
number of slots yet maintaining the full fault tolerance of the
parent standard.

II. FORM FACTOR STANDARDS
In the non-space world there are several form factor

standards that are being used for high performance
heterogeneous systems. A summary of a cross section of these
is captured in Table I. Of these CompactPCI [5], SpaceVPX
[6], MicroTCA [7] and PC/104 [8] have been applied to
spaceborne applications. One of the key challenges of larger
systems is their fault tolerance. Some of these standards were
fully designed to provide a basis for a single point fault tolerant
system. Other standards contain redundancy provisions that
may provide some fault tolerance (e.g. multiple fabrics that
may be used between modules) yet also included features (e.g.
common power feeds or busses) that formed single points of
failure for the system. The last class, usually representing
standards for small numbers of modules, have little or no
redundancy and make the assumption that redundancy will be
provided at the box level, switching out an entire box if the
primary fails to provide the services required of it. SpaceVPX
built on the other existing standards at the time and made
adjustments and changes so that it could fully support robust
single point fault tolerance or more across its system
implementations. This is done mostly through radial or star
distribution of most interfaces and resources within the box.

As Table I shows, there are different amounts and types of
profiles across form factor standards. Some, like CompactPCI
provided minimum flexibility just defining a handful of slot
profiles, while others, such as OpenVPX and by extension,
SpaceVPX provided users with many profiles in slots,
modules, backplanes and chassis.

SpaceVPX is the only current standard in the table that
supports the usage of SpaceWire. Some OpenVPX slots

16

contain control plane wiring for PCI Express that are compatible with SpaceWire routings.

TABLE I. FORM FACTOR STANDARDS

Standard # Pins Interfaces Fault Tolerance Physical Backplane
Voltages Profiles

CompactPCI
PICMG 2.3
[9]

3U: 132 /
6U: 264

PCI, I2C, JTAG, user
defined Single bus

3U-160 or 6U-160 by
0.8”

Air / Conduction Cooled

3.3V and 5V,
12V, -12V

Bus Clock,
Width, Slots

CompactPCI
Serial [10]

3U: 538
6U: 600

PCI, PCIe, SATA/SAS,
USB 2.0/3.0, Ethernet,

I2C, JTAG, user defined

Single Bus, multiple
fabrics

3U-160 or 6U-160 by
0.8”

Air / Conduction Cooled

3.3V and 5V,
12V, -12V, 48V Slots

OpenVPX
VITA 65 [11],
46 [12], 48.2
[13]

3U: 320 /
6U: 832

RapidIO, PCIe,
Ethernet, I2C, JTAG,

RF, Optical, user
defined

Supports 1 of 2 to M of
N common power and

clocks

3U-160 or 6U-160 by
0.8”, 0.85” and 1.0”

Air / Conduction Cooled

12V, 5V and
3.3V, -12V

Slot, Module,
Backplane,

Chassis

SpaceVPX
VITA 78 [14]

3U: 320 /
6U: 832

RapidIO, Ethernet,
SpaceWire, PCI, I2C,
JTAG, user defined

Supports 1 of 2 to M of
N

No single point of
failure

3U/6U -160/220/280/340
by 0.8”, 1.0” or 1.2”

Air / Conduction
Cooled

12V, 5V and
3.3V, -12V

Slot, Module,
Backplane,

Chassis

MicroTCA
[15]

B: 85
B+/AB: 170
A+B: 340

RapidIO, Ethernet, PCI
Express, Fibre Channel,
I2C, JTAG, user defined

Supports 1 of 2 to M of
N No single point of

failure

74/149 x 180mm x 3
heights

Air / Conduction Cooling
+12 and 3.3V size / protocol,

MCH types

VITA 78.1 (in
development) 3U: 320

RapidIO, Ethernet,
SpaceWire, I2C, JTAG,

RF, Optical, user
defined

Supports 1 of 2 to M of
N No single point of

failure

3U-160/220/280/340
By 0.8”, 1.0” or 1.2”

12V, 5V and
3.3V, -12V

Slot, Module,
Backplane,

Chassis

PC/104
Family [16]

Top: 120
Bottom: 156

PCI, PCI Express, USB
2.0/, SM Bus, SATA,

LPC

Single string; multiple
fabrics

3.55” by 3.775” stacked
EPIC 4.528”x6.496”

EBX 5.75” x 8”

3.3V, 5V, 12V, -
12V Module Types

III. HISTORY
In 2011, a group of industry experts and government

officials met as part of the GOMACTech conference. They
discussed how the space industry would soon require more
processing and data bandwidth onboard than the typical
spaceborne CompactPCI box could provide. SpaceWire was
already a popular fabric with the capability of exceeding the 1
or 2 Gbps bandwidth that a CompactPCI box could provide to
share between the modules within. This success with
SpaceWire, low speed 1 Gbps SERDES links and the growing
differences between COTS systems which now used SERDES-
based fabrics and space systems pointed toward SERDES
based fabrics for space. Radiation hardened or tolerant
technology was emerging that could support higher
performance SERDES and thus higher internal bandwidths.
Due to the high cost of development, there was general feeling
that these new high speed interfaces be standardized across the
space community. The Next Generation Space Interconnect
Standards group was formed at that meeting and has since
focused on its selected high performance interface, RapidIO.
Within a year of its formation and following a successful set of
trade studies and use case analysis that arrived at a consensus
to focus on RapidIO, SpaceWire and I2C as a three tiered set of
interconnect fabrics, the NGSIS group realized it also needed a
form factor standard for physical implementations of the
interfaces that could produce interoperable modules. Once
again, the consensus of the group settled on the OpenVPX
standard as the best base to build upon. [17] [18] [19]

Three years later, after over 50 drafts, hundreds of telecons
and face to face meetings with contributions and reviews from

across the space industry, VITA 78.00 was ratified by VITA
and ANSI in April 2015. This 400+ page standard was built
strongly on OpenVPX so that it would be possible to use the
less expensive OpenVPX modules and chassis for prototyping
SpaceVPX systems, for driving SpaceVPX modules with the
various fabrics and for testing SpaceVPX modules in an
existing infrastructure adapted for SpaceVPX modules.

IV. SPACEVPX STANDARDIZATION
SpaceVPX provides multiple levels of standardization for

space electronics modules. First, it defines a common
connector and backplane structure that has been tested for use
in many high vibration (e.g. ships and aircraft) environments
with much longer durations then typical spacecraft needs.
Three variations of the connector are available from three
different manufacturers so the best one may be picked for a
specific box. Although the connectors are not intermate-able,
their footprint is such that modules may be changed from one
to the other without a printed wiring board update.

The connector is divided into segments and multiple
profiles are defined that map the many pins to interface planes
in identical locations. Profiles are defined to provide basic
functions such as switches, controllers, payloads or peripherals.
These planes are then mapped at the module level to hold
specific protocols and speed selections that are compatible with
those pin layouts. This mapping is further described in the next
section. Any user defined pins in a profile may be used for any
usage. However, it is strongly recommended that the usage is
not interfering or can be disabled or not populated if the
module is targeted for reuse in other systems not requiring the
user defined purposes.

17

The next level of standardization is provided to handle fault
tolerant switching of the utility plane. The utility plane is used
for handling the basic operation of a SpaceVPX box. One of at
least two controllers direct this operation and are the first logic
modules to receive power. The master controller then decides
which modules it needs powered to complete a mission. The
Utility plane provides power, resets, common low skew clocks
and a system management (SM) interface for the controller to
interact with utility plane switches and the controlled logic
modules. I2C, enhanced with a reset and error status signal,
forms the SM interface. In OpenVPX this is bussed between
modules in most implementations. In SpaceVPX, it was
decided that a star or radial distribution provided much more
fault tolerance and potential error containment. The switching
of the utility signals and the power to the logic modules is
implemented in a Space Utility Management (SpaceUM)
module. From a reliability point of view, it is a separate
physical module that is actually an extension of the controller
for redriving the control signals, an extension of the power
supply for redriving the power busses and an extension of each
module containing a power switch for each supplied voltage
and a control signal switch or selection for providing a single
set of control signals to each module. Through the use of fault
containment regions in the SpaceUM module, there are no
common points of failure that cannot be allocated and
controlled back to a power supply, controller or logic module.
Thus no module level redundancy is required for a SpaceUM
module. SpaceVPX fully defines the SpaceUM operation,
signals, and connector with profiles provided for various
combinations of voltages that may be supplied to each module.
These may also be applied to power supply modules. Unlike
OpenVPX with its maximum 560W module specification,
SpaceVPX limits modules to no more than 100W.

SpaceVPX also defined the protocols for controlling the
SM interface (SMI). It allows two options. One uses a subset
of the VITA 46.11 IPMB protocol. This requires an
intelligence to respond to each inquiry in under 3.3W which
may be an issue for many simpler modules or for modules with
large integrated processors. Thus SpaceVPX also defined a
direct access protocol which uses direct access over the SMI to
registers contained at each target. These registers provide basic
information about the module and basic health readings like
operational, temperature, voltage and built in test results. It is
expandable so it has the hooks necessary to access other parts
of a module that are so connected.

At the next level, SpaceVPX also defines the connections
between slots in its backplane profiles. These are created to
handle the maximum size for the given topology (such as data
plane mesh or data plane star) and show how slots should be
wired to one another. As before, these draw heavily from the
OpenVPX heritage but are personalized to span the set of slots
defined in SpaceVPX. If a user needs less slots (e.g. only has 6
payloads with an 8 slot switch), slots may be eliminated.
Peripheral slots may be added to any part of a backplane since
they do not contain any data plane connections. However, if
they use control or utility plane signals, they must follow the

rules for other slots in that profile and make sure the controller
provides sufficient drops to service their needs.

The top level of standardization is at the chassis level. In
OpenVPX, all chasses are defined for development usage. In
SpaceVPX, chasses are also defined for flight usage. Primary
voltages and the size of the slots are defined at this level. All
profiles (slot, module, backplane and chassis) receive a label
that accurately describes its makeup in a single label.

V. INTERFACE MAPPINGS
Figure 1 shows a full slot profile for a SpaceVPX controller

slot. Other slot profiles in the Payload family of slot profiles
are subsets of this. RapidIO (connector segment P1) is
currently the only data plane and SpaceWire (connector
segments P3 and P4) is the only control plane defined in
SpaceVPX. The expansion plane may be used for either
additional RapidIO lanes or any number of user defined I/O.
Many backplane profiles define a slot to slot daisy chain using
the P2 interface. Special capability is defined in P5 to provide
a CompactPCI bus that may be daisy-chained to peripheral
modules built of either SpaceVPX or CompactPCI form factor.
P6 is used by the controller to route the SM interface, resets
and common clocks to up to four modules or to the SpaceUM
module to select between A and B controllers.

SpaceWire is fully defined as the control plane in
SpaceVPX and ports are defined on this controller slot. If less
SpaceWire ports are available, they should be depopulated
starting with the top of P3 downwards. A minimum
SpaceVPX implementation of the control plane for any logic
module requires only two SpaceWire ports, routed from each
controller in the system.

Figure 1: Interface Planes Mapped to Slot Profiles

18

SpaceWire as a control plane can be used for moving
around configuration data and code, handling updates of
module memory, collecting telemetry and status from modules
beyond the 400 Kbps of the SMI in the utility plane.
SpaceWire may also be used for medium speed data transfer.
Since SpaceWire ports are capable of up to 400 MHz
operation, this could be used for many data handling operations
that don’t need the full performance of SERDES circuitry and
RapidIO ports. All defined backplane profiles show
SpaceWire topologies as stars or radially-driven from each
controller. However, with the minimum two ports on each
module, a daisy chain architecture is possible. For fault
tolerance, four ports would be an optimal minimum so that two
separate daisy chains could be maintained in a system to allow
working around errors.

The 2008 version of SpaceWire [20] is currently specified
to run in SpaceVPX modules up to the data link layer using the
SpaceVPX backplane and connector as the physical layer.
Once the updated SpaceWire standard is released, analysis is
needed to make sure this meets the Type B requirements.
Higher level layers are currently left up to the user.

For many systems, SpaceWire will not provide enough
bandwidth. RapidIO version 2.1 has been defined as the data
plane with both switched and mesh topologies included to
provide sufficient and scalable data moving bandwidth.

The RapidIO protocol is an international standard that is
regularly updated by the RapidIO Trade Association. The
protocol is designed as peer-to-peer, with a central controller
used to configure and enumerate the network at the time of
start-up. The RapidIO physical layer (PHY) is based on
SERDES circuitry with encoding of data into characters to
achieve balance over the long term. With revision 3.0 of the
specification, the baud rate per lane was extended to 10.3125
Gbaud and for this baud rate and those above it the encoding
mechanism was updated from the standard 8b/10b to 64b/67b,
significantly decreasing the associated overhead. As of June
2016 with revision 4.0, the top baud rate has been extended to
25 Gbaud/lane. Valid port widths are 1, 2, 4, 8, and 16 lanes,
although all commercial products to date support port width
only up to 4 lanes. The protocol includes basic read, write, and
maintenance functions, but also supports a number of optional
features that address the needs of specific markets and users.

Updates to the specification are developed by task groups
under the RapidIO Trade Association. In 2012, a new task
group was created specifically to address unique requirements
of spaceborne applications. Comprised of both corporate and
government representatives, the group defined a series of
enhancements that were published in revision 3.1 in 2014 [21].

 The group defined “space device profiles” that included
some of the optional features as required for use in space,
including the error management extensions and multicasting.
The new space features include the following:

• Structurally asymmetric links simplify the previously
added dynamic asymmetric link capability, based on
the assumption that sources such as sensors will
always transmit far more data than it is necessary for

them to receive. Return information will primarily
consist of commands, responses, and error messages.

• Fault tolerant enhancements for port width degradation
vs. the previous capability that limited which lanes
could be used when a port degraded. The enhanced
capability allowed for a 4-lane to 2-lane transition
using either lanes 0 and 1 or lanes 2 and 3, and also
allowed for any of the 4 lanes to be used as a single
lane.

• Multicast event control symbol (MECS) based time
synchronization and distribution again simplified an
existing time distribution mechanism to provide
accuracy almost as high with far less added hardware.

• A multiple entry error log was also defined that would
allow for the capture of the exact sequence of errors as
they occurred. This allows for significantly greater
diagnostic capability than the single entry baseline
error log register.

• Pseudo-random binary sequence (PRBS) circuitry
supports in-flight testing of links to determine issues
with a port and allow determination which lane of a
port is the source of difficulty. During this testing the
port is not active. Once testing has been completed,
the port can be restarted configured as required.

All of these enhancements are capable of being used
outside of the space market. For that reason, they were
embedded directly into the specification as opposed to being
identified uniquely for use only in space.

Hybrid systems with data movement using RapidIO and
SpaceWire are easily constructed using SpaceVPX profiles.

VI. SPACEVPX MODULES
Figure 2 shows a SpaceVPX system with several

representative module types focused on using SpaceWire for
Control and Data. This system controls 6 instruments attached
to the SpaceVPX chassis. The controller uses its 16 port router
to control and move data between all other logic modules.
Shown in green are BAE Systems ASSPs that could provide
the SpaceWire interface functions. A single string solution
could be created using all the solid modules. Redundant
modules are shown and dashed lines connect these to the other
modules. Utility plane distribution and cross-strapping is also
shown out of the bottom of each module routed through the
SpaceUM module(s). If a single string is used, only one
SpaceUM is needed. In a redundant configuration, two
SpaceUM modules are required. Note twice as many
SpaceWire links are provided to the Mass Memory since that
often requires more bandwidth to store and retrieve data from
all the potential data sources.

Figure 3 shows an upgraded system where RapidIO is used
for the data plane and SpaceWire continues to function as the
control plane. Here many of the SpaceWire components have
migrated to RapidIO components that also support SpaceWire
interconnects. The Mass Memory now relies on RapidIO and
the data plane for its data stream inputs and outputs. Note the
data plane switch is implemented in a seventh logic module.

19

Also, more instruments may be supported by the higher speed external I/O.

Instrument 1 Instrument 2 Instrument 3 Instrument 4 Instrument 5 Instrument 6

Remote InterfaceI/O Conversion

14

Control Plane SpaceWire

Utility Plane (P0) 6

SpaceUM Power
SupplyPower

Supply
SpaceUM

Controller
Controller

RAD5515™ SoC

Utility Plane (P6)

User Defined I/O

SpaceVPX
chassis

Top of Module SpaceWire
Top of Module SpaceWire

Data Processor
Data Processor

RAD5545™ SoC

Telemetry Formatter
& EncryptionTelemetry Formatter

& Encryption SpW EP

Remote Interface
SpW RB4

I/O Conversion
SpW EP

Mass Memory
Mass Memory

SpW RB4 or SRIO EP

Figure 2: SpaceVPX system using SpaceWire for control and data

Instrument 1 Instrument 2 Instrument 3 Instrument 4 Instrument 5 Instrument 6

14

Control Plane SpaceWire

Utility Plane (P0) 7

Power
SupplyPower

Supply

Controller
Controller

RAD5515™ SoC

Utility Plane (P6)

User Defined I/O

SpaceVPX
chassis

Top of Module
SpaceWire and RapidIO

Top of Module XAUI

Data Plane RapidIO

Telemetry Formatter
& EncryptionTelemetry Formatter

& Encryption SRIO EP

Data Processor
Data Processor

RAD5545™ SoC

I/O Conversion
I/O Conversion

SRIO EP

Mass Memory
Mass Memory

SRIO EP (1 or 2)

12

Data Switch
Data Switch

SRIO PS

SpaceUM
SpaceUM

Instrument 7

Remote Interface
Remote Interface

SRIO EP XP

Figure 3: SpaceVPX system using SpaceWire for control and RapidIO for data

20

VII. CURRENT STANDARDS EFFORTS
A second standard effort, SpaceVPXlite, was started in

2015 and will become VITA 78.1 when approved. Its purpose
is to focus on the 3U design space of SpaceVPX. 3U
SpaceUM modules as defined in SpaceVPX can only control 2
logic modules versus the 8 logic modules controlled in a 6U
system. A major emphasis of SpaceVPXlite has been to
improve this overhead penalty and has led to the separation of
the Utility plane signal switching from the Utility plane power
switching functions by replacing SpaceUM modules with
Power Switches and redefining the utility plane inputs to each
logic module. Additional profiles are being added to match
recent OpenVPX additions including optical and RF backplane
connector options. The standard has mostly been written and is
now in the working group review stages.

SpaceVPX is seeing widespread usage among spacecraft
module developers. The NGSIS VITA working group
continues to hold telecons on a weekly basis and discuss any
shortcomings or corrections. As a result, a set of errata was
published in May 2016 pointing out obvious errors. The group
is preparing to start a minor revision to VITA 78 which will
correct identified errors and omissions, pick-up some missing
3U content from 78.1 and add a few new elements to round out
the standard. Also included will be an expanded user guide
section to help first time users better navigate and use the
standard.

VIII. SUMMARY
SpaceVPX was developed to provide a standardized form

factor for the next generation of high performance modules
using interoperable SERDES-based fabrics with a focus on
fault tolerance and scalability. It focuses on the use of RapidIO
for high speed data movement and SpaceWire for command
and data handling as well as medium speed data transfer.
SpaceVPX doesn’t forget its heritage and has elements that
may interface to heritage system elements. Ratified in 2015, it
is beginning to see widespread adoption that should lead to
multiple interoperable modules that may be assembled into
scalable high performance payloads and other spacecraft
electronics modules.

REFERENCES
[1] D. Rickard, et. al., “On-Board Networks with Radiation

Hardened 45nm SOI Standard Components”, Proceedings of the
IEEE Aerospace 2015 Conference, Big Sky MT USA, March
2015.

[2] R. Berger, et. al., “Quad-Core Radiation-Hardened System-on-
Chip Power Architecture Processor”, Proceedings of the IEEE
Aerospace 2015 Conference, Big Sky MT USA, March 2015.

[3] J. Marshall and R. Berger, “High Performance Network
Components for Scalable Spaceborne Processing Needs”,
Proceedings of the 2016 International SpaceWire Conference,
Yokohama, Japan, October 2016.

[4] J. Marshall, R. Berger and L. Assadzadeh “SpaceWire Fabric
Used to Control Family of Standardized High Performance
SpaceVPX Modules”, Proceedings of the 2016 International
SpaceWire Conference, Yokohama, Japan, October 2016.

[5] Berger, R. W., et. al., “RAD750 SpaceWire-Enabled Flight
Computer for Lunar Reconnaissance Orbiter”, Proceedings of
1st International SpaceWire Conference, Dundee, Scotland,
September, 2007.

[6] R. Alena, P. Collier, M. Ahkter, B. Wood, S. Sinharoy and D.
Shankar, “High Performance SpaceVPX Payload Computing
Architecture Study”, IEEE Aerospace 2016, Big Sky MT,
March 2016.

[7] R. Merl and P. Graham, “MicroTCA for Space Applications”,
Proceedings of the IEEE Aerospace 2016 Conference, Big Sky
MT USA, March 2016.

[8] “In Space”, www.cubesatkit.com/content/space.html.
[9] Compact-PCI Base Specification, PICMG 2.0 Rev 3.0, October

1, 1999. www.picmg.org
[10] “CompactPCI Serial”, PICMG CPCI-S Rev 2.0, June 12, 2015,

www.picmg.org.
[11] “OpenVPX System Specification”, ANSI/VITA 65-2010

(R2012), 2012, www.vita.org
[12] “American National Standard for VPX Baseline Standard”,

ANSI/VITA 46.0-2007 (R2013), November 2013,
www.vita.org.

[13] “VPX REDI: Mechanical Specifications for Microcomputers
Using Conduction Cooling Applied to VPX”, ANSI/VITA 48.2,
2010, www.vita.org.

[14] “SpaceVPX Standard”, ANSI/VITA 78.00-2015,
www.vita.com

[15] “MicroTCA”, PICMG MTCA.0 Rev 1.0, July 7, 2006,
www.picmg.org

[16] “PC/104 Specification”, Version 2.6, October 13, 2008,
www.pc104.org.

[17] Collier, Charles Patrick, et al., “Next Generation Space
Interconnect Standard (NGSIS): A Modular Open Standards
Approach for High Performance Interconnects for Space”,
Proceedings of 2015 IEEE Aerospace Conference, Big Sky MT
USA, March 2015

[18] J. Marshall, “Standardized SpaceWire Solutions for Next
Generation Systems”, Proceedings of the 2014 International
SpaceWire Conference, Athens, Greece, September 2014.

[19] P. Collier, J. Marshall, R. Berger, M. Enoch, S. Goedeke, “Next
Generation Space Interconnect Standard (NGSIS): A Modular
Open Standards Approach for High Performance Interconnects
for Space”, AIAA 8 Reinventing Space 2013 Conference
Proceedings, Los Angeles CA USA, September 2013.

[20] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire, Links,
Nodes, Routers and Networks”, Issue 1, European Cooperation
for Space Data Standardization, July 2008.

[21] RapidIO Interconnect Specification 3.1, www.rapidio.org,
September 2014

All figures are Copyright BAE Systems – used with permission

21

http://www.picmg.org/

 SpaceFibre 1 (Long)

22

Ruggedized Photonic Transceivers

for Spacecraft Datalinks
SpaceFibre Session, Long Paper

Ronald T. Logan Jr.

Rugged Electronics and Photonics Division

Glenair Inc.

Glendale, California, USA

rlogan@glenair.com

Abstract — Commercial-off-the-shelf photonic components

designed for datacenter or industrial applications do not typically

satisfy the environmental ruggedness requirements of aerospace

applications. In order to reduce costs and schedule risk for

insertion of photonic components into these harsh-environment

applications, we developed ruggedized photonic transceiver

modules for aerospace fiber-optic datalink applications up to 5

Gbps. We then performed reliability and environmental testing

to demonstrate that these modules meet or exceed many of the

requirements of these applications. In this paper we present

performance characteristics and results of reliability and

environmental tests for these transceiver components.
Index Terms — Relevant indexing terms: SpaceWire,

SpaceFibre, Spacecraft Networking, Spacecraft Electronics,

Spacecraft Photonics.

I. INTRODUCTION

Data transmission requirements between avionics modules

onboard spacecraft continue to increase, driven by the use of

processors with high-speed serial data I/O to support the

growing data requirements of advanced sensor systems and

increased bandwidth of communications switches and satellite

communications terminals. Optical fiber is an ideal medium

for high-speed signal transmission on space platforms, since

optical fiber cables support data rates up to many tens of

gigabits per second (Gbps), are much lighter and smaller than

copper wiring of equivalent bandwidth, are immune to radio-

frequency (RF) interference from adjacent cables, and therefore

require no RF shielding. The emerging SpaceFibre standard

for spacecraft networking anticipates the use of high-speed

fiber optic transmission between avionics modules and

subsystems on spacecraft.

However, the availability of suitable photonic transceiver

components for space applications is not widespread. The

major manufacturers in the photonics industry are typically not

able or willing to address the highly-specialized requirements,

long design cycles, extreme environmental robustness, ultra-

high reliability, traceability, radiation tolerance and small,

inconsistent production volumes encountered with space

applications. Conversely, the development of suitable

transceiver hardware is typically beyond the engineering or

budget capacity of most spacecraft programs. We believe this

combination of factors has limited the adoption of photonic

links on spacecraft, while multi-gigabit links have proliferated

in non-space aerospace applications. We therefore undertook

development of photonic transceivers designed to address the

emerging aerospace requirements.

In this paper we will briefly review the components of photonic

transmitters, receivers and transceivers, and highlight the

challenges with spacecraft transceiver design. We then

describe the approach to design of rugged photonic transceiver

developments and the results of performance and

environmental tests appropriate for space avionics applications.

II. BACKGROUND AND CHALLENGES WITH SPACECRAFT

PHOTONIC TRANSCEIVER DESIGN

We first briefly review the design of photonic transceivers,

which have two main sub-components: laser transmitter and

photodiode receiver. The function of the transmitter is to

convert electrical serial data bits to optical pulses, and the

photodiode receiver converts optical pulses to electrical serial

data bits. These functions are realized in multi-gigabit systems

using opto-electronic semiconductor devices (laser diodes and

photodiodes) and electronic integrated circuit (IC) amplifier

and control-loop devices.

The transmitter employs a laser diode which is current-

modulated to impress the electrical serial data onto an optical

signal as a series of on and off states. Laser diode threshold

current and modulation efficiency are strong functions of

temperature. Many transmitters incorporate a power monitor

photodiode to sample and measure the laser output power and

maintain the average output power at a constant level using a

feedback loop with the average laser current as a control point.

23

The electronic driver IC amplifies the electrical bit stream from

standard logic-levels such as Common-Mode Logic (CML)

typically used as I/O to and from microprocessors, field-

programmable gate-arrays (FPGAs), etc., to the level required

to modulate the laser current to achieve optical modulation at

the optimum level. Since the optical modulation vs bias-

current slope efficiency is also a function of temperature, a

second control system is used to maintain proper optical

modulation over the operating temperature range. Careful

matching, calibration and tuning of the bias control and

modulation control circuits are required to insure that high-

speed transmitters at multi-gigabit rates operate within

industry-standard specifications over temperature. There are

variations on these approaches, but what is always true is that

some form of control of the laser current and modulation depth

is required if the laser temperature will vary in operation.

The receiver contains a PIN photodiode, transimpedance

amplifier IC, and limiting amplifier IC. The transimpedance

amplifier often contains an AGC circuit to maintain the output

level in an acceptable range when higher-level optical input

signals are present. The limiting amplifier may also contain a

bandwidth-limiting element to improve noise performance at

lower bit rates.

For bit rates up to 5 Gbps, the above laser diode, photodiode

and IC components are available that operate from -40C to

+85C without external thermal controls. Manufacturers of

commercially-available lasers, photodiodes and transceiver

electronic ICs do not typically have test data for the

performance of their devices in radiation environments. This is

a central challenge to realizing photonic transceivers for space

applications.

III. TECHNICAL APPROACH

Most modern datacom transceivers and IC chipsets contain

CMOS circuitry and memory to support bias control lookup,

serial I/O monitor and control ports, etc. to conform to datacom

networking interface standards. However, these transceiver

products are typically board-mountable units that accept

commercial-grade optical connectors, and do not need to

operate in the harsh aerospace environment, including

radiation. As such they are not typically suitable for use in

space. In order to be suitable for aerospace applications,

appropriate aerospace-grade connectors need to be

accommodated and the semiconductors must withstand the

radiation exposure levels.

One example of an optical transceiver form factor that satisfies

many of these requirements is shown in Figure 1, called a Size

#8 opto-electronic contact. These devices provide electro-optic

conversion of high-speed data signals from electrical to optical

format, or optical to electrical format, inside of a fiber-optic

connector on an avionics module in standard size #8 connector

cavities. Because of the very small package size (~20 x 6.5

mm), we developed opto-electronic circuits using very simple

IC chip sets that provide only basic monitor and control I/O

signals such as “transmitter enable”, “transmitter fault” and

“receiver loss of signal (LOS).” The focus of the development

was on fitting into the allotted form-factor, strictly complying

with ARINC 801 optical contact float requirements, and

surviving harsh aerospace environments.

These transmitter and receiver contacts may be inserted into

ARINC 400 or 600 avionic-bay connectors, or into special

front-insert D38999 or D-sub connectors (see Figure 2), to

provide data translation between electrical and optical domains

inside of a panel-mount connector on an avionics module. The

optical fiber interface of the ARINC 801 fiber optic contact

used supports repeated blind-mating due to the incorporation of

a floating optical ferrule, by using a unique design that

incorporates a flexible circuit board assembly internal to the

unit [1].

The transmitter contact utilizes a hermetically-sealed GaAs

VCSEL and the receiver a hermetically-sealed GaAs

photodiode at 850nm with a multi-mode ARINC 801 fiber

optic interface.

Figure 1. Opto-Electronic Contact.

Figure 2. Size #8 contacts in panel-mount avionics connectors: D-sub (upper)

and D38999 (lower).

The optical interface to the cable is accomplished using a

mating adapter insert in the plug Size 8 cavity that accepts a

standard ARINC 801 optical contact. These opto-electronic

contacts can support data rates from 50 Mbps to 5 Gbps, and

interface with standard Common-Mode-Logic (CML)

differential data signal levels on the electrical inputs and

24

outputs. They operate from 3.3 V input power, consume ~60

mA of current, and have a transmitter enable input, as well as

transmitter fault and Loss of Signal (LOS) output status

discrete signals. The optical interface specifications conform

to the output power levels, eye-mask-margins, extinction ratios,

and receiver sensitivity typical of industry-standard Fiber

Channel and Gigabit Ethernet specifications, so the optical

ports will interface via standard 50/125 micron or 62.5/125

micron multimode optical fiber with other commercial datacom

optical transceivers as might be encountered in ground test

equipment.

Figure 3. PCB-mountable quad-output transmitter unit: Top view (upper) and
bottom view (lower).

In addition to the Size #8 contacts, the same optical and

electrical device circuits have been incorporated into printed-

circuit-board (PCB) mountable transceivers as shown in

Figures 3 and 4. These devices utilize a high-speed surface-

mounted PCB connector on the bottom of the unit to provide

the connectivity to the host PCB via 100-ohm differential CML

data streams, and are affixed using captive screws to threaded

inserts that are soldered into the host PCB. The four optical

interfaces of the four-fiber version in Figure 3 are machined

cavities that strictly conform to the ARINC 801 standard, with

retaining clips to hold the contact that require the use of an

extraction tool for contact removal.

The two-fiber form-factor shown in Figure 4 utilizes a new

connector developed by Glenair (Glenair GC-type) that has

extremely low mass, low protrusion and very high tolerance to

shock and vibration. This connector and transceiver permit a

small footprint to be consumed on the customer PCB, and are

much smaller than a standard datacom SFP pluggable

transceiver, as shown in Figure 5.

One benefit of a simplified circuit approach is that there are no

microprocessor or memory devices in the units, which are

typically more susceptible to single-event effects (SEE), latch-

up, etc.

Figure 4. Two-fiber PCB-mount transceiver form-factor. Top view (upper)

and bottom view (lower.)

Figure 5. Size comparison of Glenair 2-fiber transceiver with commercial

datacom SFP pluggable transceiver.

IV. TEST RESULTS

Various reliability and qualification tests were conducted on

the parts described above. Some key results are summarized

here.

The filtered transmitter eye diagram at 4.25 Gbps for the Size

#8 contacts at various temperatures is shown in Figure 6,

showing stable optical power, acceptable eye-mask margins

and extinction ratios over the -40C to +90C range of ambient

operating temperature. The performance of the other

transceiver form-factors is similar, since they use the same

circuit schematic and components. The eye-mask testing was

performed at 4.25 Gbps due to the availability of test

equipment with this data rate filter. The links tested using

these devices also run error-free at 5 Gbps.

25

Figure 6. Size #8 contact filtered eye diagrams at 4.25Gbps.

The receiver sensitivity typical for the Size #8 opto-electronic

contact measured at 4.25 Gbps at various temperatures is

shown in Figure 7. As evident in the figure, there is

approximately -19 dBm, which is 5 dB of margin beyond the

Fiber Channel standard specification for 4.25 Gbps of -14

dBm. Given the transmitter output power of approximately -

3.5 dBm, this yields an optical link budget of greater than 16

dB at 4.25 Gbps.

Figure 7. Receiver sensitivity at 4.25Gbps.

Accelerated aging tests were performed on 20 transmitter and

receiver devices while operating at +85C, and the results are

shown in Figure 8. No failures were observed.

Figure 8. Accelerated aging of Size #8 opto-electronic contacts. Transmitter

output power (top) and receiver sensitivity at 1.25 Gbps (bottom).

Figure 9. Thermal cycling test from -55C to +125C for Glenair PCB-mount
transmitter output power and extinction ratio and receiver sensitivity at 4.25

Gbps. The units were removed from the test chamber at the intervals indicated.

-40C

+90C

Hours

Temperature cycles

26

Temperature cycling testing was performed for 1000 cycles

from -55C to +125C, non-operating on the PCB-mount

transceivers and the Size #8 contacts. The units were removed

at intervals and subjected to full production test regimen over

temperature from -40C to +85C to insure that the units were

still within specifications.

Both styles of PCB-mounted transceivers, (ARINC 801 4-fiber

and GC 2-fiber types) were subjected to operational vibration

testing to a level of 54 Grms, with spectrum as indicated in

Figure 10. The duration was 2 hours per axis, with data

running and errors being monitored at 5 Gbps. No errors were

detected.

This was followed by 650 G, 0.9 ms shock pulses, 10 shocks

per direction in all three axes. The units were exposed to these

levels while operating and errors were monitored at 5 Gbps.

No errors were detected during any of these exposures.

Figure 10. Random vibration profile for 54 Grms operating tests.

Finally, the Size #8 contacts were tested for resistance to

radiation exposure to 165 krad of gamma radiation from a

cobalt-60 source, and 2.5 x 10
12

 neutrons/cm
2
, while operating

under continuous error monitoring, with no errors detected.

Future test plans include charged-particle testing with protons

and heavy ions, and will be reported in future publications.

I. CONCLUSIONS

Compact, rugged, opto-electronic transmitters, receivers, and

transceiver modules in various form-factors were developed

and tested to 5 Gbps data rates during various harsh

environmental exposures. These transceivers were designed to

interface with aerospace-grade fiber-optic connectors suitable

for space-flight applications. These devices were subjected to

various tests, including thermal cycling, high vibration and

shock, and gamma and neutron radiation, and found to survive

with no data errors. Further testing is planned.

ACKNOWLEDGMENT

Glenair thanks Technical University Munich for the gamma

and neutron radiation testing performed on Glenair products.

REFERENCES

[1] US Patent 9,297,972 Ronald T. Logan Jr., Sean Zargari,

Mehrdad Ghara, Huan Do, “Advanced fiber-optic contact and

method,” issued 3/29/2016.

27

SpaceFibre Networks

SpaceFibre, Long Paper

Steve Parkes, Chris McClements, David McLaren,

Space Technology Centre, University of Dundee,

166 Nethergate, Dundee, DD1 4EE, UK

smparkes@dundee.ac.uk

 Albert Ferrer Florit, Alberto Gonzalez Villafranca,

STAR-Dundee Ltd.,

STAR House, 166 Nethergate, Dundee, DD1 4EE, UK

Abstract— SpaceFibre [1][2][3] is the next generation of

SpaceWire [4] on-board data-handling network technology for

spaceflight operations, which runs over both electrical and fibre

optic media. SpaceFibre has many benefits compared to

SpaceWire, including much higher data-rates, integrated quality

of service, fault recovery capabilities, multi-laning with graceful

degradation and hot and cold redundancy, and low-latency

broadcast messages that can carry 8-bytes of user information.

Importantly SpaceFibre is backwards compatible with

SpaceWire at the network level, allowing existing SpaceWire

equipment to be incorporated into a SpaceFibre network without

modification. SpaceFibre networks have been defined by the

University of Dundee and STAR-Dundee, and incorporated in the

network layer definition of the current draft SpaceFibre

standard. STAR-Dundee has designed a SpaceFibre routing

switch to evaluate various routing concepts, validate the standard

specification and demonstrate a complete SpaceFibre network. A

demonstration system has been built and key parts of the

SpaceFibre network technology have been demonstrated.

Index Terms — SpaceFibre, SpaceWire, Networking,

Spacecraft Electronics.

I. INTRODUCTION

 SpaceFibre is the next generation of SpaceWire technology

for spacecraft on-board data-handling. It is able to operate at

multi-Gbits/s over distances of up to 5 m using electrical cable

and 100 m using fibre optic cable. It is galvanically isolated,

includes quality of service and fault detection, isolation and

recovery capabilities. SpaceFibre is backwards compatible with

SpaceWire at the Network level, which enables existing

SpaceWire equipment to be connected into a SpaceFibre

network without modification. Furthermore SpaceFibre has

been designed to have a small footprint, enabling its

implementation in flight qualified FPGAs and ASIC devices

without using a large part of the device.

This paper outlines the operation of SpaceFibre networks,

describes the SUNRISE SpaceFibre routing switch, and

summarises the results of tests with this routing switch.

II. SPACEFIBRE LINKS

A. Links and Lanes

A SpaceFibre link is made up of one or more lanes, which

carry information from one end of the link to the other.

SpaceFibre lanes can run over an electrical or fibre optic

physical layer. In a multi-lane link, some of the lanes can be

unidirectional provided that at least one lane is bi-directional

[5]. The SpaceFibre link provides quality of service and error

recovery [3].

B. SpaceFibre Virtual Channels

SpaceFibre links carry traffic (application information)

through one or more virtual channels. There is a maximum of

32 virtual channels on a link, which are numbered

consecutively starting at 0. Traffic entering virtual channel N

comes out of virtual channel N at the other end of the link.

Each virtual channel is provided with a quality of service

(QoS) which has three components: bandwidth reservation,

priority and scheduling. Bandwidth reservation, reserves a

portion of the link bandwidth for the virtual channel. Priority

assigns a priority-level to the virtual channel so that higher

priority virtual channels are able to send before lower priority

ones. Scheduling divides time into 64 sequential time-slots and

specifies in which of those time-slots a virtual channel is

permitted to send information. These three different QoS

components are not alternatives, they work together. [3]

III. SPACEFIBRE NETWORKS

In this section the operation of a SpaceFibre network is

described.

A. SpaceFibre Packets

SpaceFibre packets are identical to SpaceWire packets.

They are formed from data characters, end of packet markers,

and error end of packet markers, as illustrated in Figure 1.

Destination Address Cargo EOP

Figure 1 SpaceWire Packet Format

The "Destination Address" is the first part of the packet to

be sent and is a list of data characters that represents either the

identity of the destination node or the path that the packet has

to take through a SpaceFibre network to reach the destination

node. In the case of a point-to-point link directly between two

nodes (no routers in between) the destination address is not

necessary.

The "Cargo" is the data to be transferred from source to

destination. Any number of data bytes can be transferred in the

cargo of a SpaceFibre packet.

The "End_of_Packet" (EOP) is used to indicate the end of a

packet. The data character following an End_of_Packet is the

start of the next packet. There is no limit on the size of a

SpaceFibre packet. “Error End of Packet” (EEP) is a form of

28

EOP which is used to indicate the premature end of a packet

due to the occurrence an error.

B. SpaceFibre Virtual Networks

A SpaceFibre network is effectively a set of independent

parallel SpaceWire networks. These parallel, independent

networks are called “SpaceFibre virtual networks”. Each virtual

network runs over its own, distinct set of SpaceFibre virtual

channels, comprising a virtual channel across each link used by

the virtual network. Several virtual networks can then operate

concurrently over a single physical SpaceFibre network. The

overall physical network and the collection of virtual networks

that run over that physical network is called the “SpaceFibre

network”.

The traffic running over each virtual network is constrained

by the SpaceFibre quality of service mechanism to remain

within its allocated bandwidth and to observer the priority and

schedule allocated to it. A virtual network is able to

opportunistically use more bandwidth than it has been

allocated, when no other virtual network has traffic to send

over the links of the SpaceFibre network that the particular

virtual network wants to use.

As far as the addressing of packets and their routing across

the network is concerned, SpaceFibre operates in the same way

as SpaceWire. This has the substantial advantage that existing

application software or SpaceWire equipment can be used with

a SpaceFibre network by simply tying a SpaceWire link

interface to a SpaceFibre virtual channel interface. The

application does not need to know that it is running over

SpaceFibre, but gains all the QoS and FDIR advantages of

SpaceFibre. This make the integration of existing SpaceWire

equipment both simple and advantageous.

C. Packet Addressing

SpaceFibre uses both path and logical addressing, which

operate in the same way as SpaceWire. It is not possible to

route a packet between two different virtual networks in a

routing switch. As already stated virtual networks on a

SpaceFibre network are like a set of parallel, independent

SpaceWire networks. The packet routing is within one virtual

network.

Path addressing uses the leading data character of a packet

to determine how the packet should be routed at the next

routing switch. If the value of the leading data character is in

the range 0 to 31, it determines which port of the routing switch

the packet will be forwarded through. For example, if the

leading data character is 2, the packet will be forwarded

through port 2 of the routing switch. If the leading data

character is 0, it will be routed to port 0, the internal

configuration port of the routing switch. If the leading data

character is 31 and there are only 9 ports in the router, the

packet will be discarded. Note that the ports of a router are

number consecutively, starting at 0 for the internal

configuration port.

If the leading data character is in the range 32-255, it is a

logical address. The value of the leading data character is then

used as the index into a routing table, which once configured,

determines which port the packet is to be forwarded through.

For example, if the leading data character is 40 and the entry in

the routing table for index 40 contains the value 3, the packet

will be routed to port 3 of the router. The routing table is

configured using RMAP commands sent to the router

configuration port [6]. Before configuration of the routing table

has been done, any logical address will result in the packet

being discarded. Path addressing operates at all times, before

and after the routing table has been configured.

D. Fills

SpaceFibre runs much faster than SpaceWire, so requires an

interface to the application which is wider than that of

SpaceWire to carry the extra data. The interface to a

SpaceFibre port is typically 32-bit wide or a multiple of 32-bits,

whereas SpaceWire is 8-bits wide. If SpaceFibre is to send a

packet which is not a multiple of 32-bits, the start of the packet

or its tail end can be filled with Fill characters to make it 32-bit

aligned. Therefore, a SpaceFibre data word contains four data

characters, EOPs, EEPs or Fills. The use of Fills is illustrated in

Figure 2 and Figure 3, where P represents a path-address data

character, D represents a data character, E an EOP or EEP, and

F a Fill.

Filling the start allows for a 32-bit aligned cargo, when path

addressing is being used, as illustrated in Figure 2.

F F F P

P P P P

D D D D

D D D D

E F F F

Figure 2 Fills at the start of a SpaceFibre packet

Fill characters are added at the beginning of a packet, to

align a path address which is not a multiple of four data

characters in length or to fill spaces that were previously

occupied by a path address. This allows the leading SpaceFibre

path address bytes to be removed by a router and replaced by

Fill characters in order to keep the word-alignment of the

SpaceWire cargo when it arrives at the destination. It also

allows some fills to be added to the start of a packet to ensure

that the cargo of the packet is 32-bit aligned when there is a

path address that is not a multiple of four data characters.

Filling the end allows for the cargo to be any number of N-

Chars, not a multiple of four N-Chars, as illustrated in Figure 3.

D D D D

D E F F

F F P P

D D D D

D D D D

E F F F

Figure 3 Fills at the end of a SpaceFibre packet

The Fill character is used in a data word containing an EOP

or EEP to fill otherwise empty characters that follow the EOP

or EEP. The above example shows two small packets in part of

a frame being aligned to 32-bits.

E. Virtual Network Masters

A “network master” is a node on a SpaceFibre virtual

network which is a source of SpaceFibre packets able to send

packets autonomously, i.e. without first receiving a request

29

from another node. Note that a network master is different to a

network manager, the latter is a network master that configures,

controls and monitors the status of the entire SpaceFibre

network.

If there is one network master on a virtual network then that

virtual network can be deterministic. For example, the network

master might be a control processor sending Remote Memory

Access Protocol (RMAP) packets to other instrument nodes to

control them and collect data from them, using RMAP. The

traffic on the virtual network is controlled by the one network

master node. The set of virtual channels that the specific virtual

network runs over is allocated the bandwidth and priority

according to its needs. If the virtual network is to provide time-

bound determinism, its virtual channel will also be scheduled

by the SpaceFibre QoS mechanism.

Within a single SpaceFibre virtual network, if there are two

independent network masters, it is possible that they both send

a packet to the same node, or through the same link to a router

and then on to different nodes. Whenever these two network

masters want to send a packet over the same link at the same

time, there is a “collision” and one packet will have to wait for

the other one to be sent. This is the same as the temporary

“packet blocking” that can occur in a SpaceWire network. Each

SpaceFibre virtual network operates just like a separate

SpaceWire network, including temporary packet blocking.

Now, in some applications the temporary network blocking

was a real pain in a SpaceWire network, especially if long

packets were being used. Traffic from one application could

delay traffic from another one, which could be difficult to

handle under some circumstances. SpaceFibre solves this

problem, by having multiple, independent virtual networks. If

there is a single network master on each of these virtual

networks, the packet blocking is avoided completely. It is still

possible to have multiple network masters on the same virtual

network, provided that packet blocking is not an issue for the

traffic flowing over that virtual network, or provided that

another mechanism is used to control the flow of traffic over

that network.

This approach maintains full backwards compatibility with

SpaceWire at the network level, which is essential if the large

legacy of existing SpaceWire equipment is not to be

squandered. Reuse of existing, proven equipment, reflected by

the Technology Readiness Level (TRL), is an important way of

improving reliability and reducing the cost of space missions.

SpaceFibre offers a path for substantially upgrading the

capabilities and performance of an onboard network without

losing that valuable legacy.

IV. REFERENCE ARCHITECTURE

It is worth considering an example of how the virtual

networks might be used in a typical space mission. First, a

reference architecture is described.

A. Earth Observation Reference Architecture

A reference architecture has been devised which is

representative of a typical high data-rate Earth Observation

mission. This architecture is illustrated in Figure 4.

Instruments 1 and 2 are high data-rate instruments each

with a SpaceFibre interface. They are connected via two

SpaceFibre routers to the mass-memory unit which has two

SpaceFibre interfaces. Each instrument is able to transfer data

at up to 2 Gbits/s using a 2.5 Gbit/s SpaceFibre link.

Instrument
2

InterfaceSpW Control/HK

Data Output

SpaceWire
To

SpaceFibre
Bridge

SpaceWire
Instrument

SpaceWire
Instrument

SpW Control/HK

Data Output

SpW Control/HK

Data Output

Local Instruments

Local Instrument

SpaceFibre
Router 2

Instrument
1

InterfaceSpW Control/HK

Data Output

Local Instrument

Mass
Memory
Interface Data Bus

To Memory

Mass Memory Unit

Downlink
Telemetry
Interface SpW Control/HK

Data Output

Downlink Telemetry

Control
Processor
Interface

SpW Control/HK

Data Input/Output

Control Processor

SpaceFibre
Router 1

SpaceWire
Instrument

SpaceWire
Instrument

Figure 4 SpaceFibre Earth Observation Mission Reference

Architecture

Four existing SpaceWire instruments are attached to a

SpaceWire to SpaceFibre bridge device, each via a separate

virtual channel of the SpaceFibre interface. Data from these

SpaceWire devices is sent over the SpaceFibre network to the

mass-memory unit.

Data from the mass-memory unit is passed to the downlink

telemetry unit.

A control processor is able to access all of the instruments,

the mass-memory unit and the downlink telemetry unit along

with the SpaceFibre routing switches to configure and control

the devices and to read housekeeping information from them.

The architecture in Figure 4 does not really need two

routing switches, but two are included in the reference

architecture to make it more generic.

B. Example Allocation of Virtual Networks

There are several functions that need to be carried out by

the reference architecture of Figure 4. These functions are

listed below:

1. SpaceFibre network management: configuring,

monitoring and reconfiguring the SpaceFibre network;

2. Payload management; instrument control and status

monitoring (housekeeping);

3. Data-handling system management; control and status

monitoring (housekeeping) of the mass-memory unit

and the downlink telemetry unit;

4. Sending data from the high data-rate Instrument 1 to

the mass-memory unit

5. Sending data from the high data-rate Instrument 2 to

the mass-memory unit;

6. Sending data from the four SpaceWire instruments to

the mass-memory unit;

7. Sending data from the mass-memory unit to the

downlink telemetry unit.

Each of these functions could be allocated a separate virtual

network, requiring a total of seven virtual networks in the

routing switches and mass-memory unit. Since there is only

one control processor (ignoring a possible redundant unit), it is

necessary to run the SpaceFibre network management, the

payload management and the data-handling functions on the

same processor. These functions can then share a virtual

network since there will always only be the one control

processor using that virtual network. This reduces the number

30

of virtual networks required to five. The five parallel virtual

networks are illustrated in Figure 5.

Instrument
2

InterfaceSpW Control/HK

Data Output

SpaceWire
To

SpaceFibre
Bridge

SpaceWire
Instrument

SpaceWire
Instrument

SpW Control/HK

Data Output

SpW Control/HK

Data Output

Local Instruments

Local Instrument

SpaceFibre
Router 2

Instrument
1

InterfaceSpW Control/HK

Data Output

Local Instrument

Mass
Memory
Interface Data Bus

To Memory

Mass Memory Unit

Downlink
Telemetry
Interface SpW Control/HK

Data Output

Downlink Telemetry

Control
Processor
Interface SpW Control/HK

Data Input/Output

Control Processor

SpaceFibre
Router 1

SpaceWire
Instrument

SpaceWire
Instrument

VN0VN1

VN2

VN3
VN4

Figure 5 Parallel Virtual Networks

The control processor performing the network management,

payload management and data-handling system management,

uses one virtual network (VN0) and is able to access all of the

instruments, routing switches, mass-memory and downlink

telemetry units, over that one virtual network.

Instrument 1 uses another virtual network (VN1) to send

data to the mass-memory unit. Similarly instrument 2 uses

VN2.

The SpaceWire instruments all share one virtual network

(VN3) for sending data to the mass-memory unit. This means

that they will compete for access to the virtual network, as if

they were running over a SpaceWire network.

C. Networks with Large Number of Nodes

When there are a large number of nodes in a network, it is

possible to handle them in several different ways.

Firstly, a single virtual network could be used for several

nodes which all act as network masters. It is simply accepted

that within this virtual network temporary packet blocking will

occur and will not be a problem for the applications related to

those nodes. This virtual network operates the same as a

SpaceWire network

Secondly, it is possible to increase the number of virtual

channels so that there is one for each SpaceWire instrument.

This depends on the number of virtual channels available in the

SpaceFibre routers and mass-memory unit. In any case there is

a limit to the maximum number of virtual networks that can be

used. There is actually a maximum of 32 virtual channels over

a link and 64 virtual networks across a SpaceFibre network.

A third alternative is to use one network master on a virtual

network to handle all the communication for the nodes on that

network. The configuration, control and housekeeping network

is an example of this where there is one master node that uses

RMAP commands to request information to all the nodes on

the network including the configuration nodes within the

routing switches.

A similar approach could be used for sending data from

several instruments to the mass-memory unit. The mass

interface controller could send out RMAP commands to request

data from each of the SpaceWire instruments on a single virtual

network in turn. For example the mass-memory unit could use

VN3 to send RMAP commands to the SpaceWire instruments

which respond with the requested data, which is then placed in

memory.

Another possibility is to schedule the sending of

information from the various equipment over a virtual network

using time-slots, which are delimited by broadcast messages

over the SpaceFibre network or time-codes on the SpaceWire

network. Each equipment then sends its data in its allocated

time-slot or time-slots.

D. Virtual Network to Virtual Channel Mapping

Virtual networks are mapped on to a set of virtual channels,

one virtual channel for each link used by the virtual network.

Each virtual channel on a link is mapped to one and only one

virtual network. The virtual channel number used by a virtual

network over one link does not need to be the same as the

virtual channel number used on another link.

The simplest way of mapping a virtual network to a virtual

channel is to use a one to one mapping, so that virtual network

VN0 uses virtual channel VC0 on all of the links in the

network. Similarly VN1 uses VC1 and so on. The problem with

this simple approach is that it complicates the instrument nodes

of the network. For example, a typical instrument will require

two virtual networks; VN0 which is used for control and

monitoring and another virtual network which is used for data

transfer to a mass-memory unit. This is the case with

instruments 1 and 2 in Figure 5, which use VN1 and VN2

respectively. If a mapping is done from the virtual network to

the virtual channels, the hardware required in the instrument

interfaces is simplified. For example, instrument 1 VN1 is

mapped to VC1 and instrument 2 VN2 is mapped to VC1. This

mapping needs to be done at both ends of the respective links.

The routing switch then uses this mapping to route a packet to

an output port on the same virtual network number as that on

which the packet arrived. The virtual channel numbers may be

different on the link over which the packet arrived and the link

over which the packet is being forwarded, but the virtual

network numbers mapped to these virtual channels are the

same.

Using the example of Figure 5, the links running from

Router 1 to Router 2 will carry instrument data from instrument

1 over VN1 and from instrument 2 over VN2. This data can go

over either of the links between the two routing switches

depending on the packet address. So over these links the

following mapping applies:

 VN0 -> VC0, this is always the case

 VN1 -> VC1

 VN2 -> VC2

 VN3 -> VC3

VN4 does not use the links between the routers.

So VN2 is mapped to VC1 for the link from instrument 2 to

router 1, because there are only two virtual channels available

in the instrument interface. VN2 is then mapped to VC2 over

the links from router 1 to router 2.

The virtual network to virtual channel mapping makes the

routing switches more complex, because it has to handle the

mapping, but makes the instrument interfaces simpler, because

they normally only need two virtual networks, which can be

supported by two virtual channels. The virtual network

mapping also permits more virtual networks on a SpaceFibre

networks than there are virtual channels on a SpaceFibre link,

i.e. there are up to 64 virtual networks allowed in a network but

only 32 virtual channels over a link. This is possible because

31

some virtual networks may use completely separate parts of the

network.

V. SUNRISE SPACEFIBRE ROUTING SWITCH

A SpaceFibre router has been designed and implemented in

the SUNRISE project funded by the UK Space Agency and

STAR-Dundee. The architecture of this router is shown in

Figure 6.

The SUNRISE router has eight SpaceFibre ports, numbered

1 to 8, each with four virtual channels. There is a configuration

port (port 0) which is used for device configuration and which

can be accessed using virtual channel 0 of any of the other

ports. Another port (port 9) provides an interface to four

SpaceWire ports using four virtual channels, one for each

SpaceWire port. SpaceWire and SpaceFibre packets are

switched by the routing switch in the same way, using the

leading data character of a packet to determine the output port

that the packet is to be switched to. Both path and logical

addressing can be used with the SUNRISE router.

VC 0
VC 1
VC 2
VC 3

SpFi
Port 4

VC 0
VC 1
VC 2
VC 3

SpFi
Port 3

VC 0
VC 1
VC 2
VC 3

SpFi
Port 2

VC 0
VC 1
VC 2
VC 3

SpFi
Port 1

VC 0
VC 1
VC 2
VC 3

VC 0
VC 1
VC 2
VC 3

VC 0
VC 1
VC 2
VC 3

VC 0
VC 1
VC 2
VC 3

SpFi
Port 5

SpFi
Port 6

SpFi
Port 7

SpFi
Port 8

SpaceFibre
Routing
Switch

VC 0

VC 0 SpW1

VC 1 SpW2

VC 2 SpW3

VC 3 SpW4

Port 4

Port 3

Port 2

Port 1

Port 0

Port 5

Port 6

Port 7

Port 8

Port 9

Config
Reg.

&
Routing

Table

Figure 6 SUNRISE SpaceFibre Router Architecture

Figure 7 SUNRISE SpaceFibre Routers Under Test

The SUNRISE router was implemented initially in a Xilinx

Spartan 6 FPGA. Two of the SUNRISE routers are shown

under test in Figure 7. The SUNRISE routers are implemented

on 3U cPCI/PXI boards. Power is taken from the backplane

and the eight SpaceFibre and four SpaceWire ports are

available on the 40mm wide front panel.

The SUNRISE router is now being implemented in a

Microsemi RTG4 FPGA as shown in Figure 8 [7][8].

Figure 8 Prototype Microsemi RTG4 board for SUNRISE

SpaceFibre Router

VI. DEMONSTRATION OF SPACEFIBRE NETWORK

The reference architecture has been implemented using a

combination of radiation tolerant FPGAs and commercial

FPGAs. This is illustrated in Figure 9.

Figure 9 SpaceFibre Network Demonstration

The equipment used in the demonstration system is detailed

in Figure 10 [9].

SpaceFibre
Router

SpaceFibre
Router

Remote Instruments

STAR Fire: Link Analyser

(2) STAR Fire: Packet Generators

(6) RTG4 FPGA: SpW to SpFi Bridge

(4) SpW Brick Mk3:
SpaceWire Sources

(5) Host PC for Brick Mk3
and video data source

(7) RTG4 FPGA: SpW to SpFi Bridge

(3) STAR Fire: Packet Checkers

(8) SpW Brick Mk3:
Network Config.

(9) Host PC:
Network
Config.

(1) SUNRISE SpFi Routing Switches

Figure 10 SpaceFibre Network Demonstration System

32

The following functions were demonstrated and validated:

 SpaceFibre network operation: using the two SUNRISE

routing switches (1). Packets were successfully routed

across the routing switches, remaining in their virtual

networks.

 High data-rate: The STAR Fire unit has two SpaceFibre

interfaces and incorporates packet generators that are able

to generate SpaceFibre packets at the full data rate (2.5

Gbits/s) over each SpaceFibre link. STAR Fire unit (2)

was used to simulate the two high data-rate instruments of

the reference architecture. Data from these two

“instruments” was sent across the network to the STAR

Fire unit (3), which accepts and checks the high-data rate

packets. STAR Fire unit (3) is acting like a mass memory

accepting data from the high data-rate instruments.

 SpaceWire to SpaceFibre bridging: A SpaceWire Brick

Mk3 (4) was used to generate two streams of SpaceWire

packets under control of the host PC (5). The SpaceWire

links are attached to a Microsemi RTG4 development

board via a STAR-Dundee FMC board [7]. The RTG4 is

programmed with a SpaceWire to SpaceFibre bridge

design connecting four SpaceWire interfaces to four virtual

channels of a SpaceFibre interface. One SpaceWire link is

sending video data from a webcam attached to the host PC

(5). The other SpaceWire link is sending packets from a

SpaceWire packet generator running on host PC (5) to

another PC (9) so that they can be checked for errors. The

SpaceWire packets are converted to SpaceFibre packets,

which is trivial as they have the same format, and sent

across the SpaceFibre network. The video data is sent to

another RTG4 board (7). The other data is sent via port 9

of a SpaceFibre router (1) which is a port where the virtual

channels are connected to SpaceWire interfaces. This

SpaceWire data goes across a SpaceWire link to another

Brick Mk3 (8) and on to a host PC (9) where it is checked.

 Quality of Service: The STAR Fire packet generators (2)

provide a total data rate of 2 x 2.5 Gbits/s, using all the

network bandwidth between the two routing switches (1).

The virtual channels they are using are assigned relatively

low priority. The SpaceWire to SpaceFibre bridge (6) uses

a virtual channel with higher priority. Whenever it wants

to send data, it is able to do so, within the constraints of its

allocated bandwidth. This is demonstrated by the real-time

video data stream being transferred across the network.

 Fault detection, isolation and recovery: the link being

used to transfer the traffic from the SpaceWire to

SpaceFibre Bridge (6) between the two routing switches

(1) can be unplugged. The video traffic then stops and the

SpaceWire packet generated data stops. When the link is

plugged back in the SpaceWire packet generated data

continues and there is no loss of packets. The packets are

checked for errors including missing packets in the host

computer (9). While the link was disconnected no packets

could be transferred but the packet being transferred when

the link was disconnected was not lost. Clearly with the

video data stream, data is lost once the buffers in the

system are filled. The key point is that packets in transit

across the network are not lost.

 Network configuration: the network is configured using

the host computer (9) via a SpaceWire connection to the

right hand routing switch (1).

For debugging and analysis purposes, a third STAR Fire

unit (10) operating as a link analyser is included on one of the

links between the two routing switches (1) [10].

VII. CONCLUSIONS

SpaceFibre networks have been defined by the University

of Dundee and STAR-Dundee, and incorporated in the network

layer definition of the current draft SpaceFibre standard.

STAR-Dundee has designed the SUNRISE SpaceFibre routing

switch to evaluate various routing concepts, validate the

standard specification and demonstrate a complete SpaceFibre

network. A reference architecture for a SpaceFibre network

targeted at Earth Observation applications has been defined. A

demonstration system has been built reflecting this reference

architecture and key parts of the SpaceFibre network

technology have been demonstrated.

ACKNOWLEDGMENTS

The research leading to these results has received funding

from the European Space Agency under ESA contract numbers

4000102641 and 17938/03/NL/LvH, from the European Union

Seventh Framework Programme (FP7/2007-2013) under grant

agreement numbers 263148 and 284389 and from the UK

Space Agency and CEOI-ST under University of Leicester

contract numbers: RP10G0348A02, RP10G0348B206 and

RP10G0348A207.

REFERENCES

[1] S. Parkes, A. Ferrer Florit and A. Gonzalez Villafranca,

“SpaceFibre Standard”, Draft H5, University of Dundee, July

2016.

[2] S. Parkes, C. McClements and M. Suess, “SpaceFibre”,

International SpaceWire Conference, St Petersburg, Russia,

2010, ISBN 978-0-9557196-2-2, pp 41-45.

[3] S. Parkes et al, “SpaceFibre: Multi-Gigabit/s Interconnect for

Spacecraft On-board Data Handling”, IEEE Aerospace

Conference, Big Sky, Montana, 2015.

[4] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire, Links, Nodes,

Routers and Networks”, Issue 1, European Cooperation for

Space Data Standardization, July 2008, available from

http://www.ecss.nl.

[5] A. Ferrer Florit, A. Gonzalez Villafranca and S. Parkes,

“SpaceFibre Multi-Lane”, International SpaceWire Conference,

Yokohama, Japan, 2016, ISBN 978-0-9954530-0-5.

[6] ECSS Standard ECSS-E-ST-50-52C, “SpaceWire – Remote

memory access protocol”, Issue 1, European Cooperation for

Space Data Standardization, 5 February 2010, available from

http://www.ecss.nl.

[7] S. Parkes et al, “SpaceWire and SpaceFibre on the Microsemi

RTG4 FPGA”, IEEE Aerospace Conference, Big Sky, Montana,

2016.

[8] S. Parkes, A. Ferrer Florit, A. Gonzalez Villafranca, C.

McClements, B. Yu, P. Scott, J. Logan, D. Dillon and D.

McLaren and “SpaceFibre Flight Equipment”, International

SpaceWire Conference, Yokohama, Japan, 2016, ISBN 978-0-

9954530-0-5.

[9] A. Gonzalez Villafranca, S. Parkes, C. McClements, B. Yu, P.

Scott and A. Ferrer Florit, “A New Generation of SpaceFibre

Test and Development Equipment”, International SpaceWire

Conference, Yokohama, Japan, 2016, ISBN 978-0-9954530-0-5.

[10] S. Mudie and S. Parkes, “SpaceFibre Link Analysis”,

International SpaceWire Conference, Yokohama, Japan, 2016,

ISBN 978-0-9954530-0-5.

33

http://www.ecss.nl/
http://www.ecss.nl/

SpaceFibre Link Analysis
SpaceFibre 1, Long Paper

Stephen Mudie

STAR-Dundee Ltd

Dundee, Scotland

stephen.mudie@star-dundee.com

Steve Parkes

School of Computing

University of Dundee

Dundee, Scotland, UK

sparkes@computing.dundee.ac.uk

For those responsible for the design and implementation of a

SpaceFibre network it is essential to be able to capture and view

the traffic on a SpaceFibre link in order to help validate the link

is operating as expected and debug the link should any

unexpected behaviour be observed. STAR-Dundee Ltd have

developed hardware independent SpaceFibre Link Analyser

software for this purpose. This paper describes how the software

views, combined with the traffic capture capabilities of the STAR

Fire unit, can be used to perform SpaceFibre link analysis.

Index Terms— SpaceFibre, Link Analysis, STAR Fire

I. INTRODUCTION

SpaceFibre [1][2] is a multi-Gbits/s, on-board network

technology for spaceflight applications that will soon become a

formal European Cooperation for Space Standardization

(ECSS) standard. At present the SpaceFibre enabled STAR

Fire unit [3] from STAR-Dundee Ltd has allowed users to

transmit and receive simple data patterns and perform some

basic SpaceFibre link analysis for prototyping purposes. Over

the past couple of years work has been undertaken to replace

the software provided with the STAR Fire to leverage new

advanced data generators and checkers and to greatly improve

on the SpaceFibre link analysis capabilities. One result of this

work has been the development of the hardware independent

SpaceFibre Link Analyser software. This paper aims to

describe how using this software, those responsible for the

design and implementation of a SpaceFibre network might

perform SpaceFibre link analysis. This is very important in

order to help validate a SpaceFibre link operates as expected

and to debug any unexpected behaviour.

In this paper the key requirements of the software are

described along with the hardware currently supported, and a

short overview of how the software is controlled is provided

along with a description of the triggering capabilities. Each of

the different SpaceFibre traffic views are briefly described and

the key features of these summarised. Screenshots of different

SpaceFibre traffic scenarios captured and displayed using the

SpaceFibre Link Analyser software are then presented as

simple examples of its use.

II. AIMS

Initial discussions regarding the SpaceFibre Link Analyser

software highlighted a number of requirements outlined below.

 SpaceFibre traffic shall be captured when an event of

interest occurs, for example a specific word such as a

receive error or symbol such as EDF (End of Data

Frame). This ensures the user captures the traffic they

are most interested in.

 Three initial views shall be developed that display

SpaceFibre traffic at the SpaceFibre symbol/word,

frame and packet levels. This allows the user to

thoroughly inspect the SpaceFibre traffic with varying

levels of detail.

 The software shall be designed to support multiple

device types capable of capturing/recording

SpaceFibre traffic. This ensures continuity for users

familiar with one device type switching to another.

This also minimises custom development work for

future devices with common functionality.

III. HARDWARE

The SpaceFibre Link Analyser software has been designed

to support multiple device types with capture/recording

capabilities. However, currently the STAR Fire is the only

device type supported. The STAR Fire can transparently

capture SpaceFibre traffic on a single link in both directions.

Traffic capture can be triggered on detection of a SpaceFibre

word, sequence of four symbols or an error. In addition to its

capture capabilities, the STAR Fire can transmit and receive

SpaceFibre traffic using data generators and checkers (these

have recently been updated and now support more advanced

data patterns), can route SpaceWire traffic over the SpaceFibre

interfaces and can also decode SpaceFibre signals for use with

a logic analyser.

34

Fig. 1. STAR Fire Unit

The STAR Fire has two SpaceFibre interfaces, two

SpaceWire interfaces and two external triggers on the front of

the unit. On the rear there are a further two external triggers, a

USB 2.0 interface (soon to be USB 3.0), two MICTOR

connectors and a power connector.

The STAR Fire is a great target for the SpaceFibre Link

Analyser software as it provides the trigger and capture

capabilities required, and can also act as a node for testing

purposes, transmitting and receiving SpaceFibre traffic.

IV. OPERATION

Using the SpaceFibre Link Analyser software is quite

simple. First the user should set the capture properties, for

example the post trigger memory size. Next the capture trigger

is configured, for example trigger on an SDF (Start of Data

Frame) word. Then start SpaceFibre traffic capture (this causes

the device to continuously capture to a circular buffer) and wait

for the trigger to occur. When the trigger is detected or is

forced by the user, the device memory is filled. The captured

SpaceFibre traffic is then displayed in the different views.

V. TRIGGERING

Triggering is used to ensure SpaceFibre traffic of interest is

captured. Before a trigger occurs SpaceFibre traffic is captured

to a circular buffer continuously. When the trigger occurs, and

the post trigger memory is filled, the contents of the capture

buffer are accessed by the software and displayed.

The SpaceFibre Link Analyser software can trigger on

nothing, a sequence of four SpaceFibre symbols or a

SpaceFibre word. When trigger on nothing is selected, the

trigger immediately occurs when the user chooses to stop

capture. When trigger on word is selected, the user selects the

word type and can optionally specify properties specific to that

word. This is shown below for the SDF word. In this example

the trigger will occur when an SDF word is detected on virtual

channel one.

Fig. 2. Trigger on SpaceFibre Word

When trigger on symbol is selected, the user can select four

consecutive symbols on which to trigger. This is shown in the

screenshot below. In this example the trigger will occur when

an SBF (Start of Broadcast Frame) word is detected on

broadcast channel zero with sequence number five.

Fig. 3. Trigger on SpaceFibre Symbol

As is shown in the figures above, in addition to triggering

on specific SpaceFibre symbols and words, the user can also

choose to trigger on specific errors.

The triggering capabilities of the SpaceFibre Link Analyser

software currently match the functionality provided by the

STAR Fire. This could be extended further in the future with

the addition of further advanced hardware triggering

capabilities.

VI. SYMBOL VIEW

SpaceFibre uses 8B10B encoding to transfer 10-bit symbols

over a SpaceFibre link. A symbol can be either a control or

data symbol. A group of four consecutive symbols form a data

word or control word.

35

The symbol view displays the captured SpaceFibre symbols

and corresponding words travelling in both directions over a

SpaceFibre link. One half of the symbol view displays the

SpaceFibre traffic travelling in one direction whilst the other

half displays the opposite direction. The left most column

displays the time at which each word was captured relative to

the trigger. For the STAR Fire unit this is simply the word

index currently (the timing can be calculated knowing the link

speed). For both SpaceFibre link directions there are four

columns displaying four captured SpaceFibre symbols, plus a

fifth column showing the SpaceFibre word the symbols equate

to. Below is a screenshot of the symbol view showing data

captured travelling in both directions.

Fig. 4. Symbol View

The SpaceFibre symbol and word types supported are those

found in the latest draft of the SpaceFibre standard (SpaceFibre

ECSS Draft H6 [1]). These have long been defined.

VII. FRAME VIEW

SpaceFibre uses frames to manage the flow of information

over a SpaceFibre link. There are three frame types: data,

broadcast and idle frames. Data frames are transmitted across a

SpaceFibre link over virtual channels whilst broadcasts are

transmitted over a broadcast channel. Idle frames are

transmitted when there are no data or broadcast frames to be

transmitted. Virtual channels provide multiple independent

communication channels over a single physical link.

The frame view was designed to display the data and

broadcast frames in their appropriate channel, relative to the

capture trigger time. As with the symbol view, the left most

column displays the time relative to the capture trigger. Every

other column represents a virtual channel or broadcast channel

as indicated by the column header. Below is a screenshot of the

frame view showing data frames captured travelling in both

directions over four virtual channels on a SpaceFibre link.

Fig. 5. Frame View

Each data frame consists of a start of a data frame (SDF)

control word, up to 64 data words and an end of data frame

(EDF) control word. Each broadcast frame consists of a start of

broadcast frame (SBF) control word, two data words and an

end of broadcast frame (EBF) control word. The properties of

the different control words are displayed in both the symbol

and frame views, the EDF word sequence number in the

screenshot above is an example of this.

VIII. PACKET VIEW

A SpaceFibre packet consists of a destination address,

cargo and an end of packet (EOP) or error end of packet (EEP)

marker. The SpaceFibre packet format is the same as

SpaceWire, enabling simple connection between existing

SpaceWire equipment and high-speed SpaceFibre links. This

also means existing software designed to display SpaceWire

packets can be used as a basis for a SpaceFibre packet display.

One such view is the SpaceWire packet view provided with

the SpaceWire Link Analyser Mk2 software application. The

SpaceWire Link Analyser Mk2 packet view has benefitted

from the feedback of numerous users over several years, and

many users of SpaceWire, and potentially users of SpaceFibre,

are familiar with this display. For these reasons it was decided

that the SpaceWire Link Analyser Mk2 packet view should

form the baseline design for the SpaceFibre Link Analyser

software packet view. Revisiting the design provided an

opportunity to extend the reusability of the view (to support

packet data formats of multiple device types rather than simply

one device) and review the functionality offered.

The SpaceFibre packet view displays the captured

SpaceFibre packets travelling in both directions over a

SpaceFibre link. The left most column displays the time

relative to the capture trigger. Every other column represents a

virtual channel. This display allows the user to view the

SpaceFibre traffic at the packet level without concerning

themselves with the symbols, words and frames used to

construct the packets. Work on this view is currently ongoing

and should be complete in the near future.

36

IX. STATISTICS

In addition to the SpaceFibre Link Analyser software, the

STAR Fire will also be supplied with a standalone STAR Fire

Statistics application. This displays virtual channel and

broadcast channel statistics associated with the STAR Fire

SpaceFibre data/broadcast generators and checkers. A running

count of data errors, EEPs and broadcast errors is displayed

alongside the data generator rate and bandwidth reservation for

each channel. Virtual channel lane utilisation is also graphed

over time. Below is a screenshot of the STAR Fire statistics

application.

Fig. 6. STAR Fire Statistics

This immediately alerts the user to any errors detected by

the data and broadcast checkers. The lane utilisation graph can

be used to visualise the effect that changing the quality of

service properties and data generator rate for each virtual

channel has on lane utilisation.

X. FEATURES

The symbol, frame and packet views provide a great way of

inspecting captured SpaceFibre traffic at different levels of

detail. Each view is docked within a separate floating window.

The positioning of these windows is user configurable. They

can be placed side by side, above and below, or on top of each

other in separate tabs. This allows the user to layout the views

in the most effective manner for them.

Selection of SpaceFibre traffic in one view automatically

selects and navigates to the corresponding traffic in the other

views. This allows the user to navigate multiple views

simultaneously and therefore makes them much easier to

manage.

Each view shall have search capabilities specific to that

view. This will allow the user to quickly locate SpaceFibre

traffic of interest within very large quantities of data that could

otherwise be difficult and time consuming to identify. Filtering

options shall allow users to limit the traffic presented to only

that pertinent.

XI. TESTING

Testing the SpaceFibre Link Analyser software was

necessary throughout the development to ensure it behaved as

expected. To test the SpaceFibre Link Analyser two

SpaceFibre nodes were simulated transmitting and receiving

SpaceFibre traffic to and from each other over a point to point

link. This was achieved using a STAR Fire ("STAR Fire N").

A second STAR Fire unit ("STAR Fire LA") was inserted on

the link and configured to operate as a SpaceFibre Link

Analyser. The diagram below shows the setup.

Fig. 7. SpaceFibre Link Analyser Test Setup

To configure STAR Fire N to transmit and receive

SpaceFibre traffic the STAR Fire Controller application was

used. The SpaceFibre port settings, quality of service, and

advanced data generators and checkers can all be configured

using the STAR Fire Controller. Numerous different

configurations were used. Each could be saved and reused at a

later date for regression testing. The STAR Fire Controller

screenshot below shows virtual channel one settings for

SpaceFibre port one of a STAR Fire unit.

Fig. 8. STAR Fire Controller

The STAR Fire Controller application leverages the

advanced data generators and checkers that have been added to

the STAR Fire. These allow the user to specify data patterns of

different types (fixed, increment, rotate right and rotate left),

with an initial value, pattern length, packet length and four

configurable header bytes. Below is a screenshot of the STAR

Fire Controller dialog used to create and edit data patterns.

37

Fig. 9. STAR Fire Controller Advanced Data Patterns

XII. SPACEFIBRE TRAFFIC SCENARIOS

The test setup described was used to capture and analyse a

range of typical scenarios encountered on a SpaceFibre link.

Below are some typical SpaceFibre scenarios captured by the

STAR Fire and displayed using the SpaceFibre Link Analyser

software.

A. Lane Initialisation

Lane initialisation is responsible for initialising a lane prior

to transfer of data frames, idle frames or broadcast frames. This

is handled by a lane state machine. A handshake protocol is

used to ensure that both ends of the lane have achieved

synchronisation. Below is a screenshot of the symbol view

showing part of the lane initialisation handshake where the

near end is moving to the connected state.

Fig. 10. Lane Initialisation Handshake

B. Frame Acknowledgment

Each correctly received SpaceFibre frame or FCT (Flow

Control Token) is acknowledged with an ACK

(acknowledgement) control word. Below are two combined

screenshots of the symbol view showing a data frame with

sequence number +47 captured travelling in one direction and

the corresponding +47 ACK travelling in the opposite

direction.

Fig. 11. Data Frame Acknowledgement

C. Error Recovery

A negative acknowledgement (NACK) is used to indicate

that a data frame, broadcast frame or FCT has not been

received correctly. NACKs are used to support link error

recovery. In the symbol view screenshot below a NACK is

captured indicating that a data frame, broadcast frame or FCT

has not been received correctly.

Fig. 12. Symbol View: Negative Acknowledgement

When the NACK is received this initiates the error recovery

operation. The frame view screenshot below shows the

retransmission of data frame 89. Data frame 89 was

retransmitted as the NACK indicated that 88 was the sequence

number of the last successfully received data frame, broadcast

frame or FCT.

38

Fig. 13. Frame View: Data Frame Retransmission

D. Frame Precedence

SpaceFibre includes low latency event signalling and time

distribution with broadcast messages. Broadcast frames have

higher precedence than data frames ensuring broadcasts have

minimum latency. Data frames have greater precedence than

idle frames. Below is a screenshot of the symbol and frame

views showing a broadcast frame embedded within a data

frame.

Fig. 14. Broadcast Frame Embedded in a Data Frame

The data frame was part way through being transmitted

when the broadcast frame became ready to send. The

transmission of the data frame was suspended and the

broadcast frame was sent immediately. After the broadcast

frame was transmitted, the remainder of the data frame was

transmitted.

E. Quality of Service Example

Each virtual channel is assigned quality of service (QoS)

parameters that are used to determine which channel should be

permitted to transmit data at any one time. Priority, bandwidth

reservation and scheduling are used to do this. Below is a

screenshot of the frame view showing four virtual channels

where VC 0 is assigned 60% of the bandwidth, VC 1 10%, VC

2 10% and VC 3 10%. As you can see VC 0 is utilising the link

far more than the other virtual channels as a result.

Fig. 15. Frame View QoS Example

XIII. CONCLUSION

As the popularity of SpaceFibre increases so too will the

demand to perform effective SpaceFibre link analysis. This

paper has described the current capabilities of the SpaceFibre

Link Analyser software in an effort to make those responsible

for the design and implementation of SpaceFibre networks

aware of the existing tools available to them.

Currently in conjunction with the STAR Fire unit, users can

capture SpaceFibre traffic in response to a trigger event. Once

captured this traffic is automatically translated and displayed in

symbol, frame and packet views. These views are all selection

synchronised for easy navigation of the data. In the future

additional functionality will be added to the existing views and

additional devices will be supported by the SpaceFibre Link

Analyser software.

REFERENCES

[1] S. Parkes, A. Ferrer, A. Gonzalez, C. McClements and M.

Suess, ECSS SpaceFibre Standard Draft H6

[2] S. Parkes, https://www.star-dundee.com/spacefibre-users-guide,

SpaceFibre User's Guide, STAR-Dundee Website

[3] STAR-Dundee, https://www.star-

dundee.com/sites/default/files/STAR%20Fire_0.pdf, STAR Fire

Data Sheet, STAR-Dundee Website

39

 Networks & Protocols (Short)

40

Implementation and Validation

of the SpaceWire-R Protocol
SpaceWire Networks and Protocols, Short Paper

Wojciech Mich

Krzysztof Romanowski

Piotr Tyczka

ITTI Sp. z o.o.

Poznań, Poland

{Krzysztof.Romanowski,Wojciech.Mich,

Piotr.Tyczka}@itti.com.pl

Rafał Renk

Adam Mickiewicz University

Poznań, Poland

Rafal.Renk@amu.edu.pl

Vangelis D. Kollias

Nikos Pogkas

TELETEL SA

Athens, Greece

{V.Kollias, N.Pogkas}@teletel.eu

Abstract— The paper deals with the aspects of implementation

and validation of the SpaceWire-R protocol as carried out in the

ESA-funded project SpaceR. We give a brief overview of the

SpaceWire-R protocol for providing reliable data transfer

services over SpaceWire networks and describe the SpW-R

protocol software implementation elaborated in the SpaceR

project. The testing platform developed for validation of the

protocol is presented, as well as preliminary SpW-R performance

results obtained within the project.

Index Terms—SpaceWire, network protocols, SpaceWire-R

I. INTRODUCTION

Many spacecraft on-board applications process and

compress information in complex ways before sending it over a

SpaceWire network. In these cases, a failure affecting even a

small amount of data may lead to a loss of significant

information. SpaceWire-R [1] is a communications protocol

that addresses the needs of such applications by providing

reliable data transfer services over SpaceWire networks. In

addition to support for transmission reliability (with

acknowledgements and retransmissions), its functions include

multiplexing, segmentation, flow control, and keep-alive

heartbeat.

The SpaceWire-R protocol has been implemented and

tested as software on a PC and SpaceCube2 platforms [2] as

well as an IP core targeting the Microsemi RTAX2000S

FPGAs [3]. A revised version of the draft protocol

specification has been recently issued [4]. As a step towards its

standardization, an independent software implementation of the

protocol based on the TELETEL iSAFT PVS platform [5] is

under developement in the ESA-funded project SpaceR.

This paper presents the SpaceR project and its preliminary

results. The objectives of the project include functional and

performance tests and validation of the protocol, assessing its

effectiveness, and deriving recommendations for the

specification. The implementation is done in C++ on

computers of x86_64 architecture and is portable at the source

code level down to the layer of transfer of raw SpaceWire

packets. The latter employs a new socket-based Application

Programming Interface (API), developed by TELETEL

specifically for the project. The testing environment is

composed of a subsystem dedicated to upper-lower testing (for

verifying the correctness of transformations between

SpaceWire-R and SpaceWire packets) as well as one dedicated

to end-to-end testing (for transmission between SpaceWire-R

end point applications) with error injection facilities.

The paper is structured as follows. Section II gives an

overview of the SpaceWire-R protocol and discusses the

implementation aspects as realized in the SpaceR project. Next,

in Section III a testing platform developed for SpaceWire-R

testing and validation is described. The preliminary

performance results obtained in the SpaceR project are

presented and discussed in Section IV. Finally, Section V

contains concluding remarks.

II. IMPLEMENTATION OF THE SPACEWIRE-R PROTOCOL

The SpaceWire-R (SpW-R) communications protocol is

intended to provide on-board applications with reliable data

transfer services over SpaceWire networks. The position of the

SpW-R protocol in the SpaceWire protocol stack is shown in

Fig. 1. The main functions of the SpW-R protocol that are

subject to implementation are the following: retransmission

control, multiplexing, segmentation, flow control, and keep-

alive.

A. Retransmission Control (reliable transfer)

 Transmits a series of data from the sender to the receiver

without error, without loss, without duplication, and in

sequence.

 Uses the concept of “transport channels”, which are

virtual transmission lines from the sender to the receiver.

 A channel is established before starting transmission of

data.

 Data is transmitted using SpW-R packets. A SpW-R

packet is contained in a SpaceWire packet as its cargo.

Each SpW-R packet is given a sequence number.

41

Fig. 1. SpaceWire-R protocol in the SpW protocol stack

 The receiver accepts packets in the order of the sequence

number. When it has accepted a packet, it sends back an

Ack (acknowledgment) packet to the sender.

 The sender retransmits the same packet if no Ack packet

has been returned from the receiver. It disconnects the

channel if no Ack packet has been returned after a certain

number of retransmissions.

B. Multiplexing

 Enables simultaneous transfer of multiple independent

streams of data from a sender node to a receiver node.

 Realized using multiple channels established between the

sender and the receiver.

C. Segmentation

 Segments a data unit provided by the sending application

into smaller segments so that each segment fits in a SpW-

R packet, if the data unit provided by the sending

application is larger than the size allowable in the SpW-R

packet.

 At the receiver, the original data unit is reconstructed

from the received segments and delivered to the receiving

application.

D. Flow control

 Enables the receiver to dynamically inform the sender

about how many more packets it can receive at the

moment.

 Used if the receiver cannot accept many packets

temporarily for some reason and wants the sender to slow

down transmission.

E. Keep-alive (heartbeat)

 Enables detection of a line failure by sending signals

between a sender and a receiver periodically when no

data is being transmitted.

 When data is being transmitted, a line failure can be

detected by not receiving Ack packets.

A SpW-R packet is sent as the cargo of a SpaceWire packet

– preceded by the destination address and followed by the end-

of-packet mark. The detailed structure of an SpW-R packet can

be found in [4].

Key notions used to describe the protocol are the Transport

End Point (TEP) and the transport channel. The TEP is defined

as a point in a node that transmits (Tx TEP) or receives (Rx

TEP) application data using a transport channel over a

SpaceWire network. The transport channel is a protocol-

defined one-way logical data path between a Tx TEP and a Rx

TEP. There is only one transport channel between a Tx TEP

and a Rx TEP; in other words, each TEP is dedicated to a

certain channel. There can be multiple transport channels

between any pair of nodes. This implies that multiple Tx and

Rx TEPs can co-exist in a node. These relations are illustrated

in Fig. 2.

Tx TEP1

Tx TEP2

Tx TEP3

Node 1

Rx TEP1

Rx TEP2

Node 2

Rx TEP3

Node 3

Channel 1

Channel 2

Channel 3

Fig. 2. Illustration of relationship between transport channels, TEPs, and nodes

The implementation of the protocol follows the relevant

draft specification [4] and is intended to be separate from the

rest of the system so as to be easily portable to possible other

testing environments. As specified by the draft standard, the

procedures performed by the protocol entities can be classified

into three categories:

 procedures at a Tx TEP,

 procedures at a Rx TEP,

 common procedures at a node.

The TEP procedures communicate with an application sending

or receiving the data in the form of Service Data Units (SDU).

The protocol implementation provides function calls for the

application to be used to request services and signals to inform

the application of asynchronous events, e.g. a packet arriving

from the network. These facilities are as follows:

 functions:

o ChannelControl.request(ChannelNumber,

DirectiveType)

42

o DataTransfer.request(ServiceDataUnit, SduId,

ChannelNumber)

 signals:

o ChannelControl.indication(ChannelNumber,

NotificationType)

o DataTransferNotify.indication(SduId,

ChannelNumber, NotificationType, Reason)

o DataTransfer.indication(ServiceDataUnit,

TransportChannel)

It should be noted that according to [4] a number of

protocol parameters related to transport channels are specified

by means external to protocol service primitives or protocol

packet data. With the implementation of the SpW-R protocol in

the SpaceR project, the parameters are kept in a programmatic

structure associated with the channel and can be set at runtime

before or at invoking the operation of opening a transport

channel.

The common procedures at a node communicate with the

SpW network via the TELETEL’s iSAFT PVS platform [5],

specifically a new API to the iSAFT SpW Simulator, based on

TCP sockets [6]. Thus the SpW-R to be transmitted via the

network are embedded in SpW packets, which in turn are

encapsulated in TCP segments and delivered to the iSAFT

SpW Simulator.

The primary programming environment for the

development of the SpW-R protocol implementation is C++

(gcc on Linux) with the standard library and some Boost

libraries (notably MSM – the Meta State Machine – for

implementing the finite state machine of the protocol, and

Signals2 for implementing signals and slots).

III. TESTING PLATFORM

There are two groups of tests performed in the project:

 upper-lower and lower-upper tests, where the

transformations between SpW-R and plain SpW

packets, done by the protocol, are verified;

 end-to-end tests, where the correctness and performance

of the protocol in actual traffic between end point

applications is tested.

The underlying SpW network is a physical one, composed

of one or more SpW switches. As the software is being

implemented on general-purpose computers, an intermediary is

required to connect to the SpW network; this is provided by the

iSAFT PVS platform with a four-port SpW board. The board

can be used for transmitting and receiving SpW traffic via the

iSAFT SpW Simulator subsystem; detailed traffic and its

statistics can also be observed and captured by the iSAFT SpW

Recorder subsystem.

Since the iSAFT Simulator Client API allows one user

application to be connected to the Simulator at the same time,

in order to have more flexibility a Proxy system has been

implemented, facilitating connection of several clients

simultaneously, each of them having a dedicated SpW port (up

to four total in the current configuration). The clients to the

Proxy are mainly the implementations of the SpW-R nodes,

which combine in a single compiled executable the SpW-R

protocol implementation, the Proxy client, and the application

producing or consuming the SDUs. The protocol

implementation and the Proxy client are available as an object

library.

In order to test the protocol behaviour in the presence of

errors, a link emulator has been developed. This is an

application that connects to the SpW network via two SpW

ports, capturing plain SpW packets on either of them and

optionally performing transformations on the packets before

forwarding them through the other port. The transformations

are directed by rules specifying under what conditions

(triggers) a packet is to be transformed and what

transformation (action) is to be done. Example triggers include

the sequential number of the packet meeting certain criteria, as

well as packet type, length, values of specific bytes. Possible

actions include forwarding with no changes, dropping,

delaying, truncating, extending or changing parts of the packet.

Figure 3 presents the various elements of the testing

platform. Some of them exchange information inside the same

executable; others communicate over TCP/IP. In order to

minimize the overhead of the IP network, all the elements have

been installed on the iSAFT PVS, in a dedicated virtual

machine, although it is possible to run each block depicted on a

separate computer.

Fig. 3. Structure of the testing platform

iSAFT PVS platform

iSAFT SpW Simulator iSAFT SpW Recorder

SpW port 1 SpW port 2 SpW port 3 SpW port 4

TCP server

SpaceR Proxy

iSAFT Simulator API Client

TCP client

TCP server

Proxy Server

SpW-R Node

SpW-R Procedures

SDU Transmitters

TCP client

Proxy Client

SpW-R Node

SpW-R Procedures

SDU Receivers

TCP client

Proxy Client

Link Emulator

Rule Engine

TCP client

Proxy Client

SpW network

43

Figure 4 shows the paths taken by data in an example

configuration with two SpW-R nodes, each being used by three

SDU transmitting/receiving applications, and a link emulator in

the way between the nodes.

Fig. 4. Data flow through the testing platform

IV. RESULTS

Preliminary tests have shown correctness of the protocol

implementation, including boundary values for the protocol

parameters. Comprehensive test runs are currently being

executed, and the influence of a number of input parameters,

including the SpW-R transport channel specifications, on the

performance are examined. Figures 5 and 6 show some initial

results for throughput and latency at the SDU level, the

independent variables being the packet payload length (or SDU

segment length) and the sliding window size. With the current

implementation, obtaining throughput of the order of 50Mbit/s

(as an objective of the project) with interfaces of 100Mbit/s

line rate is feasible, although dependent on the sizes of the

SDUs and segments.

(256,128) (512, 64) (2048,16) (4096,8) (8192,4)
0

10

20

30

40

50

60

70

80

90

100

(Packet payload length [bytes],Sliding window size)

S
D

U
 T

h
ro

u
g

h
p

u
t

[M
b

it
/s

] SDU length = 32768 bytes

Maximum possible throughput

Communication via proxy

Direct communication w ithout proxy

Fig. 5. Sample performance results obtained in the project (throughput)

(256,128) (512, 64) (2048,16) (4096,8) (8192,4)
0

5

10

15

20

25

30

35

40

45

(Packet payload length [bytes],Sliding window size)

S
D

U
 L

a
te

n
c
y
 [

m
s
]

SDU length = 32768 bytes

Communication via proxy

Direct communication w ithout proxy

Fig. 6. Sample performance results obtained in the project (latency)

V. CONCLUSION

The paper discussed the implementation and testing of the

SpaceWire-R protocol performed in the SpaceR project. The

independent implementation is useful in standardization

efforts. The testing platform, which is equipped with a flexible

interactive operator’s console involving full Python support

and scripting, gives possibility of independent functional and

performance testing.

ACKNOWLEDGMENT

This work has been funded by the European Space Agency

under contract no. 4000112693/14/NL/CBi.

REFERENCES

[1] T. Yamada, “Proposal for SpaceWire-R,” 17th SpaceWire

Working Group Meeting, ESTEC, Netherlands, December 2011

[2] K. Iwase, H. Hihara, O. Watanabe, T. Tanaka, T. Yamada, T.

Yuasa, T. Tozawa, T. Tamura, “The evaluation of SpaceWire-R

draft specification through the connectivity test using

SpaceCube2,” Proc. 6th Int. SpaceWire Conf. Athens 2014, pp.

82-85

[3] T. Yuasa, H. Hihara, T. Yamada, “SpaceWire-R core

implementation and performance study,” 24th SpaceWire

Working Group Meeting, ESTEC, Netherlands, September 2015

[4] T. Yamada, “SpaceWire-R”, issue 0.4 (draft), 13 August 2015

[5] A. Tavoularis, V. Vlagkoulis, N. Pogkas, V. Kollias, K. Marinis,

“iSAFT-PVS: Recording, Simulation & Traffic Generation at

Full Network Load,” Proc. 6th Int. SpaceWire Conf. Athens

2014, pp. 73-79

[6] “iSAFT SpW Simulator. Client API Specification.” TELETEL,

2016

iSAFT PVS platform

SpW port 1 SpW port 2 SpW port 3 SpW port 4

SpW-R Node
Link
Emulator

SpW network

SpW-R Node

SDU SDU

SDU SDU SDU SDU

44

SpaceWire Network Management Using

Network Discovery and Configuration Protocol
SpaceWire Networks and Protocols, Short Paper

Krzysztof Romanowski
1
, Piotr Tyczka

1
, Witold Hołubowicz

2
, Rafał Renk

2
,

Vangelis D. Kollias
3
, Nikos Pogkas

3
, and David Jameux

4

1
ITTI Sp. z o.o., Poznań, Poland, {Krzysztof.Romanowski, Piotr.Tyczka}@itti.com.pl
2
 Adam Mickiewicz University, Poznań, Poland, {holub, Rafal.Renk}@amu.edu.pl

3
 TELETEL SA, Athens, Greece, {V.Kollias, N.Pogkas}@teletel.eu

4
 On-Board Data Systems (TEC-ED), ESA/ESTEC, Noordwijk, The Netherlands, David.Jameux@esa.int

Abstract— This paper presents the main outcomes of the ESA

funded project entitled: “SPACEMAN – A SpaceWire Network

Management Tool” that was jointly carried out by ITTI Sp. z o.o.

and TELETEL SA., and dealt with SpaceWire Network

Discovery and Configuration Protocol (SpW-NDCP). We give a

brief overview of the SpW-NDCP, present the main features of

the SPACEMAN tool for discovering and configuring SpaceWire

networks, and introduce a novel XML representation of

SpaceWire networks, implemented in the tool.

Index Terms—SpaceWire, network management, NDCP,

digital representation of SpaceWire networks.

I. INTRODUCTION

It is well known that SpaceWire – a standard for high speed

data-handling networks on board spacecraft [1, 2] – does not

offer mechanisms for automatically discovering the topology

of a network and devices (switches and nodes) it consists of.

Moreover, services for configuring network devices and links

are not present in the SpaceWire either. On the other hand, the

increasing complexity and functionality of SpaceWire

networks yield apparent need for providing such network

management mechanisms.

To fill this gap, the SpaceWire Network Discovery and

Configuration Protocol (SpW-NDCP) has been recently

elaborated [3] as a development of the so-called “SpaceWire

Plug-and-Play protocol” [4]. The SpW-NDCP assumes a

simple two-layered architecture for performing network

management activities that consists of a network management

service and a communications protocol.

This paper presents the main outcomes of the ESA funded

project entitled: “SPACEMAN – A SpaceWire Network

Management Tool” that was jointly carried out by ITTI Sp. z

o.o. and TELETEL SA. The general objective of the activity

was to make a further development in the domain of

SpaceWire network management through:

 developing a software implementation of the SpW-

NDCP,

 developing a network management tool for

discovering and configuring SpaceWire networks, and

 designing an XML representation of SpaceWire

networks.

The paper reviews the SpaceWire NDCP and presents the

basic features of the SPACEMAN Network Management Tool

with the emphasis on functionality of design, discovery,

comparison, and configuration of SpaceWire networks. The

tool can handle networks with SpaceWire devices of different

classes: NDCP-enabled, RMAP-enabled, and non-

configurable. Methods for discovering them are shown in

detail. Special cases of multiple control devices discovering the

same network are also discussed. Finally, an advanced XML

representation of SpaceWire networks, elaborated and used in

the SPACEMAN project, is presented.

II. SPACEWIRE NDCP

The SpaceWire NDCP is one of the protocols that work

over SpaceWire and is intended to permit SpaceWire network

discovery and configuration in a standard and interoperable

manner [3].

The SpW-NDCP protocol considers the SpaceWire

network from the perspective of SpaceWire-based protocols.

Applications are understood as users of the SpaceWire-based

protocols and are the ultimate sources and destinations of

messages carried over SpaceWire. In order to communicate

over SpaceWire, each application uses a set of communication

protocols, with SpaceWire itself as the lowest level protocol.

For example, the Bepi Colombo and Solar Orbiter payload

TM/TC is based on PUS [5] messages carried over SpW-CPTP

[6], which itself is based on SpW-PID [7] over SpaceWire.

In NDCP terminology, every SpW End-Point and SpW

Switch is referred to as an NDCP Device or SpW Device or

Device. There are two kinds of NDCP Devices:

 Devices which will be managed by other Devices on the

network are referred to as Peripheral Devices;

 SpW Nodes which will be engaged in managing

Peripheral Devices on the network are referred to as

Control Devices.

Devices are the functional elements of a SpaceWire network.

Hence, the physical units of which a SpaceWire network is

comprised may each be composed of one or more Devices.

45

SpW-NDCP assumes that each application and protocol has

a number of management parameters which provide

information on, or control, its operation. As each application

uses one or more protocols, there are also management

parameters which define an application’s use of a protocol. The

SpW-NDCP protocol provides a generic mechanism to access

management parameters across a network.

The core set of NDCP management parameters offered by

every Peripheral Device are those that relate to the Device

itself. They allow the following to be identified:

1. the type of the device (i.e. whether it is a SpW Node or

a SpW Switch);

2. the model of the Device (i.e. what product the Device

is);

3. the physical unit that the Device belongs to;

4. the connections a Device has, enabling network

discovery;

5. the protocols a Device supports;

6. the applications a Device supports;

7. the protocols (amongst the supported ones) that each

application uses.

It is also possible to assign an identifier to the Device (Device

ID). Device ID is necessary for network discovery to detect

network loops.

The network management architecture consists of two

layers:

1. a network management service; and

2. a communication protocol.

The network management service on a Control Device carries

out network discovery, Device identification, and Device

management activities using a communications protocol. A

Peripheral Device allows itself to be managed by providing

management parameters, which may be accessed using the

communications protocol. The NDCP Control and Peripheral

Device reference architecture is shown in Fig. 1.

Control Device

Network Management
Service

Standard Device Driver

SpaceWire-NDCP

RMAP Initiator

SpaceWire

Peripheral Device

Network Management
Service

SpaceWire-NDCP

RMAP Target

SpaceWire

Fig. 1. SpW-NDCP Control and Peripheral Device reference architecture

The NDCP communications protocol provides a standard

mechanism for accessing Peripheral Device management

parameters from a Control Device. The communications

protocol makes use of the syntax defined for the Remote

Memory Access Protocol (RMAP) [8] and offers three

operations: write, read, and compare-and-swap (CAS); not on

memory addresses (like RMAP) but on NDCP Field

Identifiers. Each operation accesses Peripheral Device

information in a uniform way. Device information is held in

regular sized fields of 32 bits and each field has an identifier.

Related fields are grouped together into field sets. There are

field sets for each supported protocol, service, and service

protocol use. To identify a field as a part of read, write, or CAS

operation, the Control Device must specify four values: the

service (application) index, the protocol index, the field set

identifier, and the field identifier.

III. SPACEMAN NETWORK MANAGEMENT TOOL

The primary functionality of the SPACEMAN Network

Management Tool software application is discovering and

configuring SpaceWire networks by employing features of the

NDCP protocol. This functionality is complemented by

facilities for editing and comparing network models,

monitoring network changes, and exporting/importing internal

network models to/from XML-format files. These

functionalities are described below.

A. Network Discovery

The SpW Network discovery procedure builds up a graph

model of the connected network by interrogating each Device

in turn for the values of NDCP fields that it holds. These values

describe the type of Device (Node vs. Switch), the number and

status of its ports and other information. If the interrogated

Device does not support the NDCP protocol, the interrogation

is not answered and the SpW Network discovery application

tries to read some information from the Device using the

RMAP protocol, assuming that it might be a SpW-10X or a

similar Device. If the RMAP reply values do not match certain

assumptions adopted based on the SpW-10X memory layout

and contents, or if there is no reply (but the relevant port status

implies there is a device connected on the other end of the

link), the device is assumed to be ‘generic’ and no further

information on it is sought.

The application detects any loops that might be present in

the topology of the network as well as any Device that might

be discovered and owned by another instance of a management

tool (another Control Device). A unique identifier is set on

each discovered Device; with NDCP-capable devices, such an

ID is protected from unauthorized overwriting by the NDCP

protocol while, with SpW-10X devices that only support

RMAP, the device ‘identity’ register is used by the SpW

Network discovery application for ID storage, with no

overwriting protection. Generic Devices do not have any

discoverable identity and each time such a Device is

encountered it is considered a distinct one. This does not

constitute a severe limitation in case this Device is a SpW

Node but could lead to undetected loops in the SpW Network

in case this Device is a SpW Switch.

Figure 2 shows a graph of a discovered network. Windows

listing the values read from two of the discovered devices are

shown in Fig. 3 (for an NDCP-enabled Device) and Fig. 4 (for

a SpW-10X device).

46

B. Network Configuration

Configuration consists of changing values of some NDCP

fields stored in the Devices. This is possible either on a Device-

by-Device basis by altering the values shown in the NDCP

field windows (see Fig. 3); or by bulk loading values from an

existing SpW Network model into all writeable NDCP fields of

all Devices of the connected Network – provided the topology

of the source model and the connected Network are

compatible.

C. Network Model Editor

The application provides facilities for editing SpW Network

models. A model can be created by the user from scratch or can

be captured by discovering a physical Network. It is possible to

add, modify, and delete Network model elements – SpW

Nodes, Switches, and Links.

Fig. 2. Graph of a SpaceWire Network discovered by the SPACEMAN tool.

Shown Devices are: square – Switch; circle – Node; double circle – Control

Device; hexagon – generic SpW Device

Fig. 3. NDCP field values read from a Device in the discovered Network

Fig. 4. SpW-10X registers read from a Control Device in the discovered

Network

D. Network Comparison and Monitoring

Any two network models can be compared against each

other and the differences marked by colour. Topological

differences: an element of one model that is added to or

missing from the other model, are marked in a graphical

representation. Configuration differences: values of NDCP

fields or SpW-10X registers different between the models, are

marked in the graphical representation as changed Network

elements and in the windows listing the values as changed

fields.

The comparison can be invoked as a one-time operation on

any two models, or it can be invoked automatically in a

continuous discovery loop, in which the application repeatedly

discovers the network and marks any changes found, thus

monitoring its topology and configuration. Figure 5 shows a

snapshot of a network monitoring session with some

differences detected.

Fig. 5. Network differences discovered in a monitoring session. Element
colours: blue – new; grey – missing; yellow – changed; green – unchanged

47

E. Packet-Level Testing

For trouble-shooting or fine analysis purposes, the Network

Management Tool allows constructing, sending and receiving

individual packets of different protocols: NDCP, RMAP, and

plain SpaceWire, as well as matched command-reply

transactions where applicable.

F. XML Export/Import

The internal SpW Network model can be exported to and

imported from an XML file. The file to import from need not

be written by SPACEMAN, as long as its format complies to

the schema defined in SPACEMAN.

In its current version, the Network Management Tool

connects to SpaceWire networks via TELETEL’s iSAFT PVS

hardware and Application Programming Interface [9], as

shown in Fig. 6. The SpaceWire Network used in the project

consisted of STAR-Dundee Mk2S Routers and Mk2 Bricks

[10] (special versions with NDCP implemented in hardware) as

well as a SpW-10X Router [11] with no NDCP support

.

Fig. 6. Structure of the SPACEMAN Network Management Tool

IV. XML REPRESENTATION OF SPACEWIRE NETWORKS

Developments of SpaceWire Networks naturally bore the

need for representing these networks in a digital form. Digital

representation is indispensable in many aspects related to SpW

networks: designing, testing, preparing demonstrations,

managing, etc. In recent years a few proposals for describing

SpaceWire Networks by means of an Extensible Markup

Language.(XML) format have appeared in the literature and

been presented to the SpW community [6]-[8]. Elaboration of a

holistic, universal structure for an XML representation of

SpaceWire Networks is also of high interest to ESA/ESTEC. In

reply to this need, the SPACEMAN project team made an

attempt to develop a novel and advanced XML-based SpW

Network representation. The proposed format is used in the

XML export/import functionality of the tool (cf. Sec. III.F).

In the proposed XML structure, each element that

represents a SpaceWire Device has some key attributes (e.g.

name, number of SpW ports, logical address) and consists of a

generic section and sections specific to the protocols that the

Device supports. The generic section provides basic

information on the device’s ports. Both attributes and generic

section are redundant in the sense that they contain information

extracted from protocol sections. However, they provide the

basic parameters of the device and hence favourably allow user

to have a quick overview of these parameters. Protocol sections

are made of nested sections and elements that correspond to the

field sets, parameters, or registers relevant to a respective

protocol.

The generic structure of the proposed XML scheme is

depicted in Fig.7. The highest level element (root element),

DataHandlingSystem, can contain several Network

elements. Such an approach results from practical needs. For

example, in real cases such as Bepi Colombo, several distinct

SpW Networks are "linked" from data handling point of view

by sharing common SpW Units. In the example shown in

Fig. 7, a data handling system consists of only one SpW

Network. Each Network element can contain the following

nested elements that correspond to the Devices and Links the

SpW Network is made of: SpWSwitch, SpWNode, and

SpWLink. Additionally, when the NDCP protocol is used, the

NDCPControlDevice element (or elements) is nested in the

Network element as well. SpWSwitch and SpWNode

elements have NDCP_Device attribute that specifies whether

the device supports the NDCP protocol.

Fig. 7. Example of the XML representation of a SpW network

An example of the XML representation of a SpW Switch

that supports the NDCP is shown in Fig. 8. As can be seen

from Fig. 8, the SpWSwitch element contains the generic

section <Ports> and the section specific to the NDCP

protocol <NDCP>. The <NDCP> section is made of sections

and elements that correspond to the respective NDCP field sets.

For non-NDCP Devices that support the RMAP protocol, this

section is replaced by an <RMAP> section. The same structure

<?xml version="1.0" encoding="UTF-8"?>

<DataHandlingSystem Id="DHS1"

Name="DataHandlingSystem_1">

<Network Id="Net1" Name="network_1">

<NDCPControlDevice Name="pvs_1"

NoOfPorts="4" LogicalAddress="0xfc">

<SpWSwitch Name="switch_101" NoOfPorts="8"

LogicalAddress="0xfe" NDCP_Device="false">

<SpWSwitch Name="switch_102" NoOfPorts="8"

LogicalAddress="0xfe" NDCP_Device="true">

<SpWNode Name="node_103" NoOfPorts="2"

LogicalAddress="0xfe" NDCP_Device="true">

<SpWLink

Id="link_switch_101_4_switch_102_6">

</Network>

</DataHandlingSystem>

48

is used for SpWNode elements that describe SpW nodes in the

XML representation. Examples of the XML representation of a

SpW-10X and a SpW NDCP node are depicted in Figs. 9 and

10, respectively.

Fig. 8. Example of the XML representation of a SpW NDCP switch (detailed
description of sub-elements has been replaced by the ellipses for brevity)

Fig. 9.. Example of the XML representation of a SpW-10X (detailed

description of sub-elements has been replaced by the ellipses for brevity)

Fig. 10. Example of the XML representation of a SpW NDCP node (detailed
description of sub-elements has been replaced by the ellipses for brevity)

An example of a <Ports> section is given in Fig. 11. It

contains elements that describe SpW ports of the Device. The

attributes give information on the port number, the transmit

rate (expressed in Mbit/s) and the status of a link associated

with this port (connected/disconnected).

Fig. 11. Example of the <Ports> section

The structure of the <SpWLink> element is depicted in

Fig. 12. The <SpWLink> describes a unidirectional link with

the transmission direction from <Endpoint1> to

<Endpoint2>. Hence, a bidirectional SpW link is

represented by a pair of <SpWLink> elements.

Fig. 12. Example of the <SpWLink> element

<SpWNode Name="node_103" NoOfPorts="2"

LogicalAddress="0xfe" NDCP_Device="true">

<Ports> ... </Ports>

<NDCP>

<DeviceIdentification> ...

</DeviceIdentification>

<VendorProductStrings> ...

</VendorProductStrings>

<ProtocolSupport> ...

</ProtocolSupport>

<ApplicationSupport> ...

</ApplicationSupport>

<DeviceConfiguration> ...

</DeviceConfiguration>

<LinkConfiguration NoOfLinks="4"> ...

</LinkConfiguration>

<TimeCodeGeneration> ...

</TimeCodeGeneration>

<ProtocolInformation> ...

</ProtocolInformation>

</NDCP>

</SpWNode>

<SpWSwitch Name="switch_101" NoOfPorts="8"

LogicalAddress="0xfe" NDCP_Device="false">

<Ports> ... </Ports>

<RMAP>

<PortControlStatusRegisters> ...

</PortControlStatusRegisters>

<GroupAdaptiveRoutingTableRegisters> ...

</GroupAdaptiveRoutingTableRegisters>

<RouterControlStatusRegisters>

<NetworkDiscoveryRegister Address="256"

Value="0x00 0x03 0xF9 0x01"/>

<RouterIdentityRegister Address="257"

Value="0x00 0x00 0x00 0x65"/>

<RouterControlRegister Address="258"

Value="0x00 0x00 0x00 0x63"/>

<ErrorActiveRegister Address="259"

Value="0x00 0x00 0x01 0xF3"/>

<TimeCodeRegister Address="260"

Value="0x00 0x00 0x00 0x00"/>

<DeviceManufacturerAndChipIDRegister

Address="261" Value="0x00 0x01 0x00 0x00"/>

<GeneralPurposeRegister Address="262"

Value="0x00 0xFE 0x00 0x01"/>

<TimeCodeEnableRegister Address="263"

Value="0x00 0x00 0x02 0x00"/>

<ClockControlRegister Address="264"

Value="0x00 0x05 0xFF 0x01"/>

<DestinationKeyRegister Address="265"

Value="0x00 0x00 0x00 0x20"/>

</RouterControlStatusRegisters>

</RMAP>

</SpWSwitch>

<SpWLink Id="link_switch_101_4_switch_102_6">

<Endpoint1 Name="switch_101" Port="4"/>

<Endpoint2 Name="switch_102" Port="6"/>

</SpWLink>

<SpWSwitch Name="switch_102" NoOfPorts="8"

LogicalAddress="0xfe" NDCP_Device="true">

<Ports> ... </Ports>

<NDCP>

<DeviceIdentification> ...

</DeviceIdentification>

<VendorProductStrings> ...

</VendorProductStrings>

<ProtocolSupport> ...

</ProtocolSupport>

<ApplicationSupport> ...

</ApplicationSupport>

<DeviceConfiguration> ...

</DeviceConfiguration>

<LinkConfiguration NoOfLinks="12"> ...

</LinkConfiguration>

<SwitchingTable> ...

</SwitchingTable>

<TimeCodeGeneration> ...

</TimeCodeGeneration>

<ProtocolInformation> ...

</ProtocolInformation>

</NDCP>

</SpWSwitch>

<Ports>

<Port Number="1" TransmitRate="100"

PortConnected="true"/>

<Port Number="2" TransmitRate="100"

PortConnected="false"/>

<Port Number="3" TransmitRate="100"

PortConnected="false"/>

<Port Number="4" TransmitRate="100"

PortConnected="true"/>

<Port Number="5" TransmitRate="100"

PortConnected="true"/>

<Port Number="6" TransmitRate="100"

PortConnected="true"/>

<Port Number="7" TransmitRate="100"

PortConnected="true"/>

<Port Number="8" TransmitRate="100"

PortConnected="true"/>

</Ports>

49

The rules for the XML representation have been described

in an XSD (XML Schema Definition) file.

V. CONCLUSIONS

The paper dealt with the issue of SpaceWire Networks

management by means of the Network Discovery and

Configuration Protocol. The topic was tackled from the

perspective of the ESA-funded SPACEMAN project that

aimed at developing a software network management tool

(NMT) based on the NDCP for discovering and configuring

SpaceWire networks.

The SPACEMAN NMT allows performing main NDCP

operations, i.e. discovering unknown SpaceWire Networks and

configuring SpaceWire Devices by changing values of some

NDCP fields stored in the Devices. The discovery process is

carried out for NDCP-enabled SpW Devices, as well as for

SpW-10X or compatible devices that are not NDCP-enabled.

The tool is also capable of discovering existence of so-called

Generic Devices that are neither NDCP-enabled nor SpW-10X

compatible. The tool includes some additional functionalities

such as slow mode of discovery (step-wise), network

comparison and monitoring, network model editing, packet-

level testing for SpaceWire, RMAP and NDCP protocols, and

SpW network model export to and import from XML files. As

such, the SPACEMAN NMT allows testing and validating the

NDCP protocol towards its future standardisation and can be a

useful tool for engineers working with SpaceWire networks.

The novel digital representation of SpaceWire networks by

means of XML was also presented in the paper. The approach

aims at providing a holistic and flexible structure that is

capable of representing a variety of different SpaceWire

Networks and Devices. The proposed XML scheme is

implemented in the SPACEMAN NMT.

ACKNOWLEDGMENT

This work has been funded by the European Space Agency

under contract no. 4000109438/13/NL/Cbi.

REFERENCES

[1] European Cooperation for Space Standardization, “Space

engineering – SpaceWire – Links, nodes, routers and networks,”

ECSS-E-ST-50-12C, 31 July 2008

[2] European Cooperation for Space Standardization, “Space

engineering – SpaceWire – Links, nodes, routers and networks,”

ECSS-E-ST-50-12C Rev.1 DIR3, 23 November 2015

[3] European Cooperation for Space Standardization, “Space

engineering – SpaceWire Network Discovery & Configuration

Protocol,” ECSS-E-ST-50-54 Draft 1.7, 27 November 2014

[4] D. Jameux, “Towards SpaceWire Plug-and-Play ECSS

standard,” 4th Int. SpaceWire Conf., San Antonio, TX, USA,

November 2011

[5] European Cooperation for Space Standardization, “Space

engineering – Ground systems and operations – Telemetry and

telecommand packet utilization,” ECSS-E-70-41A, 30 January

2003

[6] European Cooperation for Space Standardization, “Space

engineering – SpaceWire – CCSDS packet transfer protocol,”

ECSS-ST-E-50-53C, 5 February 2010

[7] European Cooperation for Space Standardization, “Space

engineering – SpaceWire protocol identification,” ECSS-ST-E-

50-51C, 5 February 2010

[8] European Cooperation for Space Standardization, “Space

engineering – SpaceWire – Remote memory access protocol,”

ECSS-E-ST-50-52C, 5 February 2010

[9] A. Tavoularis, V. Kollias, K. Marinis, “iSAFT Protocol

Validation Platform for on-board data networks,” DASIA

Conference, Warsaw, 2014

[10] http://www.star-dundee.com

[11] C. McClements, S. Parkes, G. Kempf, “SpW-10X SpaceWire

Router User Manual,” Issue 3.5, 7 January 2015

[12] M. Takada, H. Takada, Y. Chen, M. Nomachi, T. Yuasa, T.

Takahashi, “Development of Software Platform Supporting a

Protocol for Guaranteeing the Real-Time Property of

SpaceWire,” 5th Int. SpaceWire Conf., Gothenburg, Sweden,

June 2013

[13] T. Yuasa, T. Takahashi, M. Nomachi, “SpaceWire network

XML representation. An example of JAXA-Nagoya University

R&D project,” 22nd SpW WG Meeting, ESA/ESTEC,

Noordwijk, The Netherlands, December 2014

[14] D. Raszhivin, “XML-based SpaceWire network representations

for developments and network management,” 22nd SpW WG

Meeting, ESA/ESTEC, Noordwijk, The Netherlands, December

2014

50

Constraint-based Configuration Table Generator for

Reliable Path Routing and Safe Timeslot Allocation

in SpaceWire Network
Session: Networks & Protocols, Short Paper

Satoshi Yamazaki, Toshio Tonouchi

System Platform Research Laboratories,

NEC Corporation

1753, Nakahara-ku shimonumabe, Kawasaki,

Kanagawa, 211-8666, Japan

s-yamazaki@bx.jp.nec.com, tonouchi@cw.jp.nec.com

Yu Otake, Yasuhiro Sota, Takahiko Tanaka
Space Systems Division,

NEC Corporation

10, Nisshin-cho 1-chome, Fuchu, Tokyo, 183-8501, Japan

y-otake@bp.jp.nec.com, sota@ab.jp.nec.com

t-tanaka@dy.jp.nec.com

Hiroki Hihara,
NEC Space Technologies, Ltd.

10, Nisshin-cho 1-chome, Fuchu, Tokyo, 183-8551, Japan

h-hihara@bc.jp.nec.com

Abstract—SpaceWire is valuable because it facilitates the

development of spacecraft subsystems such as payload

instruments, mass memory, and onboard computers. On the

other hand, it takes much time and effort for developers to

configure an initiator of the SpaceWire network because they

have to take account of the entire SpaceWire network in a

spacecraft. As the target network becomes larger, the path

addressing and the packet collision-free timeslot allocation are

harder for the developers to configure. Furthermore, the

configuration tables of the initiator should satisfy various

constraints, such as the bandwidth limitation and priority of

specific packets. These constraints are different in each

spacecraft. In order that the developers can design the large-scale

SpaceWire network efficiently, automatic configuration table

generation under the constraints is indispensable. This paper

presents a constraint-based configuration table generator (CTG)

that automatically provides reliable redundant path routing and

collision-free timeslot allocation for required transactions in the

target topology. We apply a constraint solver to the CTG to set

many kinds of user-defined constraints in the network. For

example, the bandwidth limitation, priority of the packets, and

other various constraints can be easily inputted into the CTG.

The CTG automatically generates configuration tables satisfying

these constraints. Additionally, the CTG reports network

topology views with bandwidth utilization ratios. This helps

developers to verify whether a generated configuration is just as

designed. The CTG can also notify developers that their

requirements cannot be solved. In this paper, we show the

feasibility and effectiveness of this tool through evaluation using

a large-scale SpaceWire network case.

Index Terms— SpaceWire, SpaceWire-D, timeslot, constraint

satisfaction problem, scheduling.

I. INTRODUCTION

SpaceWire has been adapted to a lot of satellite networks

because it provides a standard data communication interface

for spacecraft and facilitates the development of spacecrafts

[1]. In ASTRO-H which is the space X-ray astrophysical

observatory, all the transactions are controlled by the central

master unit, which is called the satellite management unit

(SMU) [2]. The transmission schedule of the transactions is

described by configuration tables in the SMU. The SMU can

realize deterministic transmissions of information, such as

housekeeping data and instrumental data, by following the

information in the tables.

On the other hand, it takes much time and effort for

developers to test the functions of SMU. To test the

configuration of initiators such as the SMU, developers have

to take account of the entire network in a spacecraft. As the

target becomes larger, the path address uses strict source

routing in the SpaceWire network and the packet collision-free

schedule is harder for the developers to configure.

In the actual SpaceWire network, all transactions are

allocated to a timeslot introduced by SpaceWire-D to avoid

packet collisions [3]. For example, the real time in ASTRO-H

is divided into 64 timeslots using 64-Hz time codes emitted by

SMU [2]. In addition, bus slots and system slots are

introduced so that the SpaceWire network is able to operate in

a deterministic manner without suffering from congestion and

unexpected packet delivery delays. The important

communications such as housekeeping data collections are

allocated to bus slots while the system slots are used for the

mission instrument data collections. However, it is too

complex for developers to set the configurations that satisfy

the user-defined management policy although such policies

improve the reliability of the configurations.

Some authors have suggested scheduling methods for the

SpaceWire network [4, 5, 6]. However, these methods cannot

be adapted to ensure that the generated schedule satisfies user-

51

defined constraints such as timeslot number restriction, which

depends on the kind of communication service. Hence, it is

difficult to apply these methods to the actual SpaceWire

network.

In this paper, we propose a constraint-based configuration

table generator (CTG) that computes reliable path routing and

safe timeslot allocation in the SpaceWire network.

Communication requirements are inputted into the CTG, and

the CTG outputs configuration tables that include routing

tables for each initiator (initiator table) and tables for timeslot

allocation (scheduling table). The CTG also outputs a network

topology figure with bandwidth utilization information. This

topology figure can clarify the bandwidth bottleneck in the

target network and validate the outputted scheduling table.

II. FORMULATION

A. Architecture

CTG can make configuration tables of initiators in the target

SpaceWire network. In a similar manner to that of related

studies [5, 6], the configuration tables have information of

transactions specified by the remote memory access protocol

(RMAP), a standard communication protocol for the

SpaceWire network [7]. To make the tables, network topology

and communication requirement information are inputted into

the CTG. In addition, constraint definition information, which

describes user-defined requirements for timeslot allocation, is

also inputted into the CTG. The details of the constraints are

explained below.

The network topology information has the parameters of

nodes, routers, and links in the target network. These

parameters are the same ones used in preceding studies [5, 6].

The communication requirement information includes the

parameters of the transactions. These parameters include the

names of the source and destination nodes, RMAP address,

RMAP packet types, and other pieces of information used for

specifying communication service types.

By referring to the input information, the CTG searches all

paths from the source node to the destination node for each

required transaction. From all the paths, redundant paths are

chosen to minimize the number of shared links. Hence, the

CTG makes initiator tables that configure the redundant paths

for each required transaction.

After making initiator tables, the CTG allocates timeslots to

the required transactions. The details of timeslot allocation are

shown in the section below. In the CTG, the scheduling tables

for the target network are made in accordance with the result

of timeslot allocation. By using the result, the CTG can also

estimate the bandwidth utilizations of links for each timeslot.

The bandwidth utilizations are visualized by generating

network topology figures for each timeslot.

Note that the communication requirement with information

of partially or fully allocated timeslots can be inputted into the

CTG. The CTG can complement the timeslot allocation for

remainder transactions if timeslots are partially allocated. In

the case of fully allocated timeslot input, the CTG verifies

whether the timeslot allocation satisfies the user-defined

management policy.

B. Constraint-based timeslot allocation

The CTG solves the constraint satisfaction problem

mentioned below to allocate timeslots to required transactions.

Our goal is to find a timeslot allocation that satisfies all the

constraints.

To control the allocation of transactions, we introduce

Boolean decision variables as follows,

 𝑎𝑚,𝑛 ∈ {0,1}, (1)

where 𝑚 = 0. . 𝑁𝑡 , 𝑛 = 0. . 𝑁𝑠 − 1. 𝑁𝑡 and 𝑁𝑠 are the number

of required transactions and timeslots, respectively. The

variable 𝑎𝑚,𝑛 is set to 1 if transaction ID = 𝑚 is allocated to

the 𝑛 th timeslot.

In this problem, we find an assignment of values of 𝑎𝑚,𝑛

under the constraints below.

 ∀𝑚 ∑ 𝑎𝑚,𝑛

𝑛

=
𝑁𝑠

𝑇𝑝𝑒𝑟𝑖𝑜𝑑
𝑚 , (2)

 ∀𝑙 ∑
𝑇𝑥

𝑚

𝑇𝑠𝑙𝑜𝑡
(𝑚,𝑥)∈𝑇𝑅𝐴𝑁𝑆𝑙

𝑎𝑚,𝑛 = 1.0, (3)

 ∀𝑚 ∑ 𝑎𝑚,𝑛

𝑛∉𝑆𝐿𝑂𝑇𝑆𝑚

= 0, (4)

 ∀𝑛 ∑ 𝑎𝑚,𝑛

𝑚

≤ 𝑁𝑚𝑎𝑥
𝑛 , (5)

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (∑
𝑇𝑥

𝑚

𝑇𝑠𝑙𝑜𝑡
(𝑚,𝑥)∈𝑇𝑅𝐴𝑁𝑆𝑙

𝑎𝑚,𝑛)

2

𝑙∈𝐿

, (6)

where 𝑇𝑝𝑒𝑟𝑖𝑜𝑑
𝑚 is the number allocated in 1 cycle timeslot for

the m th transaction [6]. In the case of 𝑁𝑠 = 𝑇𝑝𝑒𝑟𝑖𝑜𝑑
𝑚 = 64 ,

constraint (2) ensures that there is only one decision variable

set to 1 for each required m th transaction since the 𝑇𝑝𝑒𝑟𝑖𝑜𝑑
𝑚

 set

to 64 means the transaction is required to be used for each

time slots.

Constraint (3) represents the bandwidth constraint ensuring

that capacity limitations will not be exceeded. 𝑇𝑠𝑙𝑜𝑡is the time

for each timeslot. In the case of 𝑁𝑠 = 64, 𝑇𝑠𝑙𝑜𝑡 = 15.625 𝑚𝑠.

The set of tuples, 𝑇𝑅𝐴𝑁𝑆𝑙 , shows all the IDs of transactions

that pass the link . The ID of a transaction that has passed and

the packet’s direction are indicated by 𝑚 and 𝑥, respectively.

In a SpaceWire network, transactions include a sending packet

(s) and a reply packet (r). The spending times of two packets

are individually estimated in the CTG. The spending time

𝑇𝑥
𝑚 (𝑥 = 𝑠, 𝑟) is evaluated with the following formulas, which

are based on related studies [5, 6].

 𝑇𝑠
𝑚 = 𝑇𝑠𝑟𝑡

𝑚 + 𝑇𝑠𝑚𝑑𝑡
𝑚 , (7)

 𝑇𝑟
𝑚 = 𝑇𝑟𝑟𝑡

𝑚 + 𝑇𝑟𝑚𝑑𝑡
𝑚 . (8)

The time spent on sending the 𝑚th packet 𝑇𝑠𝑟𝑡
𝑚 and the time

spent on sending the reply to the 𝑚th packet 𝑇𝑟𝑟𝑡
𝑚 depend on

the RMAP packet type of the 𝑚th transaction.

52

 RMAP write:

 𝑇𝑠𝑟𝑡
𝑚 = 10 ×

(𝑅𝑚 + 𝑃𝑚 + 𝐷𝑚 + 17)

𝑆
+ 𝑇𝑝𝑑𝑅𝑚 (9)

 𝑇𝑟𝑟𝑡
𝑚 = 10 ×

(𝑅𝑚 + 8)

𝑆
+ 𝑇𝑝𝑑𝑅𝑚, (10)

RMAP read:

 𝑇𝑠𝑟𝑡
𝑚 = 10 ×

(𝑅𝑚 + 𝑃𝑚 + 16)

𝑆
+ 𝑇𝑝𝑑𝑅𝑚 , (11)

 𝑇𝑟𝑟𝑡
𝑚 = 10 ×

(𝑅𝑚 + 𝐷𝑚 + 13)

𝑆
+ 𝑇𝑝𝑑𝑅𝑚 , (12)

 RMAP read modify write:

where 𝐷𝑚 is the transmission data length of the 𝑚 th

transactions. The spending time is strongly affected by 𝐷𝑚 .

Hence, 𝑇𝑠𝑟𝑡
𝑚 in the RMAP write packet is larger than 𝑇𝑟𝑟𝑡

𝑚 . The

minimum line speed (M bit/s) in the target network is

indicated by 𝑆. In the above formula, the spending time also

depends on the number of routers that have been passed 𝑅𝑚,

delay time of each router 𝑇𝑝𝑑 , and number of reply path

addresses 𝑃𝑚 . The spending times defined by the above

formula are estimated by the data size of the packet header

specified by SpaceWire [1, 7].

Constraint (4) and (5) reflect a user-defined constraint that is

different in each project. For example, the transactions for

housekeeping data are allocated to the (4𝑛 + 0)th timeslot,

which is called the bus slot. This restriction can be encoded in

constraint (4), where 𝑆𝐿𝑂𝑇𝑆𝑚 is the set of permitted timeslots

for the ID = m transaction. The information of 𝑆𝐿𝑂𝑇𝑆𝑚 is

included in the constraint definition information inputted into

CTG. By using constraint (4), unpermitted timeslot allocation

can be prohibited because the values of 𝑎𝑚,𝑛 where 𝑛 ∉
𝑆𝐿𝑂𝑇𝑆𝑚 become zero.

For another example, the limitation of the number of specific

transactions for the bus slot is described by the network

management policy. This policy can be encoded in constraint

(5). Constraint (5) ensures that the number of transactions for

the 𝑛th timeslot does not reach the maximum number 𝑁𝑚𝑎𝑥
𝑛

given by the inputted constraint definition information.

Optionally, CTG can consider the optimization constraint (6),

which disperses the bandwidth utilization of links.

Many existing off-the-shelf SMT solvers can solve the

scheduling problem under constraint (2-5). In addition, Z3 [8],

an existing SMT solver, can also consider optimization

constraint (6).

III. EXPERIMENT

We apply the proposed CTG to a SpaceWire network that is

composed of 1 initiator (BMC) and 3 targets (data recorder,

Node 1, and Node 2). There are 70 transactions per second in

this system. To show the function of timeslot allocation in the

<SpaceWireConstraintsInfo>

<PermittedSlot CharacterId="Housekeeping"

Slot="0;4;8;12;16;20;24;28;32;36;40;44;48;52;56;60"/>

<PermittedSlot CharacterId="System Polling"

Slot="5;6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26;27;29;30;31;33;

34;35;37;38;39;41;42;43;45;46;47;49;50;51;53;54;55;57;58;59"/>

<Character Id="Housekeeping ">

<Packet ServiceType=" Housekeeping" />

</Character>

<Character Id="System polling">

<Packet ServiceType="System polling" />

</Character>

</SpaceWireConstraintsInfo>

Fig. 1. Snippet of constraint definition information (XML format).

TABLE I. RESULT OF TIMESLOT ALLOCATION.

(a) Timeslot table.

Slot number Transaction IDs

0 0,1,4,5,8

1

2

3

4 0,1,3,4,5,7,8

5

6 2,6

7 9, 10

(b) List of parameters of required transactions.

ID Source Destination Type Service

0 BMC Node 1 Read Housekeeping

1 BMC Node 1 Read Bus polling

2 BMC Node 1 Read System polling

3 BMC Node 1 Read Instrument

4 BMC Node 2 Read Housekeeping

5 BMC Node 2 Read Bus polling

6 BMC Node 2 Read System polling

7 BMC Node 2 Read Instrument

8 BMC DR Read Housekeeping

9 BMC DR Write Command

10 BMC DR Write Command

CTG comprehensively, the redundancy of all the paths is set to

1 in these evaluation results. The information inputted into the

CTG is in XML format based on preceding studies [5, 6].

Figure 1 shows a snippet of the constraint definition

information.

The results of timeslot allocation for the 0th - 7th slot are

shown in Table 1. Note that the transactions in this experiment

are allocated to 64 timeslots (𝑁𝑠 = 64). The allocated

transaction IDs for each timeslot are shown in Table 1(a).

Table 1(b) shows the parameters of the transactions. In this

experiment, we consider the constraints that bus polling and

housekeeping communications have to be allocated to the bus

slot. Therefore, ID = 0, 1, 4, 5, 8 are allocated to slot 0 or slot 4

 𝑇𝑠𝑟𝑡
𝑚 = 10 ×

(𝑅𝑚 + 𝑃𝑚 + 25)

𝑆
+ 𝑇𝑝𝑑𝑅𝑚 , (13)

 𝑇𝑟𝑟𝑡
𝑚 = 10 ×

(𝑅𝑚 + 17)

𝑆
+ 𝑇𝑝𝑑𝑅𝑚 , (14)

53

 (a)

(b)

Fig. 2. Network topology figures for case of 1 initiator (BMC) and 3 targets

(DR, Node 1, and Node 2). DR stands for data recorder. (a) 0th slot (b)
7th slot. The figures show bandwidth utilizations of sending and reply

packets by each link.

(a)

(b)

Fig. 3. Network topology figures for case of 2 initiators (BMC, DR) and 6

targets (Nodes 1-6). Bandwidth utilizations of reply packets are shown.

in Table 1(a) because the results of the CTG always satisfy the

inputted user-defined constraints such as the restriction shown

in Fig. 1. The network topology figures for the 0th slot and 7th

slot are shown in Fig. 1. The circles and arrows on the maps

are network nodes and links, respectively. The maps also show

bandwidth utilizations by each link.

In the figures, arrows from the left nodes to the right nodes

indicate sending packets; arrows in the opposite direction

indicate reply packets. Figure 2(a) shows that the bandwidth

utilizations of reply packets are larger than those of the

sending packets because the RMAP packet types of all

transactions allocated to the 0th timeslot are RMAP read

transactions. On the other hand, bandwidth utilizations of the

sending packets are larger in Fig. 2(b) because the RMAP

packet types of all transactions allocated to the 7th timeslot are

RMAP write transactions.

Figure 3 shows the results of another experiment where the

evaluated network is composed of 2 initiators (BMC, DR) and

6 targets (Nodes 1-6). The experiment simulates timeslot

allocation for 120 transactions for data collection. Figure 3(a)

shows that the bandwidth utilization ratios for all links are

lower than 100% because of the safe timeslot allocation by

using the CTG. As a result, the link between SWR and

SWR_sub1 becomes the bandwidth bottleneck in the network.

This bottleneck seems to be reduced by adding another router.

Figure 3(b) shows the results of the additional experiment.

The visualization of bandwidth utilization is useful for

developers to make a strategy for increasing the total

bandwidth utilization efficiently.

IV. CONCLUSION

In this paper, we propose a constraint-based configuration

table generator to reduce the number of man-hours for

verification of network configurations. The configuration

tables outputted by the CTG can be applied to an actual SMU

since the tables satisfy the user-defined constraints encoded

from management policies for each project.

REFERENCES

[1] ECSS-E-ST-50-12C, “SpaceWire - Links, Nodes, Routers

and Networks” 31 July 2008.

[2] T. Yuasa, T. Takahashi, M. Ozaki, and M. Kokubun, “A

deterministic SpaceWire network onboard the ASTRO-H

space x-ray observatory,” in International SpaceWire

Conference, Texas, USA, November 2011.

[3] S. Parkes, A. Ferrer, S. Mills, and A. Mason, “Spacewire-

D: Deterministic data delivery with SpaceWire,” in

International SpaceWire Conference, St Petersburg,

Russia, June 2010.

[4] D. Raszhivin, Y. Sheynin, and A. Abramov,

“Deterministic scheduling of SpaceWire data streams,” in

International SpaceWire Conference, Gothenburg,

Sweden, June 2013.

[5] Y. Chen, M. Takada, R. Kurachi, and H. Takada, “A

scheduling method of RMAP packets for SpaceWire-D,”

in International SpaceWire Conference, Gothenburg,

Sweden, June 2013.

[6] M. Takada, H. Takada, Y. Chen, T. Yuasa, T. Takahashi,

and M. Nomachi, “Development of software platform

supporting a protocol for guaranteeing the real-time

property of SpaceWire,” in International SpaceWire

Conference, Gothenburg, Sweden, June 2013.

[7] ECSS-E-ST-50-52C, “SpaceWire - Remote memory

access protocol” 5 February 2010.

[8] L. De Moura and N. Bjørner, “Z3: An efficient SMT

solver,” in International conference on Tools and

Algorithms for the Construction and Analysis of Systems.

Springer, 2008, pp. 337–340.

54

Essential SpaceWire Hardware Capabilities for a

Robust Network
Session: SpaceWire Networks and Protocols, Short Paper

Michael Birmingham

NASA Goddard Space Flight Center/ASRC Federal

Denver, CO USA

E-mail: mike.j.birmingham@lmco.com

Alexander Krimchansky

NASA Goddard Space Flight Center

Greenbelt, MD USA

Email: alexander.krimchansky@nasa.gov

William H. Anderson

NASA Goddard Space Flight Center/ASRC Federal

Greenbelt, MD USA

Email: william.h.anderson@nasa.gov

Matthew S. Lombardi

Lockheed Martin

Denver, CO USA

Email: matthew.s.lombardi@lmco.com

Abstract— The Geostationary Operational Environmental

Satellite R-Series Program (GOES-R) mission is a joint program

between National Oceanic & Atmospheric Administration

(NOAA) and National Aeronautics & Space Administration

(NASA) Goddard Space Flight Center (GSFC). GOES-R project

selected SpaceWire as the best solution to satisfy the desire for

simple and flexible instrument to spacecraft command and

telemetry communications. GOES-R development and

integration is complete and the observatory is scheduled for

launch October 2016.

The spacecraft design was required to support redundant

SpaceWire links for each instrument side, as well as to route the

fewest number of connections through a Slip Ring Assembly

necessary to support Solar pointing instruments. The final design

utilized two different router designs.

The SpaceWire standard alone does not ensure the most

practical or reliable network. On GOES-R a few key hardware

capabilities were identified that merit serious consideration for

future designs. Primarily these capabilities address persistent

port stalls and the prevention of receive buffer overflows.

Workarounds were necessary to overcome shortcomings that

could be avoided in future designs if they utilize the capabilities,

discussed in this paper, above and beyond the requirements of

the SpaceWire standard.

Index Terms—SpaceWire, Networks, Routers, GOES-R,

GRDDP.

I. INTRODUCTION

This paper seeks to describe some of the pitfalls

encountered during the design and integration of major

components for the Geostationary Operational Environmental

Satellite-R Series (GOES-R) program [1]. An awareness of

those pitfalls may prevent a similar experience in future

designs.

The GOES-R spacecraft uses European Cooperation for

Space Standardization (ECSS) SpaceWire [2] for the transfer

of sensor, telemetry, ancillary, command, time code, and time

synchronization information between instruments and the

spacecraft. Capabilities beyond those specified in the standard

are offered in the interest of providing a more robust system.

This paper describes four instances where considerable

effort was expended to avoid or mitigate problems concerning

persistent port stall, receive buffer overflow, pipeline side-

effects, and a situation where buffer depth configuration of a

node exposed a router defect that locked out further transfers.

This specific configuration can be avoided given the details in

that section.

A. Background Information

GOES-R uses Reliable Data Delivery Protocol (GRDDP

[3]) which specifies that Reset packets are transmitted at that

channel’s transmit timeout rate from the time that the channel

is placed into an Enabled state, until an Acknowledge packet is

received. The transmit timeout is specified in an instrument

Interface Control Document (ICD), and is on the order of

100ms for the instruments described in this paper. During

instrument power-on, the spacecraft will begin transmitting

Reset packets (9 bytes in length) to the instrument at a 100ms

rate until the instrument responds.

The spacecraft transition to Enabled state is delayed from

the application of instrument power to coincide with the point

at which the instrument enters Run Mode, and is able to

process GRDDP messages. If the instrument indeed enters Run

Mode at about the expected time, few Reset packets will be

transmitted. Problems may arise, however, if there is a problem

with either the instrument or the link.

GOES-R also specifies that instruments shall transition to a

Safe Mode if time ticks or time-of-day messages are absent for

10 consecutive seconds.

55

mailto:mike.j.birmingham@lmco.com
mailto:alexander.krimchansky@nasa.gov
mailto:alexander.krimchansky@nasa.gov
mailto:matthew.s.lombardi@lmco.com

I. PERSISTENT PORT STALL PREVENTION

The first capability to be discussed is a mechanism to

prevent an indefinite network stall. This is especially important

when routers are employed between nodes. The need will be

illustrated in the following sections by way of an example.

A. Routing example

The following is a simplified example of a real-world

condition encountered on GOES-R during instrument emulator

integration. Router 1 in the following example is implemented

as a Goddard Space Flight Center (GSFC) developed core [4]

which is part of the BAE Systems SpaceWire ASIC [5]. Router

2 is an Aeroflex 4-port router [6].

Details such as Lookup Tables (LUTs), registers, arbiters

and other router components are not included since it assumed

that the reader has a working knowledge of those mechanisms.

B. Initial Condition

In Figure 1 above, Router 1 has port transmit timeout

capabilities, while Router 2 does not. Router 2 Port 3 is in

disconnect due to an instrument or cable failure, and cannot

reconnect. This condition may be present prior to instrument

power-on or may occur during operation.

R2P1 is Router 2 Packet 1; it is 192 bytes including the End

of Packet marker (EOP) and its destination is Port 3. No part of

Packet 1 has been transmitted yet, in this example.

R2P2 is Router 2 Packet 2; it is 58 bytes including the EOP

and will be routed to Port 4 (not shown).

R2P3 is the leading portion of Packet 3, while R1P3 is the

trailing portion of Packet 3. Packet 3 is 234 bytes in total,

including the EOP.

R1P4 is the final packet to be queued up for Router 1, but

neither the length nor the EOP is indicated because it is not

relevant for this example.

C. Stall Condition

R2P1 will not be delivered due to the disconnect condition

on Router 2 Port 3. Since R2P1 exceeds the size of Port 3’s

transmit (Tx) First In First Out memory (FIFO), it will block

Port 1’s arbiter. The trailing portion of Packet 1 and all of

Packet 2 will occupy all but 6 bytes of Port 1’s Receive (Rx)

FIFO. The remaining free space on Router 2’s Port 1 Rx FIFO

will be filled with the leading 6 bytes of Packet 3.

D. Timeout Condition

Router 1 Port 2 has not completed transmitting Packet 3

within the programmed timeout limit, and disconnects Port 2.

Pursuant to ECSS error recovery specifications, Router 1 will

spill the trailing 228 bytes of Packet 3. Router 2 will not

append an EEP to partial packet 3 because there is no space in

the receive buffer.

E. Link Recovery

Both Router 1 and Router 2 will issue NULL characters in

an attempt to re-establish the link. Assuming Router 1 Port 2

Rx FIFO (not shown) has at least 8 bytes free, it will also issue

one or more Flow Control Token (FCT) characters. Router 2,

on the other hand, will not issue an FCT because there are no

bytes free in its Rx FIFO.

The ECSS standard does not have a remedy for this

situation. It is assumed that there are no hard link errors, and

that eventually data will flow through Router 2 Port 3. If the

failure is not recoverable with an instrument power cycle (if it

can even be identified by the host system) then the failure will

persist ad infinitum.

F. GOES-R Configuration

On GOES-R, only the first router in the chain is capable of

disconnect on a transmit timeout, and it is not on a per-port

basis; the timeout applied to all ports equally. The routers

downstream (Aeroflex 4-port routers) of that router had no

transmit timeout capability. The indefinite stall cannot be

avoided unless all routers have the transmit timeout capability.

Router 2 does not have port timeoutRouter 1 has port timeout

128x9b
Tx FIFO

128x9b
Rx FIFO Port-3Port-1

R2P2
57B, Port 4EO

P

64x9b
Tx FIFO Port-2 X

R1P3
227BEO

P

EO
P

R1P4 R2P3
6B

R2P1
191B, Port 3

X

Figure 1 Example Routers and Packets for Transmit Timeout Discussion

56

G. GOES-R Stall Consequences

The perpetual stall means that all instruments downstream

of Router 2 Port 1 will be unable to communicate. Instrument

telemetry will not be acknowledged, and instruments will no

longer receive commands, time messages or time ticks. Within

10 seconds instruments fall into Safe Mode. All GOES-R

GRDDP transmit channels to those instruments close and

numerous error events result. Unless the condition was present

during the power-on process, there is no way of knowing

which port of which router was in disconnect.

H. GOES-R Recovery Method

The GOES-R recovery method begins by powering off all

instruments downstream of Router 1 port 2. A hard reset is then

required of the routers downstream of Router 1 (there are four

on GOES-R). Each hard reset clears the FIFOs and all router

registers are returned to default values. The reset does not

affect the LUT contents. Next, the registers have to be re-

configured for each router. As each instrument is powered up,

their router port status is examined. If not in Run State, the

instrument is swapped to the redundant side.

I. Recommended Design Solution

On any network involving one or more nodes, a

programmable transmit timeout feature on every router port in

the chain is essential to preventing a perpetual stall somewhere

in the chain. Of course the timeout must apply to any packet

that stalls the transmitter, even if the port is in disconnect and

no part of the packet has been sent. The ECSS standard

specifies only that a partial packet be spilled when the link

error is reported (transition to disconnect).

The transmit timeout feature on all routers will clear the

stall but as long as the point of origin continues transmitting

packets to the node in disconnect then the behavior repeats

indefinitely. Best practice would be to check port status prior to

and following instrument power-on, as well as periodic

monitoring.

There may be considerable packet jitter with this solution,

caused by the timeout that must expire before a packet is

spilled. When using GRDDP, the port timeout setting must be

much less than the shortest re-transmit timeout, since Reset

packets have priority over all but Ack packets and Reset

packets will likely be prevalent in this situation.

57

II. RECEIVE BUFFER OVERFLOW PREVENTION

The next capability to be discussed is a mechanism to

prevent receive buffer overflow. The ECSS standard does not

limit the length of data packets, but practical applications

should limit the size of packets, as does the GRDDP protocol.

On GOES-R, each instrument also had constraints on the size

of packets that were to be transmitted or received, which were

equal to or less than what the protocol allowed.

The ECSS standard assumes that FCT messaging will

prevent receive buffer overflow (section 8.3). In reality, receive

FIFO overflow is prevented, but not necessarily receive

buffers. Rx FIFOs are the domain of hardware and credit

counts and FCT transmit is the purview of that lower level of

the system. The practical problem is that the receive front end

may have no idea of the size of the buffer in system memory.

FCTs are issued when there is room in the FIFO, without

consideration for the size of the host system buffer allocated

for data transfer from the FIFO.

A. Packet Overflow

Receive buffers on link end points have high and low

memory limits, whether that memory is statically or

dynamically allocated, and whether a linked list is contiguous

or scattered in physical memory. Receive buffer overflow is

very damaging, so a high-availability system should seek to

avoid that situation with a hardware mechanism of some sort.

The host system may be removed from the receive front end by

several layers complicating the connection between receive

FIFO and receive buffer. The complexity of the chain may be

inadequate to prevent receive buffer overflow or to avoid an

intricate recovery.

B. GOES-R Spacecraft Receive Buffer Chain

The BAE SpaceWire ASIC is used in the GOES-R

spacecraft to interface to the instruments, and Figure 2

illustrates the Application Specific Integrated Circuit (ASIC)

cores involved in transferring incoming telemetry to system

Static Random Access Memory (SRAM).

The Rx FIFO is connected to a Receive Interface (RIF),

which controls a Direct Memory Access (DMA) engine to

transfer data through the On-Chip Bus (OCB), to a Memory

Controller (MEMCTL) which ultimately writes the packet into

system SRAM.

Working from left to right in the Figure 2 example, there

are 5 equally sized memory regions, MR1 through MR5, in

SRAM. Each region has been sized to accommodate the

maximum packet expected to be received. In this example, the

memory is contiguous for two of the regions but is otherwise

scattered. Incoming packets will be written first to MR1, then

MR2 and so on, with MR5 linking back to MR1.

In typical producer-consumer fashion, each region would

not be overwritten until consumed by the host system. Simple

linked-list buffers should not be employed if there’s any

possibility of overwriting a buffer until it has been completely

consumed. A non-linked list of descriptors, albeit with host

software intervention, can be fashioned into a scatter-gather

controller.

On the BAE SpaceWire ASIC, a receive descriptor is

constructed by the host software to point to the target buffer in

SRAM, by address and by length. The address of that

descriptor is written to a RIF register and the RIF starts the

process, which terminates when either the specified buffer

length is reached or an end-of-packet marker is received. This

SRAM

Rx FIFORIF

O
C

B

MR1
MR2

MR3

MR4
MR5

DMAMEM
CTL

Figure 2 Example Receive Buffer Chain

58

effectively prevents the designated receive buffer from

overflow but does not terminate or spill the packet. Remaining

packet data will consume additional buffers until an end of

packet marker is received, complicating recovery.

C. Programmable Per-Port Maximum Packet Length

On GOES-R, the GSFC-designed router core embedded

within the BAE SpaceWire ASIC includes an additional

feature to prevent overflow on receive, and to prevent a stall

due to blabbering transmit; a maximum packet length feature.

This feature, if enabled, will disconnect the link and append an

Error End of Packet (EEP) to any packet that exceeds the

programmable maximum length. This will of course also spill

the remainder of the errant packet. With the BAE SpaceWire

ASIC, the limit applies to all ports, but ideally each port would

have separate limits. The other router used on GOES-R, the

Aeroflex 4-port router, has no such feature.

III. RECEIVE BUFFER DEPTH & ROUTER DEFECT

Receive FIFO depth of a router may be configurable within

a soft core for an FPGA. During development, pipeline side-

effects should be taken into consideration to avoid potential

stalls and data dropout. Router defects may exist which may

cause a stall which will only clear when the receive buffer

depth is adequate to compensate for the defect.

A. Logic Value vs. On-The-Wire Value

The value of a transmitter’s credit count may be different in

the logic of a transmit block then the value on the wire due to

pipeline delays, synchronization delays and logic delays. A

receive FIFO configured to a depth of only 16 bytes, and with a

one byte pipeline delay, may initially transmit 2 FCT’s, but not

issue a successive FCT until 9 bytes are transmitted to it, and

remain one byte delayed thereafter.

The transmitter may also have logic delays that cause its

internal credit count to fall behind the value on-the-wire.

B. Router Transmit Block Defect

The Aeroflex 4-port router designed into GOES-R had a

latent defect that was not exposed until integration testing with

an instrument that had configured a receive FIFO depth of only

16 bytes. When the router’s internal credit count transitioned to

zero on the same cycle that an FCT was received, the router

would stall due to the defect. The router would resume

transmission when another FCT was received.

C. Indefinite Stall Condition

Although the router could break the stall when yet another

FCT was received, the instrument configuration prevented

further FCT transmit due to the shallow receive buffer depth,

combined with the receive pipeline delay, causing the stall to

last indefinitely.

D. GOES-R Stall Resolution

To avoid a reconfiguration of the instrument’s FPGA, the

transmit speed through the router was slowed to avoid the stall

condition, which occurred only when the internal credit count

transitioned to zero on the same clock as when an FCT was

received. By slowing the transmit clock, the router’s internal

logic no longer lagged behind the on-the-wire value.

Subsequent builds of the instrument did incorporate a deeper

buffer to further mitigate the problem.

IV. PIPELINING PITFALLS

Pipeline stages were in part responsible for the problem

described above, and is the main culprit in another issue

encountered with GOES-R.

To avoid buffer overrun a producer-consumer buffering

model was employed by the GOES-R spacecraft. Unlike

linked-list operation, there is a time gap (latency) from DMA

completion until the RIF is programmed with the next receive

buffer. The bug, described below, was never observed when in

linked-list mode.

A. Problem Description

 Under nominal telemetry conditions a receive buffer was

made available via the RIF (see Figure 2 above) prior to filling

the Rx FIFO. Telemetry bursts, however, would exhaust the

supply of receive buffers in SRAM until the downlink

(consumer) could catch up. On occasion, the Rx FIFO and a 4-

byte pipleline stage (not shown) would fill before a newly-

freed buffer could be assigned to accept the packet via the RIF.

Data did not overflow from the Rx FIFO because credit count

depletion would stall the packet. There was a bug, however, in

the pipeline stage that could drop those leading 4 bytes from

the incoming packet. The GRDDP CRC would match, but half

of the GRDDP header would be missing from the receive

buffer. Several methods were utilized to address the bug.

B. GRDDP Transmit Retry

The GRDDP retry mechanism, for normal data packets,

assures that those cropped packets will be retried, since header

checks fail and the packets would not be acknowledged.

Network traffic is increased, however, and dropouts of urgent

message packets are possible since they are not retried.

C. Buffer Utilization

There wasn’t enough physical memory to allow linked-list

operation, but all remaining SRAM was dedicated for receive

buffers, which helped quite a bit, but was not enough. Another

technique considered was to dynamically utilize the allocated

receive buffer space vs. a ring of fixed-size buffers. With this

method, the start address for the next packet would depend on

the size of the current packet, rounded up per DMA constraints.

Pending on downlink transfer completion could be reduced or

eliminated given the increase in number of buffers. While a

sound idea, it was more complex, and would lead to additional

processing latency.

D. Processing Delay Reduction

The assignment of a buffer freed by the downlink to the

RIF had been a function of the main processing loop. By

moving that function to an ISR context the mechanism behaved

more like a linked-list. The addition of this latency reduction

proved a sufficient workaround.

59

CONCLUSION

Real-world systems may be vulnerable to serious faults that

can result even when there is no apparent violation of the

ECSS standard. Additional capabilities are required of routers

and nodes to avoid these pitfalls. All components in a system

must be thoroughly researched, including the experience

gained with those components by others.

REFERENCES

[1] A. Krimchansky, W. Anderson, C. Bearer, “The Geostationary

Operational Satellite R Series SpaceWire Based Data System

Architecture”, NASA Goddard Space Flight Center, 2010

[2] European Cooperation for Space Standardization, ECSS-E-50-

12A, “SpaceWire – Links, Nodes, Routers and Networks”, 2003

[3] NASA Goddard Space Flight Center GOES-R Project "GOES-R

Reliable Data Delivery Protocol", 417‐R‐RTP‐0050

Version 2.1, 2008

[4] L. Haynes, G. Rakow, “BAE SYSTEMS SpaceWire Router

Specification: 4 Port, 2 External Interface”, 2005

[5] J. Marshall, S. Santee, M. Hanley, J. Robertson, D. Stanley,

“Leveraging SpaceWire Network Prototyping to Create Flexible

SpaceWire Components and Support Software”, 2011

[6] Aeroflex, “UT200SpW4RTR 4-Port SpaceWire Router

Preliminary Datasheet”, 2013

60

New Approaches for DC Balanced SpaceWire
Session: SpaceWire Networks and Protocols, Short Paper

Alex Kisin
NASA Goddard Space Flight Center/ASRC/AS&D

Greenbelt, MD, USA
Alexander.B.Kisin@nasa.gov

Glenn Rakow
NASA Goddard Space Flight Center

Greenbelt, MD, USA
Glenn.P.Rakow@nasa.gov

Abstract— Direct Current (DC) line balanced SpaceWire is
attractive for a number of reasons. Firstly, a DC line balanced
interface provides the ability to isolate the physical layer with
either a transformer or capacitor to achieve higher common mode
voltage rejection and/or the complete galvanic isolation in the case
of a transformer. Secondly, it provides the possibility to reduce
the number of conductors and transceivers in the classical
SpaceWire interface by half by eliminating the Strobe line.
Depending on the modulator scheme – the clock data recovery
frequency requirements may be only twice that of the transmit
clock, or even match the transmit clock: depending on a Field
Programmable Gate Array (FPGA) decoder design.
 In this paper, several different implementation scenarios will be
discussed. Two of these scenarios are backward compatible with
the existing SpaceWire hardware standards except for changes at
the character level. Three other scenarios, while decreasing by
half the standard SpaceWire hardware components, will require
changes at both the character and signal levels and work with fixed
rates. Other scenarios with variable data rates will require an
additional SpaceWire interface handshake initialization sequence.

 Index Terms— SpaceWire, DC balance, Line encoding, PRS

I. INTRODUCTION

 DC balanced data lines (also referred as AC coupled lines),
where “0” and “1” ratio is 1 (or very close to 1) over a certain
time stretch, allows data to go over capacitive or transformer
barriers, thus creating better isolation for communication
modules at different common ground potentials. Currently,
these potentials difference depends on receiver common mode
voltage rejection: for Low Voltage Differential Signaling
(LVDS) receivers it is +5/‒4V at best. Originally, the
SpaceWire hardware protocol was designed for an easy clock
extraction and was not designed with DC balance in mind [1].
Over the recent years there have been several attempts to create
a DC balanced SpaceWire hardware protocol, but all of them
either failed to create DC balanced Data and Strobe by an easy
means [2], or rejected the Strobe line, thus forcing user to extract
clock from Data using special FPGA based decoders [3].

Authors will try to review some new methods, both with and
without the Strobe line.

II. METHODS WITH DATA AND STROBE LINES

II.A. DUAL COMPLEMENTARY BYTES

 One of the simplest methods will be converting each Data
byte in to 2 bytes, where 1st byte is itself, along with Data

Control Flag (DCF) and Parity (P), while 2nd byte is 1st byte
inversion, including DCF and Parity, as seen in Fig. 1 below:

Fig. 1. Original Byte Split

 From a first glance it is obvious that Data line will be
balanced for the full 20-bit sequence, but will it be true too for
a Strobe? Likely, it can be easily shown that for any number of
complementary bits divisible by 4, a Strobe will also be
balanced: because 01 or 10 clock sequences always place its
“0” or “1” under the same complementary data positions of both
bytes and the resulted Exclusive OR (XOR) Strobe bits will
complement each other too: see Fig. 2 below with the encircled
same color columns as an examples.
 Simulation shows that both Data and Strobe lines will be
balanced for any bits combinations. It is also important to note
that the parity bit is not its classical SpaceWire implementation
– it is a parity of the 9 previous bits including DCF and data
byte, and it is irrelevant for this method whether parity bit is
Even or Odd.

Fig. 2. Data and Strobe DC Balancing Example

 Control characters and Time codes can be used the same old
way, but will be also converted in to 2 complementary entities.
 This method will also allow a simple error correction, where
the user can select between 1st or 2nd received bytes: the one
with a valid parity bit. A maximum stretch of the same bits
sequence will be 18. If someone wants to reduce this stretch –
they can try to play games of grouping bits and their
complements between 2 bytes: like interleaving 2 adjacent bits

61

with their complements will shrink the maximum stretch to 6,
but the error correction feature will be gone.
 The major weakness of this scheme is its 100% overhead.

II.B. PSEUDO RANDOM SEQUENCE (PRS) MODULATION

 Another method partially described in [2] is using PRS
mixed with original data. It is easy to prove mathematically
that every meaningful data stream mixed on a bit-by-bit basis
with a random data stream becomes random itself.
Furthermore, every further XOR operation with this newly
minted random data will also produce random data. The PRS
(organized on Linear Feedback Shift Registers, or LFSR [5]) is
a close approximation for truly random data, and therefore, can
be counted as such, especially for longer generated sequences.
As a result, Data and Strobe created according to this might also
be considered random and thus DC balanced.
 Note: all LFSR sequences do not contain combination when
all registers are equal to “0”. This creates a slight misbalance
in “0/1” ratio, because there can be a combination when all
registers are “1”. To solve this authors recommend to define
an LFSR state when it is 1 clock away from being all “1” and
then skip the all “1” state to the next consecutive state.
 Control characters and Time codes everywhere, except the
initial handshaking protocol, can be used “as is” because they
are now part of PRS domain. However, during the handshake
protocol, there is a possibility that a Null character, while being
itself DC balanced and its Strobe image is not, will be
transmitted by an Originator for a long time when Responder’s
receiver is not ready, will create the Strobe line bias drift and
push the LVDS receiver input beyond its common mode
voltage tolerances. To fix this problem – substitute the original
Null character 01110100 with 10011100; as a result, Strobe will
be changed from 00100001 to a DC balanced 11001001; FCT
character will be changed to 1100 and its Strobe to a DC
balanced 1001. As soon as the handshake phase is over – the
system can revert back to its original Control characters.
 And yes, there can be unique situations as it was noted in [2]
when original Data or Clock may be mixed with matched or
inversed PRS generator patterns, thus creating longer identical

bits sequences. However, their probability is very low and their
duration is short, plus any resulting bias drift of hardware lines
can be mitigated by selecting LVDS receivers with wider
common mode voltage input tolerances, such as Texas
Instruments product: SN55LVDS33‒SP [4].
 Initialization handshake is shown on Fig. 3 below. There
initialization Null and FCT characters should be selected by the
previously described DC balance criteria; afterwards a user can
revert back to using original control characters. It is worth to
note that while being disabled during initialization – the
LFSR’s bit which is XOR mixed with data stream is preferred
to be “0”: for not to invert Null and FCT. The LFSR is enabled
after 1st cargo “0” DCF is detected.

III. METHODS WITH DATA LINE ONLY

 Removing the Strobe line is potentially a good idea: it will
increase wire bundle flexibility and reduce harness weight and
complexity as well as on-board electronic hardware. But it also
removes from the original SpaceWire its easy clock extraction,
Nulls has always to fill gaps between data bursts to reduce bias
drift, and instantaneous communication data rate switching has
to be mitigated. However, using modern FPGA’s will take care
of these problems (see paper [3] References).

 III.A. DUAL NIBBLES WITH 4B/6B CODING

 Use 4b/6b [6] coding to substitute two of the original Data
byte nibbles with two 6-bit symbols. Each symbol will contain
an equal count of “0” and “1”: 3. Number of permutations for
3 “1” bits in 6-bit symbol for 64 symbols group is 20, which
means that each of 16 nibble’s combinations will be assigned
to its own DC balanced symbol, plus 4 extra symbols can be
used as 4 SpaceWire original Control characters.
 No DCF bit is needed: Data and Control characters symbols
are now unique. And also no Parity bit: data integrity will be
checked by 3 “1” per symbol, or 6 “1” per dual symbols.
 This method will probably be the simplest Data only DC
balancing scheme, with only 20% of data bandwidth overhead.
 Strobe can’t be used because it will not be DC balanced.

62

III.B. FIXED RATE WITH DUAL NIBBLES, BYTES OR PRS

 The fixed rate with Dual Bytes or PRS schemes are selected
because they don’t require clock frequency switching. Clock is
extracted from an incoming Data stream using various FPGA
techniques (see paper [3] References). Otherwise, these
methods are basically the same as Data and Strobe PRS
Modulation coding discussed in the above Section II.B.

III.C. VARIABLE RATES WITH DUAL NIBBLES, BYTES OR PRS

 This method is also a derivative of the previous ones. Initial
handshake at low rate will be done first and in a following cargo
data Originator or Responder will notify each other about their
desire to change data rate. After that Originator shall break the
existing link, wait for at least 6.4us (during which time both
sides adjust and stabilize their clock generators) and repeat their
handshake at a new rate as shown in Fig. 4 below.

Fig. 4. Dual Handshake Sequence for Variable Rate PRS

IV. SUMMARY

This paper presented an incremental design approach option
to improve SpaceWire, yet leverages most of the existing FPGA
based SpaceWire designs for moderate data rate applications
that require or may benefit from electrical isolation. It also
describes an additional way to further reduce the mass and
flexibility of the SpaceWire cables for applications that are tight
on space. Additionally, it provides a means to specify a common
physical layer and one which could work with any protocol that
uses DC balanced line codes.

Table I below shows what are in author’s opinion brief
characteristics of the above methods and also some not covered
additional ones. They might be a little biased, but nevertheless
will provide a design engineer with possible guidelines.

Table I. Methods Comparison Chart

REFERENCES

[1] M. Suess, J. Ilstad, and W. Gasti: “Galvanic Isolation of
SpaceWire Links: Requirements, Design Options and
Limitations”, 13th SpaceWire Working Meeting, 14-15
September 2009

[2] M. Epperly, S. Torno: “Galvanically Isolated SpaceWire”,
Proceedings of International SpaceWire Conference, Athens
September 2014

[3] G. Rakow, A. Kisin: “Manchester Coding Option for
SpaceWire”, Proceedings of International SpaceWire
Conference, Athens September 2014

[4] Texas Instruments: http://www.ti.com/product/sn55lvds33-sp

[5] Wikipedia: https://en.wikipedia.org/wiki/Linear-
feedback_shift_register

[6] http://www.google.com/patents/EP0629068A1?cl=en

[7] https://en.wikipedia.org/wiki/4B5B

Method Description Lines RX Clock Data Rate
Overhead
vs. SpW

DC
Balance

DC
Quality

FPGA
Implementation

1 Standard SpaceWire 0% No Terrible Existing

2 Dual bytes (DB) encoding 100% Yes Very good Easy

3 8b/20b [2] 100% Yes Good Moderate-Complex

4 16b/30b [2] 50% Yes Good Moderate-Complex

5 2 lines PRS modulation 0% Yes Good Moderate

6 Fixed DB or PRS modulation Yes Good Moderate

7 Variable DB or PRS modulation Yes Good Moderate

8 8b/10b or dual 4b/5b [7] 0% Yes Very good Moderate-Complex

9 Dual nibble 4b/6b [6] 20% Yes Very good Easy-Moderate

10 Manchester modulation 100% Yes Excellent Easy-Moderate

Data
and

Strobe
(D&S)

XOR-ed
from
D&S

Variable:
as in original
SpaceWire

Same as in
above D&S

Data
only

4-phase
sampling,
or others

Fixed:
rate change

requires dual
handshaking

63

 Components (Short)

64

Programmable SpaceWire interface with atom switch
Components, Short Paper

Hiroki Hihara1,4, Nobuo Tamagawa1,

Takayuki Imamura1, Hisashi Sugaya1
1Space Engineering Division

NEC Space Technologies, Ltd.

Tokyo, Japan

{h-hihara@bc, n-tamagawa@pb,

t-imamura@pi, h-sugaya@bu}.jp.nec.com

Tadahiko Sugibayashi2, Makoto Miyamura2,

Toshitsugu Sakamoto2, Munehiro Tada2,

Hiromitsu Hada2
2Central Research Laboratories

NEC Corporation

Tsukuba, Japan

{t-sugibayashi@da, m-miyamura@aj, t-sakamoto@dp,

m-tada@bl, h-hada@bp}.jp.nec.com

Kazutoshi Wakabayashi3
3Services and Technologies Division

NEC Corporation

Kawasaki, Japan

wakaba@bl.jp.nec.com

Akira Iwasaki4
4Research Center for Advanced Science and Technology

The University of Tokyo

Tokyo, Japan

aiwasaki@sal.rcast.u-tokyo.ac.jp

Abstract—We developed a rewritable field programmable gate

array (FPGA) using NanoBridge® that exploits atom switch

technology. NanoBridge® is newly developed copper wiring

technology with dynamic connection capability. Programmable

circuitry with SpaceWire interface is realized without

configuration memory cells for storing circuit connection

information. It prevents single event effect caused by radiation

and provides remarkably low power consumption. The first

demonstration of the NanoBridge® FPGA on orbit by JAXA’s

program is planned in 2018.

Index Terms— SpaceWire, Field Programmable Gate Array

(FPGA), Atom Switch, Non Volatile, Rewritable, High Level

Synthesis, Dynamically Reconfigurable Architecture

I. INTRODUCTION

SpaceWire standard realizes compact and well organized

interfaces for machine to machine (M2M) onboard information

transmission. Since the hardware implementation of SpaceWire

provides sufficient capability for intra-onboard communication

of satellites, SpaceWire interface and application circuitry can

be integrated into one field programmable gate array (FPGA).

We developed a rewritable FPGA with NanoBridge®. It is

newly developed copper wiring technology with dynamic

connection capability using atom switches. The atom switch

provides programmable capability without configuration

memory cells for storing circuit connection information, and it

can incorporate SpaceWire interface.

The connection of the atom switch can be controlled by

practical voltage swing such as +/- 3.3V. The primitives of

circuitry are connected with cupper ions through solid-

electrolyte between ruthenium and cupper electrodes of the

atom switches. 1,000 times of connection/disconnection are

verified through thermal cycling test between -65 degree C and

+150 degree C, which show sufficient programmability for

onboard applications.

Conventional non-rewritable FPGA as well as application-

specific integrated circuit (ASIC) is used for the hardware

implementation of SpaceWire interface in order to provide low

power consumption and reasonable radiation tolerance. The

FPGA using NanoBridge® can provide equivalent low power

consumption and radiation tolerance as non-rewritable FPGA

and ASIC.

Some FPGAs are rewritable, whereas their power

consumption and radiation tolerance are increased, because

circuit connection information is stored in configuration

memories like electrically erasable programmable read-only

memories (EEPROMs) or static random access memories

(SRAMs). Single event upset (SEU) on the memories is a

major concern especially for SRAM. Thus memory patrol

and/or memory scrubbing are mandatory, that requires

additional resources outside those FPGAs. Atom switches used

in NanoBridge® FPGA are SEU free, because they do not have

configuration memories while maintaining programming

capability of circuitry connection information. Irradiation tests

of NanoBridge® FPGA have been done with some radiation

sources without showing any SEUs in wiring layers. Therefore

additional resource is not required in order to keep radiation

tolerance.

The first demonstration of the NanoBridge® FPGA on orbit

by JAXA’s program is planned in 2018.

II. NANOBRIDGE®

The basic configuration of NanoBridge® FPGA is

composed of complementary atom switches (CAS) [1, 2, 3, 4]

as shown in Fig. 1 (a). The CAS consists of two copper atom

switches with the polymer solid electrolyte (PSE) sandwiched

65

(a)

Keeps ON

until –V is

applied

Keeps OFF

until +V is

applied

(b)

(a)

(b)

between two metals (Cu and Ru) as shown in Fig. 1 (b). The

switch turns on or off when a nanometer-scale metallic bridge

either appears or disappears inside a PSE film by biasing

voltages. When a positive voltage like +3.3V is applied to a Cu

electrode described in Fig. 1 (b), the Cu+ ions are supplied

from the Cu electrode to PSE. The Cu+ ions are neutralized

and precipitated at the Ru electrode. Subsequently, the

precipitated Cu forms conducting bridges between the two

electrodes, thus changing the conductance to an ON state.

Conversely, by applying a negative voltage like -3.3V to the

Cu electrode, the Cu bridge is ionized and disappears, resulting

in an OFF state. On and off state are kept during an operational

power supply voltage from around 1V to 2V is applied. Each

state is nonvolatile and the switching between the two states is

repeatable.

Fig. 1. Switching behavior of NanoBridge®

A Cu bridge in an atom switch can hardly be seen as shown

in Fig. 2. Therefore the reverse engineering of NanoBridge®

FPGA is difficult, and high level tamper-resistance is provided.

The atom switch layer is formed on an ordinary CMOS

substrate with fabricated circuitries and wiring layers as shown

in Fig. 3. There is no restriction for selecting CMOS substrates

for NanoBridge® FPGA, therefore any kinds of CMOS

substrates are applicable. Large scale integration (LSI) using

NanoBridge® is fabricated with high reliability configuration.

A series of switch of NanoBridge® are implemented in lookup

tables in a FPGA, and thus high off state impedance is

maintained.

Fig. 2. Cu bridge formulation in NanoBridge®

Fig. 3. Programmable FPGA with NanoBridge®, (a) Cross-sectional FIB-

SIM/TEM image, (b) Evaluated device with a plastic package.

III. SEE MITIGATION DESIGN FRAMEWORK

SEE mitigation is a major concern for satellite onboard

equipment. Two types of memories are used in onboard

components. One type is a program memory used in the central

processing unit (CPU), and the other type is a configuration

memory when a re-writable FPGA is used. We have to provide

SEE mitigation design framework for both types of memories.

66

Application Program

written in

ANSI-C language

CyberWorkBench®

High Level Synthesis

Synthesized

Register Transfer Level

(RTL)

NanoBridge® FPGA

User own

coding

RTL

As for the latter case, NanoBridge® FPGA provides SEE

free characteristics while maintaining re-writable functions. It

provides programmable capability for circuitries without a

configuration memory, therefore SEE originated from volatile

memories are eliminated.

We use behavioral synthesize technology for providing

sufficient radiation hardness against the former case using

NanoBridge® FPGA. Application programs written in high

level programming language like ANSI-C language are

synthesized into register transfer level (RTL) like VHDL

(VHSIC (Very High Speed Integrated Circuit) Hardware

Description Language) or Verilog source code by using a high

level synthesis tool as CyberWorkBench (CWB) [5, 6, 7].

CWB is a well matured high level synthesis tool using

behavioral synthesis technology. When we make application

programs using CWB, the overhead in layout size is only a few

percent larger than the design written in direct hand coded RTL.

The application program is implemented on NanoBridge®

FPGA directly. Program memories are eliminated, because

CPU is no longer necessary for interface module using

SpaceWire.

The two types of large volume memories as program

memories for CPUs and configuration memories for re-

writable FPGAs are eliminated by using CWB and

NanoBridge® FPGA, and SEE mitigation is realized as shown

in Fig. 4.

Fig. 4. SEE mitigation framework

We established a new design framework for applying CWB

and NanoBridge® FPGA for system level SEE mitigation. The

requirement of the reliability design flow is shown in Table 1.

The design scheme is quoted from the dependable architecture

described in [8, 9]. The robust fabric with traditional design

method is incorporated in I/O primitives in the bottom layer for

high reliability. Specifically, radiation hardened primitives like

flip-flops are considered and implemented at circuit design

level or semiconductor fabrication process design level in this

layer. The radiation hardened primitives can be exploited as

primitives for high reliability logic design.

The robust fabric design scheme is also useful for high

reliability design of the fine grained layer. High reliability

circuit implementations such as Triple Modular Redundancy

(TMR), etc. are adopted on susceptible function blocks. If such

kind of redundancy is adopted all over the chip, the high

implementation density cannot be expected. The selective

redundancy scheme described in [8, 9] is adopted in the design

process, and the excessive resource overhead of power

consumption, layout area, processing speed caused by

redundancy is avoided.

As for course grained layer, a redundancy scheme for each

function block is selected from the system FDIR design point

of view. The use of TMR and/or CRAFTSYSTEM described

in [10, 11] can be selected for gaining high reliability

effectively in accordance with the reliability estimation results

for a certain system FDIR design.

Proven communication network protocol is applicable on

the topmost layer, which is the switch layer, in order to realize

high reliability. The routing mechanism specified in the

SpaceWire standard [12] is applied for implementing high

reliability, because many off-the-shelf devices for space

applications are available. It is another advantage that the

system design can be performed in the scope of the open

international standard.

TABLE I. THE REQUIREMENT SPECIFICATION OF RELIABILITY DESIGN

SCHEME

Layer Implementation Remarks

Switch
Routing by SpaceWire

regulations [12]

Implementation by

system FDIR design

Coarse

grained

Comparison decision using

TMR [8, 9], and/or

CRAFTSYSTEM [10, 11],
etc.

Implementation by

system FDIR design

Fine
grained

Triple Modular redundancy
with a voter (TMR), etc.

Implementation by

system FDIR design, and
the framework of robust

fabric [8, 9]

I/O

(Random
Logic)

Radiation hardened libraries,

etc.

The framework of robust

fabric [8, 9]

We also established a design flow for the framework. The

following six steps compose a design flow for mitigating SEE.

[Step 1]: Describe a system in high-level programming

language as C language. The language should be used for

application software development as well.

[Step 2]: Define coarse grained function blocks. The

function blocks can be implemented as optimized hard macros

using ASIC design tools. Typical dedicated functions as image

compression, image recognition, and signal processing like

FFT are implemented in addition to basic arithmetic operations.

It is required on behavioral synthesis tools that the operations

provided by coarse grained function blocks are used as

mnemonics in program source codes. CWB realized this

feature as functionalization.

[Step 3]: Generate source codes written in hardware

description language (HDL) through behavioral synthesis. The

hard macros defined in the step 2 should be exploited for

67

generating circuitry. This requirement specification is applied

for the optimization of CWB during our study.

[Step 4]: This is a logic synthesis step, and this step is the

same as conventional LSI and FPGA logic synthesis design

process.

[Step 5]: This is a layout design step, and this is the same as

conventional LSI and FPGA layout design process.

[Step 6]: The verification and validation step include delay

analysis of layout design and back annotation based on the

result of delay analysis.

Iterations are considered over step 5 and step 6. The back

annotation going back to step 3 is also anticipated. Since the

back annotation should be able to be handled in high level

language, step 1 is also considered in back annotations.

In order to evaluate the design framework, we implemented

signal processing functions of the infrared image sensor of

AKATSUKI [13] onto one NanoBridge® FPGA. The signal

processor of AKATSUKI consists of one CPU board with

JAXA authorized 64bit microprocessor HR5000 and one

FPGA board with two ACTEL RTSX72SU FPGAs. The

dedicated operations as superposition, mean, and median with

normalized functions are successfully implemented in one chip

using the design framework. The nominal power consumption

of the original signal processor is estimated as 4.9W. The

measured power consumption of our one-chip processor

element implementation on a NanoBridge® FPGA chip is

18mW. The reduction in circuitry also comes from the fact that

whole processor functions are implemented in one chip, and

interface circuits over devices are eliminated.

IV. CONCLUSION

Programmable SpaceWire interface with atom switch is

realized using NanoBridge® technology. High level

programming language usability is also maintained with newly

established design framework. Single event effect of memories

caused by onboard environment in orbit is avoided, because

program memories in CPU and configuration memories for re-

writable FPGAs are eliminated. Significant power reduction is

also realized, which enables embedding a device computing

function into each sensor detector.

ACKNOWLEDGMENT

This work was supported by the Grant-in-Aid for Energy

and Environmental New Technology Leading Program of the

New Energy and Industrial Technology Development

Organization (NEDO) of Japan.

Makimoto’s wave [14] is considered as a reference,

because the technology trend shown by Makimoto’s wave is

expected to be promising for next generation processor

architecture. Authors thank Dr. Makimoto for his precious

advice, and we continue the evaluation of our design

framework aiming at being one candidate of Highly Flexible

Super Integration (HFSI) shown in the technology trend in the

wave.

REFERENCES

[1] T. Sakamoto, S. Kaeriyama, M. Mizuno, K. Terabe, T.

Hasegawa, and M. Aono, "NanoBridge Technology for

Reconfigurable LSI," NEC Tech. J. vol. 2(1), pp. 72-75, 2007.

[2] M. Tada, K. Okamoto, T. Sakamoto, M. Miyamura, N. Banno,

and H. Hada, "Polymer Solid-Electrolyte (PSE) Switch

Embedded on CMOS for Nonvolatile Crossbar Switch," IEEE

Transactions on Electron Devices, vol. 58, 12, pp. 4398-4405,

2011.

[3] M. Miyamura, M. Tada, T. Sakamoto, N. Banno, K. Okamoto,

N. Iguchi, and H. Hada, "First Demonstration of Low-power

Nonvolatile Programmable Logic Using Complementary Atom

Switch compatible for Fully Automated Design Flow" IEEE

International Electron Devices Meeting, pp. 247-250, 2012.

[4] M. Tada, T. Sakamoto, M. Miyamura, N. Banno, K. Okamoto,

N. Iguchi, and H. Hada, "Improved OFF-State Reliability of

Nonvolatile Resistive Switch With Low Programming Voltage,"

IEEE Trans. on Electron Devices, vol. 59, pp. 2357-2362, 2012.

[5] K. Wakabayashi, and C. Schafer, B, "All-in-C" Behavioral

Synthesis and Verification with CyberWokBench., ed. P.

Coussy and A. Morawiec, XVI, ISBN: 978-1-4020-8587-1,

Chapter 7, Springer, pp. 113, 2008.

[6] K. Wakabayashi, and T. Okamoto, "C-based SoC Design Flow

and EDA Tools," IEEE Tran. On CAD, pp. 1507-1522, 2000.

[7] K. Wakabayashi, "CyberWorkBench: Integrated design

environment based on C-based behavior synthesis and

verification," IEEE VLSI-TSA, pp. 173-176, 2005.

[8] D. Alnajjar, H. Konoura, Y. Mitsuyama, H. Shimada, K.

Kobayashi, H. Kanbara, H. Ochi, T. Imagawa, S. Noda, K.

Wakabayashi, M. Hashimoto, T. Onoye, and H. Onodera,

"Reliability-Configurable Mixed-Grained Reconfigurable Array

Supporting C-To-Array Mapping and Its Radiation Testing,"

Proc. IEEE A-SSCC, pp. 313-316, 2013.

[9] H. Konoura, D. Alnajjar, Y. Mitsuyama, H. Shimada, K.

Kobayashi, H. Kanbara, H. Ochi, T. Imagawa, K. Wakabayashi,

M. Hashimoto, T. Onoye, and H. Onodera, "Reliability-

Configurable Mixed-Grained Reconfigurable Array Supporting

C-based Design and Its Irradiation Testing," IEICE Trans.

Fundamentals, vo. E97.A(12), pp. 2518, 2014.

[10] H. Hihara, M. Ohtsuka, Y. Mizushima, T. Morisato, T. Ohshima,

H. Miyoshi, and K. Baba, "Space-born Fault tolerant

Computers." Information Processing, vol. 35, No. 6, pp. 497-

503, June 1994.

[11] H. Hihara, K. Yamada, M. Adachi, K. Mitani, M. Akiyama, and

K. Hama, "Autonomous Fault Tolerant Computer for SERVIS-2

Satellite.", Technical Report of IEICE, DC2002-75, vol. 102, no.

492, pp. 19-24, December 2002.

[12] ECSS-E-ST-50-12C, “SpaceWire – Links, nodes, routers and

networks,” ECSS Secretariat, ESAESTEC, Requirements &

Standards Division, 2008.

[13] T. Fukuhara, M. Taguchi, T. Imamura, M. Nakamura, M. Ueno,

M. Suzuki, N. Iwagami, M. Sato, K. Mitsuyama, G. Hashimoto,

L., R. Ohshima, T. Kouyama, H. Ando, and M. Futaguchi, "LIR:

Longwave Infrared Camera onboard the Venus orbiter

Akatsuki," Earth Planets Space, vol. 63, pp. 1009-1010, 2011.

[14] T. Makimoto, "Implications of Makimoto's Wave," IEEE

Computer, vol. 46(12), pp. 32-37, 2013.

68

GR740 SpaceWire Router Validation
Methodology and Results

SpaceWire Components, Long Paper

Magnus Hjorth, Javier Jalle, Felix Siegle, Jan Andersson, Sandi Habinc
Cobham Gaisler AB
Gothenburg, Sweden

[magnus | javier | felix | jan | sandi] @gaisler.com

Roland Weigand
European Space Agency

Noordwijk, The Netherlands
roland.weigand@esa.int

Abstract—The GR740 is a quad-core space-grade processor
that includes a SpaceWire router with eight external ports. The
validation results are presented to show effects of the integration
of a SpaceWire router in a microprocessor system and the
validation methodology is described to show one way of
characterize timing performances SpaceWire links during
production tests.

Index Terms—SpaceWire, router, space-grade processor,
timing characterization, production test

I. INTRODUCTION
The GR740 is a multi-core microprocessor ASIC device

based on the LEON4FT processor core [1] and the European
Next Generation Microprocessor (NGMP) architecture [2],
designed and developed by Cobham Gaisler. The GR740 ASIC
is implemented on STMicroelectronics' C65SPACE
technology platform [3] and is available in a hermetically
sealed LGA625 package. The development of the GR740 is the
outcome of the European Space Agency's initiative to develop
the NGMP, and delivers a significant performance increase
compared to earlier generations of European space processors.

Engineering models have been manufactured in 2015 and
functionally validated during 2016.

The GR740 integrates a SpaceWire router with four
internal ports, which are connected to the on-chip AMBA bus
system, and eight external ports with on-chip LVDS.

The validation effort for the GR740 covers several aspects
of the SpaceWire router implementation. User cases and
performance measurements demonstrate capabilities of
interfaces to the on-chip microprocessor system to create a
high-throughput inter-processor link. The timing
characterization methodology shows how testing of timing
parameters can be performed as part of production tests.

II. BACKGROUND
The LEON project was started by the European Space

Agency in late 1997 to study and develop a high-performance
processor to be used in European space projects. The objectives
for the project were to provide an open, portable and non-
proprietary processor design, capable to meet future
requirements for performance, software compatibility and low
system cost. Another objective was to be able to manufacture
in a Single Event Upset (SEU) sensitive semiconductor
process. To maintain correct operation in the presence of
SEUs, extensive error detection and error handling functions
were needed. The goals have been to detect and tolerate one
error in any register without software intervention, and to
suppress effects from Single Event Transient (SET) errors in
combinational logic.

The LEON IP-core family includes the first LEON1
VHSIC Hardware Description Language (VHDL) design that
was used in the LEONExpress test chip developed in 0.35 µm
technology to prove the fault tolerance concept. The second
LEON2 VHDL design was used in the processor device
AT697 from Atmel (F) and various system-on-chip devices.
These two LEON IP- core implementations were developed by
ESA. Gaisler Research, now Cobham Gaisler, developed the
third (LEON3) and fourth (LEON4) designs that are used in a
number of avionics systems and also in the commercial sector.

Following the development of the TSC695 (ERC32) and
AT697 processor components in 0.5 and 0.18 µm technology
respectively, ESA has initiated the NGMP activity targeting a
European Deep Sub-Micron (DSM) technology in order to
meet increasing requirements on performance and to ensure the
supply of European space processors. Cobham Gaisler, at the
time Aeroflex Gaisler, was selected to develop the NGMP
system that is centered around the new LEON4FT processor.

After extensive FPGA prototyping, a functional prototype
was developed on commercial technology (eASIC Nextreme2)

69

for early SW development and user evaluation. Throughout
2014 / 2015, the design was ported to and manufactured in the
C65SPACE platform from STMicroelectronics [3]. Besides the
chip development, the existing SPARC software development
environment has been extended for multi-core with updates to
compiler, simulator, debug monitor and profiling tools, an
SMP version of the RTEMS operating system and hypervisor
development.

III. GR740 SYSTEM ARCHITECTURE
The four LEON4FT processors are connected to a shared

bus, which connects to a 2 MiB Error Detection And
Correction (EDAC) protected Level-2 cache before reaching
external EDAC protected SDRAM. Each LEON4FT processor
has a dedicated pipelined IEEE- 754 floating-point unit. The
design makes use of extensive clock gating and the processors
can be put into a sleep mode to conserve power when some or
all processor cores are unused.

The main communication interfaces of the device include
eight external SpaceWire ports connected to an on-chip
SpaceWire router, two 10/100/1000 Mbit Ethernet ports, MIL-
STD-1553B and 32-bit PCI. Two serial ports and two CAN-
bus ports are also available.

Fig. 1 GR740 Block diagram

The four parallel CPU / FPU cores, each running on
dedicated separate instruction and data L1 caches (Harvard
architecture), at 250 MHz clock frequency, can theoretically
provide up to 1 Gflop/s in single or double precision.

The NGMP architecture has already been evaluated in a
practical exercise where the GAIA Video Processing Unit
(VPU) application, a real space payload application, was
adapted to take advantage of a multi- core system and then
benchmarked on an NGMP prototype system [4]. The
conclusion from this exercise was that the GR740 would be
fast enough to run the GAIA VPU application, likely at a
significantly lower power budget than the flight computer that
was used in the satellite.

The SpaceWire router in the GR740 has four internal ports,
which are connected to the on-chip AMBA bus system, and
eight external ports with on-chip LVDS. The external ports
support cold-spare functionality.

The device can be configured via bootstrap signals so that
the router is either clock gated off or enabled after power-on
and reset. The Remote Memory Access Protocol (RMAP)

targets are enabled if the router is enabled after reset, which
means that SpaceWire can be used to remote boot the device
by having an external host connect to the GR740 to upload
software and then enable one or several processor cores. In
case external RMAP traffic, or any type of direct memory
access from the SpaceWire router, is unwanted then the
systems IO memory management unit (IOMMU) can be used
for address protection and address translation between the
router’s on-chip bus interfaces and the on-chip memory space.

The list below summarizes the key building blocks of the
GR740 system architecture:
128-bit Processor AHB bus:

• 4x LEON4FT
o 16 + 16 KiB write-through cache with LRU

replacement.
o SPARC Reference MMU. Physical

snooping.
o 32-bit MUL/DIV.
o GRFPU floating-point unit

• 2 MiB Shared L2 write-back cache with memory
access protection (fence registers), cache-way locking
and partitioning.

128-bit Memory AHB bus:
• 1x 64-bit data SDRAM PC100 memory inter- face

with Reed-Solomon ECC (with 16 or 32 check bits)
• 1x Memory scrubber

32-bit Master I/O AHB bus:
• SpaceWire router with eight external ports and four

AMBA ports, with RMAP @ 300 Mbit/s
• 2x 10/100/1000 Mbit Ethernet interface with

MII/GMII PHY interface
• 1x 32-bit PCI target interface @ 33 MHz
• MIL-STD-1553B interface

32-bit Slave I/O AHB buses:
• 1x 32-bit PCI master interface @ 33 MHz with DMA

controller mapped to the Master I/O bus
• 1x 8/16-bit PROM/IO controller with BCH ECC
• 2x 32-bit AHB to APB bridge connecting:
• 5x General purpose timer unit
• 2x General purpose I/O port
• 2x 8-bit UART interface
• 1x Multiprocessor interrupt controller
• 2x AHB status register
• 1x Clock gating control unit
• 1x LEON4 statistical unit (perf. counters)
• 1x SPI master/slave controller
• PLL and pad control units
• 1x Temperature sensor
• SpaceWire Time Distribution Protocol controller

32-bit Debug AHB Bus
• 1x Debug support unit
• 1x JTAG debug link
• 1x SpaceWire RMAP target
• 1x AHB trace buffer, tracing Master I/O bus
• 1x PCI trace buffer:

70

IV. RADIATION TOLERANCE FEATURES
The GR740 is implemented on STMicroelectronics 65nm

bulk CMOS process using the C65SPACE cell libraries
developed and characterized by ST within the KIPSAT
initiative [3]. The cell libraries contain standard cells (both
radiation-hardened and standard variants), SRAM blocks, PLL
and IO buffers. The cells used are specified for a temperature
range of -40 to +125 degrees C and up to 20 years of aging
effects.

Layout and back-end part of the design realization has been
performed by ST using specific design rules and layout
techniques developed for the C65SPACE platform.

All of the on-chip memories in the design, with the
exception of memories used only for debugging, are used with
single-bit error tolerance (of varying kind) to handle memory
SEUs (Single Event Upsets). The memory blocks have been
built with sufficiently high bit multiplexing factor to avoid
multi-bit upsets on the same address due to a single event.

The level-1 cache memories inside the processor core use
parity protection with transparent re-fetch from level-2 cache in
case of detected error. Since the LEON4FT employs write-
through caching, bad L1 cache lines can be invalidated and re-
fetched without ever losing any written data. For the shared
level-2 cache data memories, which employ a write-back
policy and therefore may contain data not yet in memory,
single-error correcting, double-error detecting (SECDED)
protection using Bose-Chaudhuri- Hocquenghem (BCH) error
correcting codes is used together with programmable periodic
scrubbing to prevent build-up of multiple SEU:s over time.
Other memories in the design, used for instance as buffers for
data in transit to and from I/O interfaces, use error correction
based on either duplication with parity or triplication and
majority voting of the data on each memory address,
depending on which one is more efficient.

The baseline approach chosen for implementing the register
transfer level (RTL) logic inside the device has been to use
radiation-hardened flip-flops and hardened clock tree elements
but standard combinatorial logic cells. This is a trade-off
between hardness level and functional performance. Other
options were considered and a trial layout was made where
TMR was used for the entire design, however this was
abandoned due to performance and power impact.

For the CPU integer and floating-point register files built
out of flip-flops, a different hardening approach based on
triplication on block level, with bit-by-bit voting on the register
read data outputs, has been implemented. This approach
provides hardness at the same level as a raw flip-flop level
TMR but without the same performance overhead. Inside each
instance, standard flip-flops are used in order to save area and
power. The layout has been checked in the implementation
process to ensure that the flip-flops holding identical data in the
three copies had adequate spacing between them, and fixed up
where needed, to avoid sensitivity to potential uncorrectable
multi-bit upsets. The register file is not automatically scrubbed
so all registers need to be written at regular intervals, which
normally gets done anyway in applications as part of task
switching. For very simple applications where there is a risk of

keeping register values for a long time, a periodic re-write of
the registers (copying the register back to itself) could be, for
example, done in the timer interrupt handler.

Three radiation-hardened PLLs are used for clock
generation in the design [5]. Each PLL may be individually
bypassed, and the lock status can be monitored directly through
output pins. The GR740 can be configured to either trigger a
reset of the processors, or to keep going, in the event of losing
lock. A dedicated PLL watchdog function clocked on the input
clock has also been added. This provides the ability to detect
the unlikely scenario where a PLL would fail and stop
delivering a system clock to the processors and the rest of the
system.

A dedicated PLL reprogramming unit has been designed to
allow re-programming the PLL configurations from the
software boot-loader. A lock-down function is implemented
that blocks further reprogramming by application software
until a full system reset is done, to prevent accidental
reprogramming after boot-up. The PLL configuration unit has
been implemented with both hardened flip-flops and TMR to
get maximum protection against upsets in the PLL
configuration.

V. PRODUCTION TEST APPROACH
The production tests an industrial and complete test

solution at wafer level and post-assembly. Each sample is
tested at all supply level ranges within the specified
temperature ranges.

The tests include
• DC tests: IO levels, leakages, consumption
• IDDQ tests
• Scan
• Memory BIST
• Transition fault
• PLL tests
• Cold spare tests
• AC parameters

Wafer probing of the GR740 device is performed by
STMicroelectronics. The test equipment used is a Automatic
Test Equipment (ATE) tester together with a probe card that
has been custom designed for the GR740. The main purpose of
wafer probing is to detect and separate faulty dies before
packaging and also statistics collection. The SpaceWire router
implementation is covered by wafer probing test patterns but
no specific SpaceWire tests are performed during wafer
probing. The functionality of the SpaceWire router is tested by
means of test patterns generated according to industry standard
flows. Timing performance of the external SpaceWire ports
depend on the IOs and characteristics of the SpaceWire clock
generated by an on-chip PLL.

The implemented production tests that monitor timing
performances of the external SpaceWire ports are divided into
two parts: SpaceWire interface TX skew test and SpaceWire
interface RX skew test.

The SpaceWire interface TX skew test verifies timing skew
between outputs transmit data (TXD[x]) and transmit strobe
(TXS[x]) is with specification for all eight links x=1..8. To do

71

this, the test pattern start and stops the SpaceWire links. The
time measurement capability of the ATE tester is used to
calculate the time from a known quiet time while the link is
off, until the first rise/fall transition on TXD and TXS
corresponding to the SpaceWire handshake when the link is
turned on. The times measured for the two pins are then
subtracted, and offset with the known waveform pattern, to
obtain the skew, The measurement is done individually for
each link and for each rise/fall edge combination, each
combination tested 10 times and taking the worst value
(8*4*10 iterations total).

The SpaceWire interface RX skew test verifies the
minimum RXD/RXS period that can be detected by the
SpaceWire receiver. This is done by testing at what minimum
period a SpaceWire packet can be successfully received from
the ATE tester.

The difference between the measured limit and the ideal
limit of two times the router’s receive clock (2x due to DDR
sampling of incoming signals) determines the effective receive
skew. The receive data and strobe signals are DDR sampled
with a clock generated by the on-chip SpaceWire PLL. In this
test, the reference clock for the SpaceWire PLL is fed with a
free-running clock from the ATE relative to the received
SpaceWire data, which then means that the phase of the
sampling clock used by the SpaceWire codec will be varying
randomly relative to the receive data and strobe signals during
the test.

In order to monitor the received data, the test equipment
interfaces with the GR740 system through a JTAG debug link
that, through the use of a JTAG/AMBA AHB bridge can
perform memory accesses on the on-chip bus. This allows
complete control of the SpaceWire router. The Level-2 cache is
configured to be used as on-chip memory to store the received
SpaceWire data where the full packet contents can then be
verified from the outside world.

VI. FUNCTIONAL VALIDATION OVERVIEW
The functional validation tests are run at room temperature

in a lab environment. Tests are typically controlled via an
external debug monitor (Cobham Gaisler’s GRMON2
software) and for the SpaceWire router the tests utilize the on-
chip processors as well as an external system with SpaceWire
interfaces to generate and validate traffic.

The functional validation effort for the GR740 builds on
previous validation efforts on FPGA prototypes of the NGMP
architecture and validation of the NGMP functional prototype,
the LEON4-N2X device [6]. The existing prototype SpaceWire
router tests focused on exercising the router's AMBA ports. For
the GR740 validation effort, router testing was expanded to
include traffic on SpaceWire links. The router's redundant link
capability, multicast capability and priority capability was also
tested.

All tests described below were performed with the internal
SpaceWire fabric running at 400 MHz and the AMBA system
running att 200 MHz. All SpaceWire links were configured to
operate at a bitrate of 200 Mbit/s. The development board used
was the GR-CPCI-GR740 board [7]. It can be noted that the

tests do not require the on-chip SpaceWire fabric to run at 400
MHz. The setting was kept as it is the default configuration
attained without reconfiguring the design’s clock generation
circuitry.

Fig. 2 GR-CPCI-GR740 Development board

VII. FUNCTIONAL VALIDATION: ALL SPACEWIRE PORTS
To validate that all the SpaceWire ports of the SpaceWire

router can handle both receive and transmit at a rate of 200
Mbit/s, each SpaceWire port was connected to another
SpaceWire port. 4 MiB packets were then sent from an AMBA
port, routed out onto a SpaceWire port, received at another
SpaceWire port, and then routed to an AMBA port were the
data was validated. This test was repeated so that all
SpaceWire ports were utilized, and both path addresses and
logical addresses were used for the packets.

VIII. FUNCTIONAL VALIDATION: GROUP ADAPTIVE ROUTING
The SpaceWire router supports group adaptive routing for

all path addresses and logical addresses. Group adaptive
routing means that packets can be routed through the network
over different paths depending on which of the router's ports
that are available when the packet arrives. For example, a
packet with address 0x40 arrives at SpaceWire port 1 of the
router, and address 0x40 is configured with group adaptive
routing to SpaceWire port 2 and 3. The router will then route
the packet to either port 2 or port 3 depending on which port
becomes available first. If both ports are available, the router
will send the packet on the port with the lowest port number.

The group adaptive routing mechanism was validated by
connecting four SpaceWire ports together and then sending
packets from an AMBA port where the address byte of the
packets were configured with group adaptive routing to two of
the four ports. When the packets arrived at the router again
they were routed to another AMBA port. It was then verified
that the packets arrived correctly as long as one of the two
SpaceWire used as output ports were connected to another
port. If none of the two SpaceWire ports used as output ports
were connected then the packet was not received at the AMBA
port used as destination. Group adaptive routing was also
verified further in the packet distribution validation.

72

IX. FUNCTIONAL VALIDATION: PACKET DISTRIBUTION
Packet distribution - which means that data arriving at a

input port is sent to multiple ports simultaneously - is
supported by the SpaceWire router for both path addresses and
logical addresses. This feature was validated by connecting
four SpaceWire ports to each other and then sending a packet
with two address bytes from an AMBA port. The first address
byte was configured with header deletion and packet
distribution out on the four SpaceWire ports, and the second
address byte was configured with group adaptive routing to
AMBA ports 0-3. When the packet was sent from the AMBA
source port the first address byte was removed by the use of
header deletion, and the packet was routed out onto the four
SpaceWire ports. It was then verified that the four packets,
arriving at one SpaceWire port each, was routed to one AMBA
port each (because group adaptive routing was used for the
second address byte). This test also adds additional validation
of group adaptive routing since the test validates that group
adaptive routing works when the destination ports are busy
with transmitting data. The validation of group adaptive
routing described above only validated the case when the
destination links were not running.

X. FUNCTIONAL VALIDATION: PRIORITY ROUTING
When packets are to be routed, each destination port is

arbitrated individually using a two level priority. The priority is
based on the first address byte of the incoming packet, and all
path addresses and logical addresses can be assigned either a
high or low priority. Round-robin is used when one or more
packets with the same priority competes about the same
destination port. The validation of the priority routing
mechanism was done by enqueueing four different packets,
each one from a different AMBA port, where all packets were
to be routed out on the same SpaceWire port. Three of the
packets contained an address that had been assigned a low
priority, while the fourth packet contained an address with high
priority. The SpaceWire port that the packets would be routed
out onto was connected to another SpaceWire port of the
router, and the second address byte in all packets was the path
address of one of the AMBA ports (same for all packets so that
the order could be observed). The three low priority packets
were sent slightly before the high priority packet, and it was
then validated at the destination AMBA port that the first
packet received was the first low priority packet, followed by
the high priority packet, and then followed by the two
remaining low priority packets. It was also validated that if the
high priority packet was instead changed to low priority it was
received last of the four packets.

XI. FUNCTIONAL VALIDATION: NEW FEATURES
The SpaceWire router implementation in the GR740 has

several new features compared to previous prototype
implementations of the NGMP architecture. The new features
include support for 64 interrupt codes and time code
propagation. Validation of these new features has been
performed by reusing test developed for the GR718B 18x
SpaceWire router device [8] and by reuse of existing tests

available for the RTEMS operating system to test time code
transmission.

XII. FUNCTIONAL VALIDATION: USER CASE AND
PERFORMANCE VALIDATION

To demonstrate a user case and performance figures. An
example was developed using an available Remote Memory
Access Protocol (RMAP) stack and SpaceWire drivers for
RTEMS. Using the example, which performance RMAP read
and write accesses to a generic RMAP target. The data rates
achieved between two GR740 systems with default
configuration is around 20 Mbytes/s using one SpaceWire
DMA channel (out of four) of one SpaceWire AMBA port (out
of four) and one SpaceWire link (out of eight). During the test,
one data array was transferred both ways (read and write) and
the traffic was controlled by the LEON4FT in one of the
systems.

The data rates achieved were measured at a high level,
which means that they also consider the software overhead of
performing the transmissions. This overhead can be further
reduced optimizing the code for instance using a zero-copy
driver. This was not done for two reasons; one to keep the
example code to understand and to be able to provide the test
case as an example for users of the device, and two to avoid a
high optimization level that may not be practical to perform
considering constraints of real world development efforts.

XIII. RADIATION TESTS OF SPACEWIRE ROUTER
The GR740 has undergone a radiation test campaign to

verify its radiation performance against single event effects.
Single-event testing with both heavy ions has been performed
at the time of writing and tests with with protons is planned for
to take place in the last quarter of 2016.

The single-event testing focuses both on raw upset rates of
the various building blocks of the design and the error cross-
section of the whole design in functional scenarios. The heavy-
ion SEU test setup is based on the GR740 evaluation board [7]
with the device wire-bonded to an unsealed ceramic LGA
package, that is then mounted on the circuit board through a
socket.

The ASIC has several test functions included to aid the
radiation testing. The L1 and L2 caches have counters for
corrected errors that can be monitored on the fly by test
software. For the triplicated register files, flags have been
added that are set when a voting mismatch has been detected to
allow counting errors during test. For TID testing, a ring
oscillator built out of standard cells is implemented on chip.

The test software is based on the “SEU32” test suite
developed originally for LEON3FT. This software has been
modified and expanded to handle the new architectural features
of the GR740, such as the addition of level-2 cache. The
software can be run from the flash memory of the evaluation
board and communicates with a standard PC on the outside of
the irradiation area through the GR740s serial ports.

The SEU32 was extended with a test specific for the on-
chip SpaceWire router. The test consists of software that runs
on one or several of the LEON4FT processors and sends

73

packets with an unique data over different ports that are assume
to be connected to a loopback connector (or equivalent) so that
the data that goes out comes in through the same port. The test
checks that the transmission and the data arrived without
errors. If errors are detected, a report is produced. Normal
memory errors (status bits and counters for processor register
file, Level-1 and Level-2 caches) are also monitored and
reported.

The test initializes the SpaceWire router and its AMBA
ports, creates and initializes transmitter and receiver descriptors
for the packets and the data on it that contains a sequence of
sequential numbers. The packets use path addressing that goes
to each tested port and then back to the AMBA port. Since the
loopback transmission takes some time, the CPU waits using a
loop of NOP instructions that consumes always a fixed amount
of time (adjusted to give time to the SpaceWire traffic) so that
the test does not depend on timers or the SpaceWire cores
themselves.

XIV. CONCLUSION
The GR740 validation effort has validated and

characterized a SpaceWire router implemented as part of a
space-grade microprocessor device. As part of the GR740
validation, production tests have been developed that allow
characterization of the external SpaceWire links during
production tests (wafer probing and post-packaging tests).

The GR740 device has been manufactured and is being
validated in an activity funded and initiated by the European
Space Agency. A technical note covering the functional
validation results will be published online during the end of
2016. The results of the radiation test effort will also be
published in a report once the radiation test campaign has been
completed and the resulting report has been reviewed and
approved by the agency.

ACKNOWLEDGMENT
The development and implementation of the GR740 device

has been funded by the European Space Agency as part of the
Next Generation Microprocessor activities.

REFERENCES
[1] Cobham Gaisler. GR740 Quad-Core LEON4FT SPARC V8

Processor [Online]. Available: http://gaisler.com/gr740
[2] European Space Agency. GR740: The ESA Next Generation

Microprocessor (NGMP) [Online]. Available:
http://microelectronics.esa.int/ngmp

[3] P. Roche, G. Gasiot, S. Uznanski, J-M. Daveau, J. Torras-
Flaquer, S. Clerc, and R. Harboe-Sørensen. A Commercial 65
nm CMOS Technology for Space Applications: Heavy Ion,
Proton and Gamma Test Results and Modeling, IEEE
TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 4,
AUGUST 2010

[4] Cobham Gaisler. RTEMS SMP Executive Summary:
Development Environment for Future Leon Multi-core” [Online]
Available: http://microelectronics.esa.int/ngmp/RTEMS-SMP-
ExecSummary-CGAislerASD-OAR.pdf

[5] F. Malou, G. Gasiot, R. Chevallier, L. Dugoujon, P. Roche: TID
and SEE Characterization of Rad- Hardened 1.2GHz PLL IP
from New ST CMOS 65nm Space Technology, IEEE Radiation
Effects Data Workshop (REDW), July 2014

[6] Cobham Gaisler. GR-CPCI-LEON4-N2X Quad-Core LEON4
Next Generation Microprocessor Evaluation Board [Online].
Available: http://gaisler.com/gr-cpci-leon4-n2x

[7] Cobham Gaisler. GR-CPCI-GR740 Quad-Core LEON4FT
Development Board [Online] Available: http://gaisler.com/gr740

[8] Cobham Gaisler. GR718 Radiation-Tolerant 18x SpaceWire
Router [Online] Available: http://gaisler.com/gr718

74

High-Reliability SpaceWire Engine implemented on

theSOISOC3 microprocessor
Components, Short Paper

Takanori Narita, Masahiro Taeda, Masahiro Kato,

Masaki Kusano, Kazunori Masukawa

Applied Electronic Equipment Design Section,

Mitsubishi Heavy Industries Ltd (MHI),

1200, Higashi Tanaka, Komaki, Aichi, 485-8561, Japan

takanori_narita@mhi.co.jp, masahiro_taeda@mhi.co.jp

masahiro_kato@mhi.co.jp, masaki_kusano@mhi.co.jp,

kazunori_masukawa@mhi.co.jp

Takayuki Ishida, Seisuke Fukuda, Keiichi Matsuzaki,

Tadayuki Takahashi

Institute of Space and Astronautical Science (ISAS),

Japan Aerospace Exploration Agency (JAXA)

3-1-1 Yoshinodai, Sagamihara Chuo-ku, Kanagawa, 252-

5210, Japan

ishida.takayuki@jaxa.jp, fukuda@isas.jaxa.jp,

matsuzaki.keiichi@jaxa.jp, takahasi@astro.isas.jaxa.jp

Mitsutaka Takada, Hiroaki Takada,

Graduate School of Information Science, Nagoya University,

Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

mtakada@nces.is.nagoya-u.ac.jp, hiro@ertl.jp

Masaharu Nomachi

Research Center for Nuclear Physics, Osaka University,

1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043,

Japan

nomachi@rcnp.osaka-u.ac.jp

Abstract—SOISOC3 is our new space-grade system-on-chip

processor which is currently being developed by MHI in

partnership with JAXA. The chip is implemented on a 200 nm

radiation hardened process based on the commercial SOI (Silicon

On Insulator), so that can apply to the Space missions. This is the

next generation system-on-chip processor upgraded from the

currentSOISOC2 chip already used for ASTRO-H, ERG

satellites, etc.

 SOISOC3 has a high-reliability SpaceWire engine, which MHI

has developed, supporting for incoming SpaceWire standards for

deterministic data delivery (SpaceWire-D), reliable data transfer

service (SpaceWire-R), as well as high performance Remote

Memory Access Protocol (RMAP) with Direct Memory Access

(DMA) engine through a SpaceWire router. The SpaceWire

engine is capable of acting as an RMAP initiator, target, or as a

general purpose packet transmitter and receiver. Our developed

SpaceWire-D and SpaceWire-R engine is mainly performed on

hardware, and can achieve high accuracy scheduling and high

performance, with less CPU load.

We’ll introduce the outline and current status of our

development with an prototype evaluation board exhibited at

MHI booth.

Index Terms—SpaceWire, SpaceWire-D, SpaceWire-R,

processor, system-on-chip, High-Reliability.

I. OVERVIEW

Mitsubishi Heavy Industries (MHI) developed a space-

grade system-on-chip processor, SOISOC2. SOISOC2 has a

high performance CPU core and a basic SpaceWire engine

which supports RMAP protocol. The chip is implemented on a

200 nm radiation hardened process based on the commercial

Silicon On Insulator (SOI), so that can apply to the Space

missions [1,2]. Fig.1 shows flight records of SOISOC2.

SOISOC2 has been inside of a large number of satellites.

SOISOC2 is also used in a commercial product, a radiation

monitor as dual-use.

And then SOISOC3 is our new space-grade system-on-chip

processor which is currently being developed by MHI in

partnership with JAXA. This is the next generation system-on-

chip processor upgraded from the current SOISOC2 chip.

75

mailto:ishida.takayuki@jaxa.jp
mailto:fukuda@isas.jaxa.jp
mailto:matsuzaki.keiichi@jaxa.jp
mailto:takahasi@astro.isas.jaxa.jp

Fig. 1. Flight records of SOISOC2

II. SPECIFICATION

SOISOC3 maximizes the design property of SOISOC2 for

steady development. TABLE I shows the specification of

SOISOC3. Fig.2 shows the block diagram of SOISOC3.

SOISOC3 is same semiconductor process, CPU core, and

memory interface as SOISOC2. The architecture of the CPU

core is used in many high-reliability products. (e.g. Automotive

products)

The SpaceWire engine is upgraded from SOISOC2.

SOISOC3 has a high-reliability SpaceWire engine, which MHI

has developed, supporting for incoming SpaceWire standards

for deterministic data delivery (SpaceWire-D), reliable data

transfer service (SpaceWire-R), as well as high performance

Remote Memory Access Protocol (RMAP) with Direct

Memory Access (DMA) engine [3,4,5].

TABLE I. SPECIFICATION OF SOISOC3

Item Specification Remark

Semiconductor

Processes

200nm SOI Same Specification

as SOISOC2

CPU Core 32bit RISC Processor

Max. 100MIPS

Same Specification

as SOISOC2

Memory Interface SDRAM I/F and

SRAM/EEPROM I/F

Same Specification

as SOISOC2

SpaceWire engine - -

 Link Frequency Max. 120MHz Upgrade from

SOISOC2 (~100MHz)

External Port 4ch Upgrade from

SOISOC2 (3ch)

Support

Protocol

RMAP

Raw

SpaceWire-D

SpaceWire-R

Upgrade from

SOISOC2

(RMAP only)

Fig. 2. Block diagram of SOISOC3

III. DETAIL OF SPACEWIRE ENGINE

Our developed SpaceWire engine is mainly performed on

hardware, and can achieve high accuracy scheduling and high

performance, with less CPU load. Details of hardware support

functions are below.

A. SpaceWire-D Hardware support

 RMAP Write

When the SpaceWire engine receives a write

command from a Initiator, the SpaceWire engine

checks the header format (Key, Logical Address,

Header CRC etc.) and writes the data to the internal

register or external memory (SDRAM or SRAM or

EEPROM) directly by using DMA engine with no

CPU load.

If requested in the write command, a write reply is

sent by the SpaceWire engine back to the initiator of

the write command or to some other node as defined

by the header (Reply Address field).

 RMAP Read

When the SpaceWire engine receives a read

command from a Initiator, the SpaceWire engine

checks the header format, reads the data from the

internal register or external memory directly and sends

a read reply to the initiator of the read command or to

some other node.

 Timing Cotrol

The SpaceWire engine compares time-slot numbers

with send requests that is generated by SpaceWire-D

Initiator (middleware) at each time-slot and controls

timing of sending a read/write command to achieve

high accuracy scheduling.

Fig.3 shows one example, the flow chart of a

transaction on a SpaceWire-D static bus service.

CPU Core
RISC micro-processor

CPU Bus

JTAG UART

SDRAM SRAM,EEPROM

DMAC

SpaceWire
Router

External
Memory I/F

with ECC

External
Memory I/F

with ECC

SpaceWire
4ch

GPIO
（General Purpose I/O）

Input/Output
12ch

SpaceWire
Engine

(Real-time support)

SOI-SOC2 inside

© UNISEC,
University of Tokyo

UNITEC-1
Launched 2010

Onboard

Computer

ASTRO-H
Launched 2016

SDS-4
Launched 2012

ERG
To be launched

© JAXA

© JAXA

© JAXA

ASTROCAM 2013~
(radiation monitor)

76

Fig. 3. Transaction on a static bus service (Ref. [1] pp. 71)

 Time-Code Watchdog

The SpaceWire engine has hardware time-code

watchdog timer. The SpaceWire engine checks for

arrival of a time-code. In the event of an early or late

time-code, the SpaceWire engine sets an error flag and

an interrupt signal.

B. SpaceWire-R Hardware support

 Segmentation

At a sending end, the SpaceWire engine breaks a

service data unit (SDU) into smaller pieces by

hardware so that each piece can be transmitted in a

SpaceWire-R packet. At a receiving end, the

SpaceWire engine reconstructs the original SDU from

a series of received SpaceWire-R packets with no CPU

load.

 Data Ack Reply

Data ack packets are used to acknowledge receipt of

Data. When the SpaceWire engine receives data

packets, the SpaceWire engine checks data packets and

replies data ack packets immediately.

IV. SOFTWARE INTERFACE

A real-time operating system called “TOPPERS HRP2

Kernel” and a board support package (BSP) which is included

a SpaceWire middleware is available for SOISOC3 [6].

“TOPPERS” is based on the technical development result

applied “ITRON”. “TOPPERS” is used in many embedded

devices.

Fig.4 shows protocol stack of SOISOC3. SOISOC3

middleware and hardware supports four types of protocols,

RMAP, SpaceWire-D, SpaceWire-R, and Raw. The Raw

protocol is consisted of the destination address field and the

cargo field. A user application can set an original header and

data as the cargo field. All protocols can select enable/disable

of time slot scheduling. There also can be multiple plotocols on

a same SpaceWire subnetwork by using time slot scheduling.

(e.g. TS-6=SpW-R, TS-7=Raw, TS-8=SpW-D etc.)

 SOISOC3 users can handle SpaceWire protocpls easily by

using these software interface.

SpaceWire-D Initiator (middleware) checks

load static requests from the initiator

application and generates a send requests to

the SpaceWire engine.

The SpaceWire engine (Hardware)

compares the time-slot numbers with send

requests and decides send commands.

Packet Format

Manager

Queuing

Transaction

Packet Format

Protocol

Scheduling

SpaceWire

SpW-R

T-
TE

P

R
-T

E
P

T-
TE

P

R
-T

E
P

SpW-D

RMAP

Static Bus
Queue

Dynamic Bus
Queue

Async Bus
Queue

Packet Bus
Queue

RMAP

T-
TE

P

SpaceWire

RMAP Packet

User ApplicationUser App

middleware+
Hardware

Time-Slot Scheduling

R
-T

E
P

Queue Queue

Transaction
Group Mng

Transaction
Group Mng

Transaction
Group Mng

Transaction
Group Mng

Queue

SpW-R Packet

SpW-R

Segmentation
Sliding Window

Fig. 4. Protocol stack of SOISOC3

77

V. PERFORMANCE OF SPACEWIRE ENGINE

Fig.5 shows a picture of a evaluation board of SOISOC3.

The evaluation board consists of FPGA and peripheral ICs.

(LVDS transmitter, SDRAM, SRAM, EEPROM, regulator

etc.) All hardware functions of SOISOC3 are included in

FPGA.

For performance test of the SpaceWire Engine, one of the

evaluation board is the initiator and the other is the target. A

dummy application for performance test operates on

middleware. A processing time of middleware and hardware is

measured by SpW-link analyzer and logic analyzer.

TABLE II shows the test parameter. In the performance test

of RMAP write/read, it issued 1000 RMAP write/read

commands. Total data size is 1Mbyte. From the start of the first

command transmission to the last command transmission, it

takes 252 milliseconds, thus the result is 32.5 Mbps. (=

1Mbyte*8bit / 252 milliseconds)

In the performance test of SpaceWire-R, it issued 8 SDUs.

Total data size is 8Mbyte. When segmentation size is 256byte,

it takes 850 milliseconds, thus the result is 78.9 Mbps. In case

of 512Byte, the result is 90.7 Mbps. In case of 1kByte, the

result is 93.3 Mbps. For the SpaceWire-R hardware support,

the result is good agreement with the value that had been

obtained by theoretical calculation.

Fig. 5. Evaluation board of SOISOC3

TABLE II. TEST PARAMETER

Parameter Value Remark

SpaceWire Link Rate 120MHz Theoretical speed

is 96Mbps.(=120*8/10)

Data Size of RMAP 1kByte*1000transaction

Data Size of SpW-D 1Mbyte*8packets

Segmentation Size of

SpW-D

256/512/1kByte

VI. DEVELOPMENT STATUS

TABLE III shows the development status of SOISOC3.

ASIC#1 design and manufacturing are ongoing. SOISOC3 is

scheduled to be ready by the end of March 2018.

VII. CONCLUSION

We introduced the overview and development status of

SOISOC3. SOISOC3 is the new ASIC for space products

which has the high-reliability and the high performance

SpaceWire engine. We consider that the chip will provide an

efficient and cost-effective way to develop new satellites and

space crafts.

REFERENCES

[1] H. Saito, and K. Hirose, “Development of Large Scale

Integrated Circuit for Commercial & Space Application,”

Journal of JSASS vol.58 No.683 pp.365-372, 2010.

[2] Y. Kuroda, S. Ishii, D. Takahashi, S. Kimura, H. Saito, and K.

Hirose, “Development of Dual-Use Processor for Commercial &

Space Application,” Journal of JSASS vol.59 No.684 pp.149-

154, 2011.

[3] S. Parkes, A. Ferrer, and D. Gibson, “SpaceWire-D Standard

Draft D Issue 0.15,” July 2014, unpublished.

[4] T. Yamada, “SpaceWire-R SCDHA 151-0.4 Issue 0.4,” August

2015, unpublished.

[5] “SpaceWire – Remote memory access protocol ECSS-E-ST-50-

52C,” February 2010.

[6] http://www.toppers.jp/en/hrp2-kernel.html

TABLE III. DEVEMOPMENT STATUS OF SOISOC3

Item Status Remark

Preliminary/Critical Design of

Hardware Logic and Middleware

Complete

Evaluation test by using FPGA Complete The evaluation board is
exhibited at MHI booth.

ASIC#1 Design and

Manufacturing

Ongoing

Evaluation test of ASIC#1 ~March

2017

ASIC#2 Design and

Manufacturing

~September

2017

Bug Fix of ASIC#1

Evaluation test of ASIC#2 ~March

2018

Evaluation Board

SpW LinkAnalyzer

FPGA
(FPGA

includes all
SOI - SOC3
Function.)

78

Software and SpaceWire evaluation of SOI-SOC3
 SpaceWire components, Short Paper

Takayuki Ishida

Research and Development Directorate

 Japan Aerospace Exploration Agency (JAXA)

3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210, Japan

ishida.takayuki@jaxa.jp

Seisuke Fukuda, Keiichi Matsuzaki, Tadayuki

Takahashi

Institute of Space and Astronautical Science (ISAS)

Japan Aerospace Exploration Agency (JAXA)

3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210, Japan

 Mitsutaka Takada, Hiroaki Takada

Graduate School of Information Science

Nagoya University

Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

Masaharu Nomachi

Research Center for Nuclear Physics

Osaka University

1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan

Takanori Narita, Masahiro Taeda, Kazunori Masukawa

Applied Electronic Equipment Design Section

Mitsubishi Heavy Industries Ltd

1200 Higashi Tanaka, Komaki, Aichi 485-8561, Japan

Keigo Saso

MHI Aerospace Systems Corp.

1200 Higashi Tanaka, Komaki, Aichi 485-8561, Japan

Abstract— SOI-SOC3 is a radiation hardened space-grade

SOC implementing reliable SpaceWire protocol such as

SpaceWire-R and SpaceWire-D. SOI-SOC3 realizes high

performance in SpaceWire link speed, reliable communication

technology such as data division, retransmission control, and

real-time communication using time synchronization and

scheduling system. These technologies are based on SOI-SOC2

technology that realized high throughput, radiation hardened,

and low power consumption using commercial SOI process

technology. Since such reliable SpaceWire communications are

realized by various middleware, users can use reliable SpaceWire

protocols just by calling specific APIs. Due to its reliability, SOI-

SOC3 is applicable to not only space-grade products but also

wide range of fields requiring high reliability and environment

resistance such as power plants and medical devices. We have

been planning to port cFE/cFS (Core Flight Executive/Core

Flight System) to SOI-SOC3. Before manufacturing ASIC, we

have evaluated basic function of SpaceWire on SOI-SOC3

implemented on FPGA. In this paper we describe the evaluation

results of SpaceWire function of SOI-SOC3 evaluation board and

its software including middleware.

Index Terms— SpaceWire, SpaceWire-D, SpaceWire-R, SOI-

SOC

I. INTRODUCTION

JAXA and MHI have been developing radiation hardened

semiconductor process for components in severe radiation

environments. This technology achieved Single Event Latch-up

free and very low probability of Single Event Upset because

this technology is based on the commercial SOI (Silicon On

Insulator). MHI has developed radiation hardened space-grade

system-on-chip called “SOI-SOC2” using this process. This

chip is mounted on a large number of satellite components. In

addition to the previous SOI-SOC chip, JAXA and MHI have

been developing the next generation space-grade radiation-

hardened processor named “SOI-SOC3”. SOI-SOC3 inherits

the radiation-hard technology from SOI-SOC2. In addition to

SOI-SOC2 function, SOI-SOC3 has the high-reliability

SpaceWire system such as SpaceWire-D [1], and SpaceWire-R

[2]. This technology makes it possible to use SOI-SOC3 in

both of bus components that needs real-time communication in

transfer of command and telemetry, and mission components

that needs large-volume data communication in sensor data

transfer. We have been developing not only processor, but also

middleware and application platform using Core Flight

Executive and Core Flight System (cFE/cFS) [3] created by

NASA/Goddard Space Flight Center. This paper describes the

outline of SOI-SOC3 and its evaluation test of SpaceWire

communication function.

II. SOI-SOC3

SOI-SOC3 improved its function in both of hardware and

software to implement the high-reliability SpaceWire system.

In this chapter we describe the characteristics of hardware,

software and middleware.

79

A. Hardware

To achieve short-term and steady development we

employed existing technology of SOI-SOC2 such as process

rule and CPU core. In addition, SOI-SOC3 has high

functionality to achieve some new function below:

 Improvement in SpaceWire link rate

 Real-time communication by using time

synchronization and scheduling

 High-reliability communication by data division and

retransmission control

Although SOI-SOC2 can handle only RMAP as SpaceWire

protocol, SOI-SOC3 can handle SpaceWire-D and SpaceWire-

R as well. SpaceWire-D realizes time synchronization and

scheduling function. Since control commands and sensor data

are sent according to the schedule at the time of system design,

SOI-SOC3 ensures real-time communication. In addition,

precise scheduling and load reduction of software are realized

because transmission is controlled by hardware.

SOI-SOC3 also handles SpaceWire-R protocol to realize

data division and retransmission control, so reliable data

transmission is allowed. Furthermore, in SpaceWire-R a

specific component cannot occupy the communication because

Large-sized data are divided into a fixed-sized segments.

As these high-reliability SpaceWire protocols implemented

in SOI-SOC3 handle scheduling and generating headers in

hardware, high throughput is achieved.

B. Middleware

To improve reusability and reduce verification scale and

used application development, we constructed Application

Programming Interface (API). SOI-SOC3 users are able to use

SpaceWire functions easily and develop software applications

using various SpaceWire protocols by calling this API.

On the other hand, SOI-SOC3 has to handle more

information to use SpaceWire because SpaceWire-R and

SpaceWire-D protocols are implemented. This configuration

information is different between applications, so It is difficult

to write all set points by users for each application. Therefore

we constructed the middleware to describe each set points in

static API for SpaceWire middleware that is one of the

characteristics of OS (TOPPERS) used in SOI-SOC3.

Middleware configurator checks the static API and constraint

settings for set points, and generates necessary source code for

SpaceWire communication.

C. Software

SOI-SOC3 users can use SpaceWire functions easily by

calling specific API described above. We also examine porting

cFE/cFS as SOI-SOC3 software platform to support necessary

protocol services for user applications. Since cFE does not

have interface to use SpaceWire, we are looking into adding a

new service interface for SpaceWire transaction.

Figure 1 shows protocol stack of SpaceWire transaction in

SOI-SOC3. SpaceWire physical layer is at the bottom, then

hardware and software provide various SpaceWire functions as

middleware. Users can develop software applications using

these APIs.

III. FUNCTIONAL EVALUATION

In this chapter we describe the evaluation tests of

SpaceWire functions in SOI-SOC3. In this evaluation tests we

evaluate basic SpaceWire function (SpaceWire-Raw).

A. Evaluation Board

Figure 2 shows the SOI-SOC3 evaluation board. All

functions of SOI-SOC3 is implemented in FPGA on this

evaluation board. The board has four SpaceWire ports and also

has a router. In addition, one SpaceWire engine is implemented

inside. This engine can send and receive simultaneously.

Fig. 1. Protocol stack of SOI-SOC3 [4]

80

B. Test Environment

1) SpaceWire-Raw

Figure 3 illustrates the setup of the evaluation tests of the

basic SpaceWire protocols, SpaceWire-Raw. As shown in the

Fig. 3, two boards are connected via SpaceWire Link Analyzer.

We measured the time to process data transaction to calculate

throughput. The size of trasmit data are 1Mbyte x 8 packet and

link rate is 120Mbps.

We are planning to evaluate SpaceWire-D and SpaceWire-

R functions using the test environments described below.

2) SpaceWire-D

Figure 4 illustrates the setup of the evaluation tests of

SpaceWire-D. In this test SOI-SOC3 #1 sends time-critical

command to SOI-SOC3 #3 while SOI-SOC3 #2 sends large

data which is not time-critical. The command packet can be

sent as scheduled when SpaceWire-D is used.

3) SpaceWire-R

Figure 5 illustrates the setup of the evaluation tests of

SpaceWire-R. In this test SOI-SOC3 #1 and #4 sends large

amount of data each other via SOI-SOC #2 and #3. At the same

time SOI-SOC #2 sends some packets to SOI-SOC #3. Since

large data transaction shares SpaceWire path with small data

transaction, large data block a small packet until its transaction

ends when basic SpaceWire protocol is used. In SpaceWire-R

large data are divided into some segments, therefore small

packet can be sent during transaction of large data.

C. Evaluation Results

Table 1 shows the evaluation test results of SpaceWire-

Raw. H/W process time means the time between the beginning

of data transmission and the end of data receiving in hardware.

Total process time means the time between the transmission

requirement in software and the end of receiving process in

software. In SpaceWire-Raw Protocol, effective throughput

achieves theoretical value (96Mbps = 120MHz x 8/10 bit) .

SpaceWire-D and SpaceWire-R evaluation tests will be carried

out.

TABLE I. SPW-RAW EVALUATION RESULTS

Protocol
Process time [us] Throughput [Mbps]

H/W Total H/W Total

SpW-Raw 699077 734116 95.996 91.415

IV. CONCLUSION

We introduced next generation radiation hardened space-

grade processor, which we call “SOI-SOC3”. We implemented

reliable SpaceWire protocol such as SpaceWire-D and

SpaceWire-R to realize high performance in SpaceWire

function. We developed not only processor but also

middleware to improve usability. SOI-SOC3 users can easily

use various SpaceWire protocols including SpaceWire-D and

SpaceWire-R by calling specific APIs. We evaluated basic

functions of SpaceWire using SOI-SOC3 evaluation board and

confirmed that sufficient throughput was achieved. SpaceWire-

D and SpaceWire-R function evaluation tests will be carried

out in near future to evaluate reliable and complicated

functions.

SpW port (4ch)

FPGA

Fig. 2. SOI-SOC3 evaluation board

SpW

Engine

SpW

Router

SpW

Engine

SpW

Router

SOI-SOC3 #1 SOI-SOC3 #2

SpW packet

Fig. 3. Test environment for SpW-Raw

SpW

Engine

SpW

Router

SpW

Engine

SpW

Router

SpW

Engine

SpW

Router

SOI-SOC3 #1

SOI-SOC3 #2

SOI-SOC3 #3
Time-critical

command

Large data

Small data

Large data

Fig. 4. Test environment for SpW-D

SpW

Engine

SpW

Router

SpW

Engine

SpW

Router

SpW

Engine

SpW

Router

SOI-SOC3 #2

SOI-SOC3 #3

SOI-SOC3 #1

SpW

Engine

SpW

Router

SOI-SOC3 #4

Large dataSmall data

Fig. 5. Test environment for SpW-R

81

REFERENCES

[1] Space Technology Centre, School of Computing, University of

Dundee, “SpaceWire-D, Deterministic Control and Data

Delivery Over SpaceWire Networks,” April 2010.

[2] T. Yamada, “SpaceWire-R SCDHA 151-0.3,” Institute of Space

and Astronautical Science, Japan Aerospace Exploration

Agency, September 2013.

[3] D. McComas, “NASA/GSFC’s Flight Software Core Flight

System,” Flight Software Workshop, November 2012.

[4] T. Narita, M. Kato, K. Masukawa and M. Taeda, “Development

status of Next-Generation Space Grade CPU (SOI-SOC3),” 25th

SpaceWire Working Group Meeting, April 2016.

82

Galvanic Isolation of SpaceWire Receivers
SpaceWire Components, Short Paper

G. Baterina, Y. Moghe, H. Nimmett
Silanna Group Pty Ltd
Queensland, Australia

gil.baterina@silanna.com

A. Senior
Thales Alenia Space UK Ltd

Bristol, United Kingdom
alan.senior@thalesaleniaspace.com

Abstract—This paper summarizes the need for galvanic
isolation in SpaceWire networks and reviews the limitations of
current isolation solutions; the paper also proposes a new
Isolated SpaceWire Receiver device based on radiation-hardened
Silicon-on-Sapphire (SoS) technology and demonstrates the
benefits of primarily isolating only the receiver lines of an SpW
port. As a stepping-stone to the proposed device, a discrete
galvanic isolation receiver module will be demonstrated using
Silanna's core isolator chip along with commercial off-the-shelf
(COTS) LVDS transmitters, LVDS receivers, and an isolated
DC-DC converter to power all circuitry across the isolation
barrier. To ease testing & evaluation, the SpW isolator module
can be simply implemented by cascading inline to an existing
SpW port, or by replacing the SpW pigtail connector, or even by
replacing the LVDS transmitter & receiver stages. The proposed
integrated solution is expected to have on-chip isolated power
and operate up to 400 Mbps, handling a common-mode of 100 V-
RMS, and a galvanic isolation of 1 kV-RMS.

Index Terms— SpaceWire, SpW, isolation, fault propagation,
LVDS, common mode voltage, galvanic, component, spacecraft
electronics.

I. INTRODUCTION

SpaceWire (SpW) as defined in the standard [1] uses the
Low Voltage Differential Signaling (LVDS) electrical interface
which has the advantage of reducing the power required for a
high speed data link; however, the existing LVDS buffers and
ASIC devices have 2 principal drawbacks for implementing
high reliability systems:

• limited common mode voltage tolerance
• fault propagation paths

The common mode tolerance is +/-1V; if this voltage is
exceeded then the link data may be corrupted. In the worst case
the transmitter/receiver devices may either be stressed or
permanently damaged. Stressing of the LVDS buffer may not
be evident but often results in a reduced reliability leading to
premature failure later. Within a spacecraft, it is practical to
control the common mode voltages within the specified limits
and thus once launched problems would not be anticipated.
Control of the common mode voltages during ground testing of
spacecraft with remote Electrical Ground Support Equipment
(EGSE) that use long cables becomes more problematic;

drivers and receivers have failed in test configurations either
due to incorrect test setups, poor grounding setups, or the
effects of EMC testing. Clearly it is important to implement an
effective grounding scheme and ensure that methods for
monitoring the common mode voltages are in place rather than
wait for failures to occur or assume acceptable conditions are
met.

Fault propagation paths exist between LVDS link ends due
to the direct silicon to silicon connection between the devices
at the two ends of a link [2]. As shown in Figure 1, a power
supply failure in one piece of equipment could propagate to
another equipment by injecting out of specification voltages at
the LVDS buffer terminals [3]. Due to the constraints of high
speed signaling, it is not practical to use series protection
resistors in the signal lines to reduce potential fault currents to
an acceptable level; thus, it is necessary to add protection to the
internal supply rails of each equipment.

Fig. 1. Common mode voltages and fault propagation

The mitigation methods for both the common mode and
fault propagation issues are time consuming to analyze for
failure mode effects and they typically result in an increased
complexity of the flight equipment.

It is thus highly desirable to incorporate galvanic isolation
in the link paths; this will permit the legacy Mil-Std-1553B
command and control links to be replaced with the more
capable SpW bus and to eliminate failures in test environments
with EGSE. [4]

II. LIMITATIONS OF CURRENT ISOLATION SOLUTIONS

The Data and Strobe lines of SpaceWire are non-DC-
balanced signal streams with data rates up to 400 Mb/s. [1]
Since the signal streams are not DC-balanced, typical
capacitive or inductive (transformer) AC coupling methods for
isolation are not viable; in comparison, by design, high speed

83

digital isolators are capable of handling non-DC-balanced
signal streams. However, almost all high speed digital isolators
available today have maximum data rates of less than 200
Mb/s; although there are some digital isolators capable of data
rates greater than 200 Mb/s, they are not built on a space-
proven, radiation-hardened process such as Silicon-on-
Sapphire (SOS). Silanna has already demonstrated the digital
isolation of signal streams greater than 500 Mb/s using a 0.5μm
SOS process. [5]

III. LIMITATIONS OF PREVIOUSLY PROPOSED SPACEWIRE

LINK ISOLATOR

The initial proposal for SpW isolation was a SpaceWire
link isolator that fully isolated both the transmitter pair (Data
and Strobe) and the receiver pair of LVDS interfaces. [4]
While this approach had successfully provided isolation to
SpW links operating up to 400 Mb/s, there were some issues
when both ends of a SpW connection had link isolators; with
the component sides of both links establishing their own
separate ground references, the fully isolated cable resulted in a
"floating" ground reference for the signal levels within the
cable. This represented a potential problem of exceeding the
isolation voltage range of one or both SpW link isolators.

Although the floating cable ground problem could be
mitigated by ensuring only one end of a SpW connection is
fully isolated, this complicates the SpW network design of a
system.

IV. PROPOSED ISOLATED SPACEWIRE RECEIVER

To prevent the potential problems of having both ends of a
SpW connection fully isolated, the proposed Isolated SpW
Receiver would have two high-speed data channels to handle
Data and Strobe of the receive signaling only; with LVDS
levels on the cable-side and LVDS & LVTTL levels supported
on the module-side of the isolation barrier, both discrete and
integrated SpW ports could have isolated receivers with a
nearly drop-in isolation solution. To further simplify the
adoption of the Isolated SpW Receiver, the device would also
include the integration of a DC-DC isolator to optionally
provide power to the cable-side of the receiver from the
module-side without the need for additional active components
(see Fig. 2).

Fig. 2. Silanna Isolated SpW Receiver

A summary of the target features are:
• 2 high speed (400 Mbps) channels
• Cable-side: LVDS Inputs
• Module-side: LVTTL or LVDS Outputs

o LVTTL: Receiver Mode
o LVDS: Repeater Mode

• LVDS failsafe per SpW standard
• Cold sparing for redundant backup
• Isolation voltage: 1 kVrms
• Working voltage: 100 V (common mode

voltage)
• Integrated DC-to-DC isolator to power cable-

side from module-side
• Cable-side receiver lines align well w/ SpW

cable receiver connections
• Ground-based device in 12-pin plastic package
• Space grade device in 12-pin ceramic package
• Silicon-on-Sapphire (SOS) technology
• Target Radiation Tolerance > 100 krad(Si) TID

(for Space grade)

V. BENEFITS OF RECEIVER-ONLY SPW ISOLATION

In addition to being smaller, lighter, and consuming less
power compared to a fully isolated SpW port, the Isolated SpW
Receiver allows greater flexibility in configuring a SpW
network and localizing isolation to the ports, nodes, and
modules that are required to handle higher common-mode
voltages. The floating ground within the SpW cable is avoided
since the signaling is referenced to the transmitter grounds on
either end of the cable.

VI. DEMONSTRATION MODULE

To demonstrate the high speed digital isolation capabilities
in a SpW application, a demonstration (demo) module for the
Isolated SpW Receiver was designed around the Silanna
SIL1020L 2-channel high-speed digital isolator device (Fig. 3).
A dual channel LVDS receiver (LV028 type) is used on the
cable-side of the isolator while a dual channel LVDS
transmitter (LV027 type) is used to interface with the module-
side. An isolated DC-DC converter is also included as an
option to power the isolated side of the module. Prototypes of
the module demonstrated the wide common mode range of the
isolated interface and the capability to handle the non-DC-
balanced pseudo-random data streams up to 400 Mbps.

Fig. 3. Isolated SpW Receiver Demo Module

84

With the appropriate SpW connectors on both ends of the
demo module, a SpW port’s receiver can be easily isolated and
tested by simply installing the demo module between the SpW
cable & the SpW connector and supplying power (3.3V) from
the target system. Optionally, SpW connector pigtail wires can
be used on the powered-side of the module to replace a
standard pigtail connector for testing. There are also
connection points between the SIL1020L high-speed digital
isolator and the LVDS transmitters (LV027) to allow
replacement of the existing LVDS drivers & receivers where
applicable.

Testing of the Isolated SpW Receiver demo module will
continue with tests in SpW environments that include both AC
and DC common mode voltages.

VII. CONCLUSIONS

The isolation of the receivers in a SpW port addresses the
limited common mode voltage range of standard SpW
connections. With an Isolated SpW Receiver both ends of a
SpW connection, there will not be a direct connection of the
devices at the two ends of the link; this severs the fault
propagation path between the two devices that could occur in
the event of a power supply failure.

Additional testing at Silanna and within the SpaceWire
community is needed to confirm the effectiveness of isolating
only the receivers of a SpW port.

.

REFERENCES

[1] European Space Agency - ECSS Secretariat, “ECSS-E-ST-50-
12C, Space engineering, SpaceWire – Links, nodes, routers and
networks,” 31st of July 2008, 129 pages

[2] M. Suess, J. Ilstad, W. Gasti, “Galvanic Isolated SpaceWire
Links, Requirements, Design Options and Limitations,” 2009
ESA Workshop on Reliable Power & Signal Interfaces

[3] R. Malmberg, “Failure Propagations via Power and Signal
Interfaces,” 2009 ESA Workshop on Reliable Power & Signal
Interfaces

[4] G. Baterina, Y. Moghe, P. Francois, and A. Senior, “Galvanic
Isolation of SpaceWire Links,” International SpaceWire
Conference 2013

[5] Y. Moghe, A. Terry and D. Luzon, “Monolithic 2.5kV RMS,
1.8V - 3.3V Dual-Channel 640Mbps Digital Isolator in 0.5μm
SOS,” SOI Conference (SOI), 2012 IEEE International, On
page(s): 1 - 2

85

90 nm 12.5 Gbit/s physical interface per SoC with
SpaceFibre/GigaSpaceWire links for the space radars

Components, Short Paper

Dmitri Skok, Tatiana Solokhina, Jaroslav
Petrichkovich, Juri Gerasimov

ELVEES RnD Center,
Zelenograd, Russia,
tanya@elvees.com

 Abstract — Тhe article presents 12.5 Gbit/s Physical Media
Attachment (PMA) units, TX and RX, fabricated in 90 nm bulk
CMOS process. The PMA are designed for use in
SpaceFibre/GigaSpaceWire (SpaceWire-RUS) systems for the
space radars. The units comprise SERDES and clock and data
recovery (CDR). Supported set of data rates includes those of
1.25, 2.5, 6.25 and 12.5 Gbit/s, but intermediate rates are also
available.

Index Terms — SoC, space components, SERDES, PMA,
SpaceFibre, GigaSpaceWire.

I. INTRODUCTION

The data transmission systems become more and more
demanding in terms of throughput. Driving applications of the
high-speed links include uncompressed video transmission and
wideband radio applications, including radars. SpaceFibre and
GigaSpaceWire networks are attractive solutions due to their
elaborate networking capabilities, though their throughput yet
can be a bottleneck for certain applications. This work
describes the integrated solution to achieve channel rates of up
to 12.5 Gbit/s per link using 90 nm bulk CMOS process.

II. MOTIVATION

As the bandwidth processed by the interface SoC increases,
datarate grows proportionally. This requires either more pins,
or more bandwidth per pin. Since the pin count increase is not
always possible or desirable for space and parasitics reasons,
one is seeking for higher throughput per pin. SpaceFibre is a
good choice for several reasons. Unlike protocols like
Jesd204b, it can be used both for bulk data transfer and
configuration, an also has extensive networking capabilities.

III. ARHITECTURE

The original application of the work is the SoC for phased
array radars. GigaSpaceWire was selected as the data interface
due to its ability to support both system configuration and
monitoring and high-speed bulk data transmission. Also, the
protocol is relatively lightweight in terms of silicon area.

The SoC can process radio data in the bandwidth as wide as
600 MHz. Signal received is digitized by the 12-bit quadrature

ADC. Sample rate after filtering and decimation is 700 MSa/s,
giving the total I/Q payload data rate of 16.8 Gbit/s. After
8b10b expansion this becomes 21 Gbit/s, not counting service
traffic. If the data is formatted as 16 bit words instead of
12 bits, the total rate required increases to 28 Gbit/s.

To alleviate this bandwidth requirements, several
techniques were used. Among them bit packing, block-floating
point representation, signal bandwidth limiting.

Nonetheless, at least one 12.5 Gbit/s link is required to
transmit useful amount of data, while 2x is needed for full
bandwidth.

There are four GigaSpaceWire physical interfaces per SoC,
that can be configured as 4*1x, 2*2x or 1*4x.

Despite this high data rate, the distance requirements are
not very high in this application. Since the data are processed
collectively by units, only the links to the neighbors are
required. Typically, there are few centimeters of PCB.

To address the speed requirements, the corresponding TX
and RX PMA units were designed. The link speed is up to
12.5 Gbit/s. From the internal side, data is fed over 4*10 bit
bus at the clock rate of up to 312.5 MHz.

The TX unit performs data serialization. Internally, data are
fed by the 40-bit parallel interface, 4 symbols per clock.
Reference clock may by any from 200 MHz to 600 MHz in
50 MHz increments. For 12.5 Gbits/s the minimum clock
frequency is 350 MHz.

The output provides typical 400 mV p-p differential into
100 ohm load. It also provides high frequency pre-emphasis
 [1].

The RX unit performs clock-and-data recovery and data
deserialization, based mostly on [2]. It also has 40-bit data
interface and similar clock specification. The data alignment
and error detection are performed in the digital domain.

The unit does not perform adaptive equalization.

IV. PROOF ON SILICON

To test end evaluate the PMA modules, test chips were
fabricated. The process is TSMC bulk CMOS 90 nm, 7 metal
layers.

86

To feed the TX unit with the 12.5 Gbit/s data over external
CMOS IO pins, one would need 100 of them at 125 MHz
clock, and the same number for RX. This would require 200+
pins package. Such package would have considerable size,
hence, parasitics, and cost.

To keep the pin count low, we placed essential data pattern
generation and checking logic on-chip, accessible over serial
interface. This allowed us to fit the chip, containing also other
test structures, into a compact 64-pin QFN package.

The logic provides the following features and functionality:
 configuring TX and RX units for various bit rates and

reference clock frequencies;
 sending either pre-defined or user-programmable 40-

bit patterns;
 sending pseudo-random legal 8b10b sequence;
 capturing 40-bit words received;
 counting of total words received;
 counting of bit errors when transmitting static 40-bit

pattern into Bit Error Counter (BEC);
 counting bit errors when transmitting pseudo-random

sequence into BEC;
 automatic capturing the first word, containing bit

error.
The test fixture is interfaced with PC over USB.
The PC control and monitor software allows easily perform

operations like atomically setting and clearing individual bits in
the pattern transmitted, automatic and manual alignment,
pattern shifting, real-time BER display, RX data rate, etc.

In the first mode of operation, one can send arbitrary static
pattern and observe the one received, (fig. 2).

 Fig. 2. Static pattern testing.

In this mode, bit errors are counted as number of bit
difference between successive two words received. For
instance, flipping any bit in TX pattern would increment BEC
by one. This approach would underestimate BER when some
bit is received erroneously several times in sequence.
Nevertheless, on the first occurrence, the error would be
counted, and the word containing it would be captured for
analysis.

If the pattern transmitted contains COMMA, the RX would
align automatically once. It can then be reset for realignment, if
necessary.

In the second mode, the TX initially sends starting
sequence, containing COMMA in every 4-th symbol. RX
aligns to that sequence and goes to the “READY” state. When
the TX then eventually switches to sending pseudo-random
sequence, RX notices the pattern change and starts to compare
the sequence received with that of the local pseudo-random
generator. Thus, every bit error can be counted in BEC and the
true BER measured (see fig. 3).

Fig. 3. Random sequence testing.

Two types of PC-boards were fabricated, one for local
loopback (see Figure 1), and another for wired board-to-board

Fig. 1. PC board with local loopback.
or wired loopback configuration. In the latter case, a SATA
cable with appropriate connectors was used.

V. RESULTS.

Test chips were tested for speeds 1.25 Gbit/s, 2.5 Gbit/s,
6.25 Gbit/s and 12.5 Gbit/s.

Samples show reliable communication at rates 1.25 and
2.5 Gbit/s over local loopback and board-to-board over 30 cm

87

cable showing BER<10-13 (no bit errors detected during 3 hour
testing).

For the two higher rates results are varying. Local loopback
shows BER of about 10-11at 6.25 Gbps and 10-9 at 12.5 Gbps.

Over 10 cm cable BER is 10-10 at 6.25 Gbps and 10-5 at
12.5 Gbps. With 30 cm cable BER is still below 10-7 at
6.25 Gbps, but at 12.5 Gbps the communication is unreliable.

VI. CONCLUSION

The implemented and tested PMA subsystem supports link
rates of up to 12.5 Gbit/s per link. Test structures were
fabricated in 90 mn bulk CMOS process and tested.

The units are suitable for chip-to-chip communication
within PCB at speeds up to 12.5 Gbps.

For use over longer cable lines, RX equalization would be
required.

REFERENCES

[1] Jin Liu, Xiaofeng Lin, “Equalization in high-speed
communication systems”, IEEE Circuits and Systems Magazine
Year: 2004, Volume: 4, Issue: 2

[2] Jri Lee, B. Razavi, “A 40-Gb/s Clock and Data Recovery Circuit
in 0.18-um CMOS Technology,” IEEE JOURNAL OF SOLID-
STATE CIRCUITS, VOL. 38, NO. 12, DECEMBER 2003.

88

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jri%20Lee.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.B.%20Razavi.QT.&newsearch=true

Innovative miniaturization for low resource

interplanetary exploration
Components, Short Paper

Seisuke Fukuda, Takayuki Ishida

Institute of Space and Astronautical Science (ISAS)

Japan Aerospace Exploration Agency (JAXA)

Sagamihara, Chuo-ku, Kanagawa, Japan

{fukuda@isas., ishida.takayuki@}jaxa.jp

Hiroki Hihara, Yoshinori Matsuo,

Mitsunobu Kuribayashi, Hiroshi Matsushima

Space Engineering Division

NEC Space Technologies, Ltd.

Tokyo, Japan

{h-hihara@bc, y-matsuo@pi, m-kuribayashi@cp,

h-matsushima@wx}.jp.nec.com

Takahiko Tanaka, Osamu Watanabe

Space Systems Division

NEC Corporation

Tokyo, Japan

{t-tanaka@dy, o-watanabe@ak}.jp.nec.com

Koichi Shinozaki, Toshiyuki Yamada

Aerospace Research and Development Directorate

Japan Aerospace Exploration Agency (JAXA)

Tsukuba, Ibaraki, Japan

{shinozaki.koichi, yamada.toshiyuki}@jaxa.jp

Abstract— The Japan Aerospace Exploration Agency (JAXA)

launched new research aiming at realizing low resource and

frequent space science mission. We report the development

activity for realizing miniaturization of onboard equipment using

SpaceWire. The technology development target is the

miniaturization of onboard units, which are small enough for

deploying interplanetary mission with small rockets as Epsilon

Launch Vehicles. Since SpaceWire interface consists of full

digital circuitries and its communication protocol enables

hardware implementation, Large Scale Integration (LSI)

technology, surface mounting technology (SMT), and ceramic

ball grid array (CBGA) packages are exploited for the

miniaturization of onboard equipment with communication

interfaces. The preliminary result shows that one half and/or one

third in scale and mass can be realized.

Index Terms— SpaceWire, Surface Mounting Technology

(SMT), Interplanetary Mission, Miniaturization.

I. INTRODUCTION

JAXA launched new research aiming at realizing low

resource and frequent space science mission. The technology

development target is the miniaturization of onboard

equipment, which is small enough for deploying interplanetary

mission with small rockets as Epsilon Launch Vehicles. Since

SpaceWire interface consists of full digital circuitries and its

communication protocol enables hardware implementation, it

plays an important role for the miniaturization of onboard

equipment with communication interfaces. We report the

preliminary result of our development activity, in which one

half and/or one third in scale and mass of onboard equipment

can be realized with SpaceWire interfaces.

The key technologies are miniaturization using Large Scale

Integration (LSI), surface mounting technology (SMT), and

ceramic ball grid array (CBGA) packages. LSI technology is

the straight forward method for downsizing, and a fully

SpaceWire based satellite has been successfully demonstrated

on orbit by HISAKI [1, 2], the extreme ultraviolet spectroscope

for Exospheric Dynamics, launched in 2013 and is working in

stable condition. All onboard bus equipment of HISAKI

employs SpaceWire interfaces, and scaling law with LSI

technology is observed. CMOS (complementary metal-oxide

semiconductor) LSI scaling law is also inherited for the

downsizing of onboard equipment. SpaceWire interface plays

an important role on HISAKI, which realizes scaling law of

miniaturization for straight forward adoption of LSI technology.

We also report the evaluation result of environment tests of

miniaturization technology such as surface mounting

technology using versatile CBGA packages. These items are

applicable for various LSI dies.

The miniaturization of SpaceWire based onboard

equipment enlightens downsizing of other subsystems such as

thermal control, structure, power unit, etc. These improvements

are expected to accelerate the downsizing of whole satellite

system.

II. MINIATURIZATION DEMOSTRATED BY HISAKI

Spectroscopic Planet Observatory for Recognition of

Interaction of Atmosphere "HISAKI" (SPRINT-A) is the

world's first space telescope for remote observation of the

planets such as Venus, Mars, and Jupiter from the orbit around

the earth. Every bus equipment of HISAKI employs SpaceWire

for communication interfaces. Its attitude and orbit control

89

(a)

(b)

(c)

subsystem (AOCS) has standby redundancy, whereas the mass

is only 348kg and the bus size is small as shown in Fig. 1 with

the payload of Extreme-ultraviolet (EUV) imaging

spectrometer.

©JAXA

Fig. 1. HISAKI (SPRINT-A) with a system test crew member

Miniaturization of HISAKI has been achieved by LSIs with

SpaceWire interfaces. All communication LSIs incorporate

SpaceWire interfaces as shown in Fig. 2, and they contributed

the reduction of size and mass of bus equipment of HISAKI.

NSR14 is a SpaceWire router with 20 ports, on which 14

physical ports and 6 virtual ports are implemented. It is shown

in Fig. 1 (a). It is fabricated on JAXA authorized 0.15 μm

Silicon-on-Insulator (SOI) cell-based application-specific

integrated circuit (ASIC). Two 28-port SpaceWire routers are

used in HISAKI, and one SpaceWire router accommodates 2

NSR14 LSIs.

Multi-mode Intelligent Terminal (MIT) shown in Fig. 2 (b)

is an input/output processor (I/O processor) with an 20-port

SpaceWire router and 2 communication micro-controller units

(MCUs), which is also fabricated on JAXA authorized 0.15 μ
m SOI cell-based ASIC. One MIT is used in Space Cube2

onboard computer in order to implement SpaceWire-D [3] for

guaranteeing determinism [4, 5].

Network Interface Controller (NIC) is a terminal function

controller LSI with the target function of Remote Memory

Access Protocol (RMAP) [6]. The first version of NIC is

NIC07, which is shown in Fig. 2 (c), and it is fabricated JAXA

authorized 0.35 μm CMOS cell-based LSI. The circuitry

implemented in NIC07 is prepared as an Intellectual Property

(IP) in order to accommodate its functions in Field

Programmable Gate Arrays (FPGAs) for the interface modules

of sensors, actuators, power control subsystem equipment,

heater control electronics units, and telecommunication

equipment.

All of the design was described in high level language as

ANSI-C language using ELEGANT framework [7] in the

preliminary design phase, in consequence the verification time

scale was shorter than the design process using Register-

Transfer Level (RTL) like Verilog or VHDL (VHSIC (Very

High Speed Integrated Circuit) Hardware Description

Language). Therefore, these SpaceWire communication LSIs

were intended to contribute the miniaturization of onboard

equipment rather than aiming at developing a standard

SpaceWire communication LSI.

© JAXA

Fig. 2. SpaceWire communication LSIs (a) NSR14: 20-port SpaceWire router,

(b) MIT: Multi mode Intelligent Terminal with an 8-port SpaceWire

router and two communication micro-controller units, (c) NIC07:
Network Interface Controller with SpaceWire/RMAP terminal functions.

90

(a)

(b)

(a)

(b)

III. SURFACE MOUNTING TECHNOLOGY FOR MINIATURIATION

Since the miniaturization development with LSIs with

SpaceWire interfaces were successfully demonstrated by

HISAKI, JAXA has started the next step of miniaturization.

Major technology development activities are SMT and

providing versatile CBGA packages.

A. Surface mounting technology (SMT)

SMT is the most prospective technology for the

miniaturization of protocol bridges between SpaceWire and

legacy interfaces. When we incorporate legacy interface

devices used for sensors and actuators, we should integrate

mixed signal LSIs, analog Integrated Circuit (IC) as well as

logic ICs and LSIs. Hybrid IC (HIC) and multi-chip module

(MCM) are candidates for integrating those mixed signal

devices in one package, whereas the packages of HIC/MCM

are obstacles for achieving substantial miniaturization. We aim

at miniaturized units without HIC/MCM packages instead.

The miniaturization development activity is in concept

design phase, in that we have collaboration between overseas

partners in order to realize smart sensors and smart actuators

for integrated onboard networks with SpaceWire. We selected

an interface module with a SpaceWire interface for converting

the legacy interfaces of sensors like GAS (Geomagnetic aspect

sensor), CSAS (Coarse sun aspect sensor), and SPSH (Sun

Presence Sensor Head) as the motif of the first step, because it

has typical mixed signal interfaces.

The result of Europe and Japan collaboration

Fig. 3. A mockup of miniaturized SpaceWire bridge

Figure 3 shows the mockup of concept design derived

through the collaboration between European and Japanese

members. Figure 3 (a) shows the design concept of the

SpaceWire bridge for a legacy interface, and Fig. 3 (b) shows a

mock up using real size components with the same functions as

flight devices. Two A5 size modules are expected to be shrunk

into the size of a connector back-shell. What we found is that

the smaller the module is, the less numbers of passive

electronic components and mechanical parts are required.

B. Versatile Ceramic Ball Grid Array (CBGA) package

BGA packages are indispensable components for

miniaturization. The issue of the package is that a BGA

package and/or a CGA (Column Grid Array) are provided for

each device, and each device vendor has to bear non-recurring

cost for each package.

© JAXA

Fig. 4. JAXA authorized CBGA package, (a) top view, (c) side view

TABLE I. CBGA PACKAGE LINEUP

Item Spaceborn CBGA package lineup

size,

pin numbers,
terminal pitch

26 x 26 mm,

572 pin,

1.0 mm pitch

21 x 21 mm,

357 pin,

1.0 mm pitch

15 x 15 mm,

165 pin,

1.0 mm pitch

Cavity 4 steps 4 steps 2steps

Soldering
High melting point dimple solders

SnPb soldering for terminals

Figure 4 shows the top view (a) and side view (b) of the

JAXA authorized CBGA 572 pin package. Three types of the

CBGA packages are to be provided as shown in Table 1. These

packages are provided with JAXA authorized assembly criteria

document, and various kinds of chips of devices can be

mounted inside the CBGA package. The environmental

evaluation based on JAXA authorized test condition is

successfully carried out.

91

(a)

(b)

IV. ELECTRICAL DESIGN EVALUATION

Electrical design evaluation follows the consideration of

assembly technology reported in the preceding section. The

issue of the evaluation is to find out how assembly technology

contribute to the minimization of electrical design. We selected

a SpaceWire bridge for RS-422 interface as the second motif,

which is called Payload Interface Unit (PIU). The typical flight

model of the bridge unit is used on orbit in order to attach a

conventional Global Positioning System Receiver (GPSR) to

an onboard satellite bus within SpaceWire network, and is

shown in Fig. 5 and Table II.

PIU: RS-422 to SpaceWire bridge

Fig. 5. Payload interface unit (PIU) for GPSR

TABLE II. PAYLOAD INTERFACE UNIT (PIU) FOR GPSR

Supported sensor GPS receiver

Size (mm) 142 (W) x 150 (D) x 81.4 (H)

Weight (kg) 1.46

Power (W) 6.51 (typical)

The original PIU has its own power supply unit (PSU) for

providing secondary power, and two PWBs for digital function

circuitry.

We exclude the PSU for evaluating minimization design in

order to set up a scope on minimization of digital circuits. The

electrical functions of the miniaturized module are verified,

and the module has the same function as the original PIU. We

found that the miniaturization of a unit is difficult from the

bottom-up design consideration of minimization through this

evaluation. The reduction of passive electronics devices and

interface devices are taken into consideration from the top-

down point of view encouraged by the preceding assembly

technology evaluation. The verified module with a surface

mounted FPGA using surface mount technology is shown in

Fig. 6. Two radiation hardened FPGAs are used in the flight

model of the PIU. They are ACTEL FPGAs RTAX2000S-

CQ352. The whole functions on two FPGAs are implemented

on one commercial FPGA with similar system gate size. We

selected one Spartan-6 XC6SLX25-3FT256 for our evaluation,

because its capacity is close to the FPGAs for the flight unit as

shown in Table III. Some flight level FPGAs found to be

suitable for the flight model of this one chip implementation,

because the elimination of interface circuit between two

FPGAs is noticeable for the reduction of system gate size.

TABLE III. EVALUATION MODEL FPGA

Item Flight Model Electrical evaluation model

FPGA RTAX2000S-CQ352 Spartan-6 XC6SLX25-3FT256

Flip-Flops 10,752 x 2 54,576

Memories 288 kbits x 2 2,088 kbits

I/Os 198 pins 186 pins

The target size of the miniaturized module is expected as

39 mm x 48 mm x 10 mm at first with the premise that whole

circuit over the two PWBs can be transposed into one FPGA.

Once the target size is established, the reduction of the

numbers of passive electronics devices and interface circuitries

is taken into account.

© JAXA

Fig. 6. Payload interface unit (PIU) for GPSR

V. CONCULUSION

JAXA’s next generation miniaturization technology

development activity is introduced. The premise of reduction in

size is based on the evaluation of assembly technology and

92

versatile JAXA authorized CBGA packages. The perspective

of miniaturization boosts the simplification of electronics

design.

REFERENCES

[1] S. Fukuda, "Small Bus Technology for Scientific Satellites -

Accomplishments of HISAKI/SPRINT-A and Future

Perspective -," IEICE Technical Report, SANE2014-12, May

2014.

[2] K. Nakaya, S. Fukuda, S. Sakai, A. Yamazaki, K. Uemizu, T.

Toriumi, J. Takahashi, M. Maehara, T. Okahashi and S. Sawai,

"Development of Flexible Standard Bus for ISAS/JAXA Small

Scientific Satellite Series," Trans. JSASS Space Tech. Japan,

vol.10, no.ists28, pp.Tf_5-Tf_9, 2012.

[3] Space Technology Centre, School of Computing, University of

Dundee, "SpaceWire-D, Deterministic Control and Data

Delivery Over SpaceWire Networks", April 2010.

[4] T. Takahashi, T. Takashima, S. Kuboyama, M. Nomachi, Y.

Kasaba, T. Tohma, H. Hihara, S. Moriyama, T. Tamura, "Space

Cube 2 - An Onboard Computer Based on Space Cube

Architecture, " International SpaceWire Conference 2007, p.65-

68, September 2007.

[5] H. Hihara, T. Ogawa and K. Kitade, "NEXTAR: Small Satellite

Bus Based on SpaceWire Deterministic Implementation,"

International SpaceWire Conference 2011, p.344-347,

November 2011.

[6] European Space Agency, ECSS-E-ST-50-52C, "Space

engineering, SpaceWire - Remote memory access protocol",

February 2010.

[7] H. Hihara, Y. Nishihara, M. Nomachi, T. Takahashi, and T.

Takashima, "Designing Space Cube 2 with ELEGANT

Framework, " International SpaceWire Conference 2008, p.219-

222, November 2008.

93

Wednesday 26 October

94

 Missions & Applications (Long)

95

Common SpaceWire Software for

ESA JUICE Instrument Payloads
SpaceWire Missions and Applications, Long Paper

Martin Åberg, Daniel Hellström, Arne Samuelsson,

Felix Siegle, and Sandi Habinc

Cobham Gaisler AB

Gothenburg, Sweden

[maberg | daniel | arne | felix | sandi] @gaisler.com

Felice Torelli

European Space Agency

Noordwijk, The Netherlands

felice.torelli@esa.int

Abstract—The common DPU platform for ESA JUICE mission

instruments is a hardware and software platform developed by

Cobham Gaisler for the scientific instrument payloads of the

European Space Agency Jupiter Icy Moons spacecraft. The

hardware is based around the GR712RC dual-core LEON3-FT

processor with GRSPW2 SpaceWire interfaces. To accompany

the JUICE instrument hardware, a flight quality SpaceWire

software package has been developed, compliant with ESA ECSS

standards for Space Software engineering. The software includes

SpaceWire device drivers and protocol support for the

SpaceWire CCSDS Packet Transfer Protocol, the Packet

Utilization Standard and the SpaceWire Time Distribution

protocol.

Index Terms—JUICE, Scientific Instrumentation, SpaceWire

I. INTRODUCTION

Defining a common hardware and software platform for

computer systems in a spacecraft is difficult as space missions

and their instruments are dedicated to perform a specific task

optimized for weight, power, performance and many other

parameters. Despite differences, instruments may have many

commonalities such as operating conditions, radiation

environment, criticality and on-board network communication

protocols and more.

As part of the ESA funded activity "DPU for JUICE

Instruments" contract 4000113396/15/NL/BW, Cobham

Gaisler designed a DPU (Digital Processing Unit) hardware

and software platform to meet the common requirements of ten

payloads on-board the JUICE satellite [1]. ESA had compiled

functional and performance requirements and demanded

components with flight heritage, radiation tolerant up to

100krad(Si) total dose, configurable in the performance range

up to 100 MIPS and working memory up to 256MiB. Cobham

Gaisler proposed adaptations and realized the requirements into

a platform based on the GR712RC LEON3-FT dual-core

processor [2] described hereafter.

During the activity boot and driver software supporting the

DPU platform was to be developed, unit-tested, validated and

documented according to project specific tailoring of the

ECSS-E-ST-40C and ECSS-Q-ST-80C software engineering

and quality standards [3], [4].

The software package consists of a boot loader, Standby

Mode remote maintenance software and a hardware driver

library. The boot follows the ESA flight software boot loader

payload requirements [5] and the driver software was designed

to provide low-level support for the I/O functionality of the

GR712RC.

The project started in February 2015 and completed in June

2016.

This paper describes the common DPU platform for ESA

JUICE mission instruments and then continues with a

discussion on the protocol software support for SpaceWire in

use on the platform. It also describes tools and techniques used

for unit testing and validating SpaceWire-based software in

simulation and on target hardware.

II. DPU PROCESSOR SECTION

In the DPU architecture proposed the GR712RC LEON3-

FT dual-core processor [2] from Cobham Gaisler is a natural

choice to meet the requirements of CPU processing

performance, memory architecture and I/O interfaces. It is

beneficial from a power consumption, complexity and

performance perspective using the GR712RC in this design

since it provides all the identified I/O interfaces without the

need to interface to additional components. With the clock-

gating, I/O pin multiplexing and memory interface options, the

GR712RC allows a power effective and modular design

concept that is configurable to each instrument's specific needs.

The DPU design memory configuration options, I/O interfaces

and major component selections are summarized below.

 GR712RC 2 x LEON3-FT, 32KiB cache [2]

 Boot Memory [6]

 32KiB PROM (UT28F256LVQLE)

 2MiB MRAM (UT8MR2M8)

 Application memory [6]

 2MiB MRAM (UT8MR2M8)

 8MiB MRAM (UT8MR8M8)

 Working memory [6]

 SRAM 4MiB BCH (UT8R1M39)

96

 SRAM 8MiB BCH (UT8R2M39)

 SRAM 16MiB BCH (UT8R4M39)

 SRAM 32MiB BCH (2xUT8R4M39)

 SDRAM 256MiB RS (UT8SDMQ64M48)

 4 x SpaceWire (UT54LVDS031LV/E) [6]

 FPGA interface:

 32/16- or 8-bit I/O interface (buffered)

 SpaceWire

 SPI, 6 x UARTs, GPIOs

 I2C, CAN, 1553B-MIL, Ethernet (free to use)

A block diagram of the DPU design is given in Fig. 1.

Once the DPU is deployed in a final flight design the

instrument manufacturer typically wants to configure and

optimize schematics and optimize the layout for the

instrument's specific needs. The analyses provided with the

common DPU design may need to be adapted and refined for

the flight board but serve as a strong starting point for the

analyses reiteration.

A prototype system of the DPU design has been

manufactured and is available in different configurations. The

DPU prototype is a flight model instantiated on a 100mm x

100mm PCB carrying components of EM quality for all major

components and logic.

The DPU prototype can be installed onto a commercial

grade motherboard that provides connectors for all the listed

interfaces, debugging capabilities, FPGA expansion slot,

GR712RC switch matrix configuration, etc. The motherboard

features multiple separate voltage rails, individually

configurable voltage levels and voltage/current measuring

circuitry which was used during hardware verification to

characterize the power dissipation and to test the accuracy

under +/-10% and 0% of the nominal voltage supply levels.

The photo in Fig. 2. illustrates one of the manufactured

DPU prototypes. Centered is the GR712RC processor and to

the right of it is an MRAM type application storage memory.

Boot memory, working memory and SpaceWire transceivers

are located on the opposite side. At top and bottom of the photo

are the connectors for mounting the DPU prototype on its

motherboard.

Fig. 2. DPU EM Prototype (back side)

III. HARDWARE DRIVER SOFTWARE LIBRARY

The purpose of the Hardware Driver Software Library

Fig. 1. DPU block diagram

97

(HDSW) is to provide drivers for operating a subset of the

peripheral devices available on the GR712RC. Supported

interfaces include SpaceWire, UART, SPI, GPIO, timers and

more. This software is provided to the instrument

manufacturers for incorporating in their instrument specific

application software.

The drivers are compatible with RTEMS 4.10 [8].

However, all operating system services used by the driver

library are called via an operating system abstraction layer,

which in effect makes the driver library OS independent. For

example, the DPU Boot SW uses the timer and SpaceWire

drivers from HDSW, but with a custom OS backend adapted to

the Boot SW run-time.

A user friendly Application Programming Interface (API)

has been defined with the instrument application programmer

in mind. All drivers operate in nonblocking mode with the

option for the user to install interrupt handlers if required by

the application. RAM buffers used by the drivers are allocated

statically either by the user or by the driver. It is possible to

operate the drivers without relying on dynamic memory

allocation.

IV. DPU BOOT SW

DPU Boot SW is responsible for taking the DPU from

system reset state to the execution of scientific instrument

application software. The software consists of three parts

which execute in sequence: Processor Module Initialization,

Standby Mode and Application Loader. The Boot SW

implementation represents a tailoring of the ESA published

requirement document Flight Computer Initialization Sequence

[5]. This software is designed to execute on each of the JUICE

instruments on startup.

The Processor Module Initialization sequence is

responsible for configuring the GR712RC [2] hardware and

perform self-tests on system resources. Any hardware

functions which are not required for the operation of Boot SW

are configured in a disabled mode. As each self-test progress,

the result is written in a boot report which is later available via

SpaceWire network service and to the instrument application.

The early stages of the initialization sequence is implemented

in SPARC assembly, and later when the RAM resource is

made available, a C runtime environment is setup and used.

Standby Mode implements a PUS (Packet Utilization

Standard) [9] terminal operating over SpaceWire. The PUS

protocol has been tailored for low implementation complexity,

high testability and for performance. Remote services are

provided for managing on-board memory and to perform

system specific operations such as protecting the MRAM

resource. The memory service allows for managing the

application storage memory, for example in-mission remote

patching of an application image. RMAP is also available for

low-level system access.

One SpaceWire interface at a time is used by Standby

Mode. Dual redundant SpaceWire links are supported by a link

reconfiguration manager implemented in software which can

select among two interfaces. A scrubbing service is responsible

for updating external RAM and caches memories.

SpaceWire Time Distribution Protocol (TDP) [10] is used

to synchronize time with the on-board computer and all PUS

telemetry packets are timestamped with the synchronized time.

The Application Loader is started when Standby Mode

terminates. It can be triggered by a PUS TC command or a

PUS TC timeout condition. Its purpose is to load, verify and

start executing an instrument specific application software. A

flexible application image format has been defined which

allows for dividing the application software into individual

sections where each section is protected with a CRC16 value.

This allows for remote partial application patching using the

PUS memory service.

V. SOFTWARE DESIGN METHODOLOGY

A rich set of configuration parameters are available for

customizing the DPU Boot SW. This includes setting memory

and SpaceWire properties and also allows for setting mission

and timing properties. In particular, the full range of supported

DPU configurations is covered by the software configuration

parameters.

DPU Boot SW can be configured to execute on the

GR712RC development board [11] in case the JUICE DPU

hardware is not available.

A set of methodologies are being used to reach a high level

of software determinism and to ease software testing:

 Boot SW uses its own custom run-time and thus does

not depend on an operating system.

 Boot SW operates without interrupts and HDSW is

not dependent on it.

 Boot SW has as default action to restart the system in

the event of an unexpected trap.

 No dynamic memory allocation is used by Boot SW

or the driver library.

 Third party source code is not used. The C standard

library is not used.

 Hardware parameters are not probed by software.

VI. NETWORK PROTOCOL STACK

The SpaceWire network stack as used in the JUICE DPU

Boot SW consists of the following components, from lower to

higher protocol level:

 GRSPW2 (SpaceWire hardware interface)

 SpaceWire packet driver (HDSW)

 RMAP (GRSPW2)

 Time Distribution Protocol (Standby Mode)

 Link Reconfiguration Service (Standby Mode)

 CCSDS Packet Transfer Protocol (Standby Mode)

 Packet Utilization Standard (Standby Mode)

Careful design allows for network data buffers to be

transferred up and down the stack without involving copying of

data with the CPU. In general this is achieved by passing

pointers between the layers after performing the necessary

encapsulation/decapsulation and header validations. The

protocol components are described in following sections.

98

VII. DPU SPACEWIRE HARDWARE

The GR712RC provides up to 6 SpaceWire hardware

interfaces (GRSPW2) where the first two features a hardware

implemented RMAP target. GRSPW2 provides an interface

between the GR712RC system bus and the SpaceWire network

and provides DMA access to the DPU memories. The DPU

schematics include the two first SpaceWire interfaces and two

are optionally free to use. Up to two SpaceWire interfaces are

used and controlled by the DPU Boot SW.

VIII. SPACEWIRE PACKET DRIVER

The SpaceWire driver is part of the HDSW driver library. It

provides a packet-based zero-copy interface, a link

configuration interface and time-code interface. Memory

footprint for the SpaceWire driver is less than 4 KiB, excluding

packet buffers.

The driver link interface provides software control of how

the GRSPW2 interfaces to the SpaceWire link. It allows for

configuring SpaceWire clock frequency, node addresses, link

state and receiving Time-codes. Status monitoring such as link

state is also supported.

RMAP functionality is controlled by the link interface but

the actual RMAP protocol is implemented in hardware.

The purpose of the driver packet interface is to provide a

software API to the GRSPW2 DMA channels. Each

SpaceWire packets is associated with a software structure

describing the packet. These software structures can be linked

together for the user to perform driver operations on multiple

packets in one go.

Manipulation of GRSPW2 DMA descriptor tables is the

main responsibility of the packet interface: when the driver is

supplied with a list of packets, the descriptor table is updated

accordingly with the new packets. One key point is that the

driver never copies or interprets the packet payload data (zero-

copy). It also means that the processor time consumed by the

driver does not depend on payload sizes.

The main descriptor table manipulation operations

available to the user are:

 grspw_dma_tx_send(): Schedule a list of packets for

transmission.

 grspw_dma_tx_reclaim(): Reclaim packets which

have previously been scheduled for transmission with

grspw_dma_tx_send().

 grspw_dma_rx_prepare(): Provide driver with RX

packet buffers for future DMA reception.

 grspw_dma_rx_recv(): Get received RX packet

buffers back from the driver.

IX. LINK RECONFIGURATION SERVICE

Two separate SpaceWire interfaces in redundant

configuration are available on the DPU. A link reconfiguration

service is designed based on ESA requirements for the on-

board network for the purpose of mitigating against sporadic

and long-term network errors. The service runs periodically in

Standby Mode operation to determine which of the two

SpaceWire interfaces shall be selected as the primary interface.

A link quality algorithm qualifies the nominal and

redundant interface by monitoring them for link state changes

and for link errors. The qualification outcome is used to

determine which of the SpaceWire interfaces to select as the

primary interface to operate on. In Standby Mode operation, the

primary interface is used for sending TM reports. Valid TC

commands are always processed, independent on which

interface they arrive on. The primary interface is also used for

the SpaceWire Time Distribution Protocol (TDP).

Link reconfiguration is optional as the DPU can be

configured with only one SpaceWire interface (dual-redundant

DPU configuration).

X. CCSDS PACKET TRANSFER PROTOCOL

CCSDS packet transfer protocol [12] is a protocol for

transferring CCSDS packets across a SpaceWire network. The

protocol does not guarantee packet delivery or packet order,

and there is no transfer confirmation and no quality-of-service

provided. A simple encapsulation / decapsulation scheme is

defined [12], with two main services:

 A transmission service is called from the PUS layer

and encapsulates a CCSDS packet into a SpaceWire

packet for processing by the SpaceWire packet driver.

 A reception service gets a SpaceWire packet from the

SpaceWire packet driver layer. It decapsulates it and

eventually passes a CCSDS Space Packet up to the

PUS layer. Target logical address and protocol

identifier fields are checked according to

configuration parameters.

Since the protocol CCSDS Packet Transfer Protocol field

length is known and fixed, the Standby Mode implementation

does not perform any copying in this layer. After validation,

the data buffer is forwarded with an adjusted pointer value.

XI. PACKET UTILIZATION STANDARD

The Packet Utilization Standard (PUS) [9] is used for end-

to-end transport of telemetry and telecommand data between

user applications on the ground and application processes on-

board the DPU. Specifically, PUS defines application-level

interfaces between ground and space.

PUS relies to a large degree on mission tailoring, both with

regard to the set of supported services and with regard to

packet structure layouts. In the case of DPU Boot SW, the

services tailoring is defined by the Flight Computer

Initialization Sequence [5] while packet structure tailoring was

set by ESA and Cobham Gaisler as part of the project

specification. Driving factors for the tailoring has been to

reduce implementation complexity and achieve high testability

and run-time performance.

Supported services include:

 Telecommand verification (PUS service 1)

 Housekeeping (PUS service 3)

 Event reporting (PUS service 5)

 Memory management (PUS service 6)

 Function management (PUS service 8)

 Connection test (PUS service 17)

99

XII. SPACEWIRE TIME DISTRIBUTION PROTOCOL

The DPU implements a SpaceWire Time Distribution

Protocol (TDP) [10] client for synchronizing its local time with

the on-board time from an on-board TDP master.

Time information is transferred by an RMAP write

command carrying a CCSDS Time Code. The synchronization

event is signaled by means of transferring a SpaceWire time

control code (Time-Code) which activates the corresponding

CCSDS Time Code.

Both RMAP and SpaceWire time control codes are

supported in hardware by the GR712RC. However, the TDP

protocol itself is not directly supported. The solution was to

make use of the hardware support and implement the time

synchronization/activation in software. When a SpaceWire

time control code arrives, software compares it with the last

CCSDS Time Code received over RMAP to qualify it. To

calculate time-offsets for the local time, the software

implementation uses an event time-stamping functionality

available in the processor.

One time synchronization per second is accepted by the

Standby Mode as demanded by the mission requirements. Each

PUS telemetry packet sent by the DPU contains the local time.

XIII. UNIT TESTING

The SpaceWire software unit test effort aims to provide

confidence that the various software components comply with

their specification on a per-function level. These tests are

designed to execute on both the target prototype hardware and

in the TSIM2 SPARC/LEON3 simulator [13]. A unit test

framework has been developed which allows script-based

execution and logging of the tests.

Software units are tested in isolation by using mock

routines at the borders of the tested unit. A custom assert-like

function library is implemented in the unit test framework and

used to describe and verify the expected unit behavior and

invariants.

Execution times for the SpaceWire driver are recorded by

the unit tests when running on prototype hardware. This is

achieved by the test framework sampling a timer. Measuring

time samples recorded while executing the functions under test

with various function parameters are used to provide realistic

bounds on execution time.

TSIM2 [13] is integrated into the test framework to

automatically extract code coverage reports. Instruction level

code coverage for the JUICE SpaceWire software is 98 %. For

software branches not covered by unit tests, the code has been

manually analyzed and put into context with corresponding

validation test cases to provide evidence of full coverage.

XIV. VALIDATION

A validation framework for the DPU software has also been

developed. It is used to validate the software requirements and

exercise the full DPU software, including the SpaceWire

network stack.

In the validation setup, DPU Boot SW runs on the DPU

prototype board connected with two SpaceWire interfaces to a

GRESB SpaceWire/Ethernet bridge [14]. The GRESB is

connected to a workstation PC. The PC executes a validation

test suite which sends PUS telecommands over the SpaceWire

network via the GRESB to the DPU (PUS terminal). Side-

effects of the telecommands are verified by investigating PUS

TM reports. The side-effects can also be timeouts, restarts, link

reconfigurations or expected TM omissions. The validation test

setup is illustrated in Fig. 3.

Fig. 3. DPU validation setup

At the heart of the validation framework is a Tcl [15]

library developed for communicating with the GRESB and

simplifying common operations such as matching TM

responses, performing multiple TC uploads and system restart.

This gives a streamlined path from specification of validation

test cases, to test implementation and execution.

A large part of the validation framework consists of the

PUS TC generator and TM validator. Functionality is also

available for generating TDP traffic, injecting erroneous

packets on different network layers, and for controlling the

SpaceWire link state. Link state control is used to validate

operation of the Boot SW link reconfiguration service.

A set of sample application software images have been

prepared to validate the system state at handover to application

software.

To facilitate visibility of temporal software behavior, the

DPU Boot SW has a built-in execution time monitoring per

task which can be used to bound effective execution time.

Time measurements are reported via a housekeeping report

service monitored by the validation framework running on the

PC.

A separate driver validation software, running on RTEMS

4.10 [8], is also available. It exercises all the different HDSW

drivers in parallel on the DPU prototype hardware.

100

XV. COMPLIANCE TO SOFTWARE ENGINEERING STANDARDS

One of the baseline requirements for the project was to

develop the DPU Boot SW and Hardware Driver Software

Library in accordance with ESA software engineering and

product assurance standards [3], [4]. A set of deliverables,

document and source code, was agreed upon and the software

criticality was set to category B.

A specification phase was carried out which included

preparation of software requirement specifications, interface

control documents, unit test plans and validation test plans,

including test case specifications and expected use-cases. This

phase also included development of software design

documents.

The software implementation phase followed in

combination with development of the unit test framework and

implementation of unit tests. Hardware and system simulators

were integrated in the unit test loop as well as functionality for

performing automated code coverage analysis (simulation) and

execution time measurements (hardware).

As the software implementations matured, the DPU

validation framework was developed. The previously specified

validation test cases were implemented using the validation

framework and the corresponding equipment such as the

GRESB SpaceWire/Ethernet bridge [14].

The software validation phase was matched with arrival of

the prototype boards which allowed for running the software

on a representative hardware platform.

When work with the specifications, implementations,

testing, validation and documentation was completed, the

project was closed after a successful review with ESA.

XVI. CONCLUSION

A flight quality SpaceWire driver, together with a

SpaceWire network protocol stack has been implemented and

is available for the GR712RC LEON3-FT [2].

It includes software support for raw SpaceWire packets,

Time Distribution Protocol (TDP), a link reconfiguration

service, the CCSDS Packet Transfer Protocol and Packet

Utilization Standard (PUS). The software is compliant with

ESA ECSS standards for Space software engineering [3], [4].

In addition, the DPU platform provides support for RMAP,

SpaceWire time-control codes and the SpaceWire data link

layer protocol.

By using the presented SpaceWire software, a common set

of services can be implemented by maintaining only one piece

of software. Using already validated boot, low-level driver

software and the automated test framework reduces the effort

of the instrument software development and demonstrates a

viable approach of software design and testing accepted by the

agency.

The software is available as a standard software to the

JUICE instrument manufacturers for use in the JUICE mission.

Cobham Gaisler can also license the software to customers for

use in other missions.

The DPU flight hardware platform design is delivered as

design files (schematics, layout, BOM). It comes with a set of

quality documents, for example a Failure Mode and Effects

Analysis (FMEA) and a Radiation Analysis.

Prototype DPU boards have been manufactured. These

systems have been used for verification of the design and for

development of the DPU software.

Although the instruments in the ESA JUICE mission

demands a wide range of memory configurations,

performances, interface peripherals and software support, the

DPU developed within the activity can house all major

configurations at performance. Thus it provides the possibility

to use it as a common DPU platform the among instruments.

The gain of using a common DPU hardware and software

platform is not only to the user's but is also an advantage for

ESA and the satellite prime contractor as the overall satellite

design is harmonized. The instrument development process can

be shortened by using an already defined DPU and software

package. As the DPU is modular is can be reused in future

missions with similar or less demanding environmental

constraints.

ACKNOWLEDGMENT

The development of the common DPU platform hardware

and software was funded by the European Space Agency as

part of the activity "DPU for JUICE Instruments", contract

4000113396/15/NL/BW.

REFERENCES

[1] European Space Agency. ESA Science & Technology: “JUICE

– Jupiter Icy Moons Explorer” [Online]. Available:

http://sci.esa.int/juice.

[2] Cobham Gaisler. “GR712RC Dual-Core LEON3FT SPARC V8

Processor” [Online]. Available:

http://www.gaisler.com/index.php/products/components/gr712rc

.

[3] European Space Agency, “Space Engineering – Software.

ECSS-E-ST-40C”. March 2009.

[4] European Space Agency, “Space Product Assurance – Software

Product Assurance. ECSS-Q-ST-80C”. March 2009.

[5] European Space Agency, “Flight Computer Initialisation

Sequence. TEC-SWS/10-373/FT”. October 2014

[6] Cobham Microelectronic Solutions, “HiRel Memories”

[Online]. Available:

http://ams.aeroflex.com/pagesproduct/prods-hirel-mems.cfm.

[7] Cobham Microelectronic Solutions, “HiRel LVDS Family”

[Online]. Available:

http://ams.aeroflex.com/pagesproduct/prods-hirel-lvds.cfm.

[8] Cobham Gaisler, “RTEMS LEON/ERC32 Cross-Compiler

System” [Online]. Available:

http://www.gaisler.com/index.php/downloads/compilers.

[9] European Space Agency, “Space Engineering – Ground Systems

and Operations – Telemetry and Telecommand Packet

Utilization. ECSS-E-ST-70-41A”. January 2003.  

[10] European Space Agency, “High Accuracy Time

Synchronization over SpaceWire Networks – Time

Synchronization Protocol. SPWCUC-REP-0003, Version 1.1”.

September 2012.

[11] Cobham Gaisler, “GR712RC Development Board – User

Manual” [Online]. Available: http://www.gaisler.com/.

101

http://sci.esa.int/juice
http://www.gaisler.com/index.php/products/components/gr712rc
http://www.gaisler.com/index.php/products/components/gr712rc
http://ams.aeroflex.com/pagesproduct/prods-hirel-mems.cfm
http://ams.aeroflex.com/pagesproduct/prods-hirel-lvds.cfm
http://www.gaisler.com/index.php/downloads/compilers
http://www.gaisler.com/

[12] European Space Agency, “Space Engineering – SpaceWire –

CCSDS packet transfer protocol. ECSS-E-ST-50-53C”.

February 2010.

[13] Cobham Gaisler, “TSIM2 ERC32/LEON simulator” [Online].

Available:

http://www.gaisler.com/index.php/products/simulators/tsim.

[14] Cobham Gaisler, “GRESB SpaceWire/Ethernet Bridge with

routing capabilities” [Online]. Available:

http://www.gaisler.com/index.php/products/systems/gresb.

[15] Tcl Developer Xchange, “Tcl Developer Xchange” [Online].

Available: http://www.tcl.tk/.

102

http://www.gaisler.com/index.php/products/simulators/tsim
http://www.gaisler.com/index.php/products/systems/gresb
http://www.tcl.tk/

Towards SpaceWire-2: Space Robotics Needs
SpaceWire missions and applications, Long Paper

Olivier Notebaert (Author)

 Spacecraft On-Board Data Processing Expert
Airbus Defence and Space SAS

Toulouse, France
Olivier.notebaert@airbus.com

Giuseppe Montano1, Thierry Planche2, Clément Pruvost2,
Franck Wartel2, Andreas Schüttauf3, Hans-Jürgen Herpel4,

Christophe Honvault5, David Jameux5
(Co-Authors)

1/Airbus Defence and Space Limited, Stevenage, UK
2/Airbus Defence and Space SAS, Toulouse, France

3/Airbus Defence and Space GmbH, Bremen, Germany
4/Airbus Defence and Space GmbH, Friedrichshafen, Germany

5/European Space Agency ESTEC, Noordwijk, the Netherlands

Abstract— A number of evolutions of the SpaceWire standard
[1] and usage recommendations have been developed over the
past decade. As a result, the original standard is slowly evolving
towards a so-called SpaceWire-2 (SpW-2) standard family,
covering legacy SpaceWire, SpW-Rev1 and SpaceFibre [2],[3].

Besides other use cases that are mainly covered through on-
going actions structured through the SAVOIR-UNION working
group [4], the requirements of the future on-board network
systems should also cover the needs of space robotics which is a
rapidly evolving engineering discipline and one of the potential
space applications of SpaceWire-2.

This paper presents a number of robotics-specific needs that
should be taken in consideration for the definition of SpW-2, and
investigates the capabilities provided by the SpaceWire standard
and evolutions (SpW rev1 and mainly SpaceFibre).

Index Terms—SpaceWire, SpaceFibre, real-time networks,
SAVOIR, robotic systems control, GNC, vision based navigation,
on-board data processing, on-board software, space exploration,
planetary exploration, in-orbit servicing, orbital systems, robotic
arm, planetary rovers.

I. INTRODUCTION
A number of evolutions of the SpaceWire standard [1],

usage recommendations or communication protocols have been
developed over the past decade, including for instance the
SpW-R [5][6], SpW-D [7][8], SpW-RT [9], SpW-NDCP[10],
or N-MaSS [11][12]. A SpaceWire standard revision is also
expected to be released soon [13] and the SpaceFibre standard
is currently being drafted [2] to provide higher performance
and quality of service [14]. As a result, the original SpaceWire
standard is evolving towards a so-called “SpaceWire-2” (SpW-
2) standard family, which will cover an integrated solution to
all the issues addressed by the evolutions mentioned above [3].

At the 6th International SpaceWire Conference in 2014, it
was proposed that the requirements baseline for SpaceWire-2
should be assessed first by gathering the needs from various
heterogeneous space applications, then by identifying key
properties and creating an evaluation system (TABLE I.) to be
used by the community that defines the standard [15].

TABLE I. PROPOSED EVALUATION SYSTEM IN [15]

1. Value: Typical value or range for the considered property w.r.t. the considered application domain
2. Relevance: Property relevance for a given mission (3: High, 2: Medium, 1: Low, 0: N/A)

Such work has not been formally done following this
methodology in a cooperative mode as proposed. However, the
common European vision of the future satellite platform and
payload data handling architecture has been structured through
the SAVOIR initiative which has improved visibility on
common needs [16]. Quite recently, the work focusing on
future user needs in on-board network has been finally
launched with the SAVOIR-UNION working group [17].

All these actions however do not specifically focus on
future space robotics which is a rapidly evolving engineering
discipline and one of the potential space applications of
SpaceWire-2. In fact, Airbus Defence and Space is currently
investigating the use of SpaceWire in a number of planetary
exploration robotics and orbital robotics applications: specific
requirements and issues with the current version of the
standard are being identified within a number of past and on-
going studies and demonstrators.

Properties Units Value1 Relevance2 Value1 Relevance2 Value1 Relevance2

Network consumption mWatt/device 50 2 < 50 3 100 1

ElectroMagnetic High/Medium/Low Medium 3 Medium 3 High 3

Bus Error rate Typical value 1,E-12 3 1,E-12 2 1,E-14 3

Media Copper/Fibre/Both Both 1 Both 2 Copper 3

Clock transmission Yes/No Yes 2 No 1 Yes 3

Architecture P2P/Bus/Network/Ring Network 2 Network 2
Bus or

Network 2

Connectors type fixed/few variants/free Fixed 1 Fixed 1 Few V. 2

Connectors weight g 10 2 10 3 10 1

Connector Vibration resilience Low/Medium/High Medium 2 Medium 2 High 3

T ooling for mating Yes/No Yes 2 Yes 2 Yes 2

Harness Mass g/m < 80 2 < 80 3 80 1

Gross data rate Gigabit per second 1 - 5 1 1 - 10 1 0,1 - 1 1

Minimum Net data rate MegaByte per second > 100 3 > 1000 3 > 20 3

Retry Yes/No/Optionnal No 2 Yes 1 No 3

Time-distribut ion Yes/No/Optionnal Yes 3 Optionnal 2 Yes 3

Flow Control Yes/No/Optionnal Yes 2 Yes 3 Yes 3

High Priority message Yes/No/Optionnal Opt ionnal 2 Optionnal 2 Yes 3

Error detect ion Yes/No Yes 3 Yes 2 Yes 3

Master IP size Eq ASIC Gate, KiloBytes 20 1 20 1 20 1

Slave IP size Eq ASIC Gate, KiloBytes 10 3 10 3 5 3

Stand Alone component Yes/No Yes 3 Yes 3 Yes 3

Bridge to other buses 1553/Can/Other 1553/Can 1 SpW 3 1553 2

Link length m 10 2 10 2 60 2

Failsafe Yes/No Yes 2 Yes 1 Yes 3

Redundancy management Yes/No Yes 2 Yes 2 Yes 2

Robustness against babbling idiot Yes/No Yes 3 Yes 3 Yes 3

EVALUATION

Type of applications:

Science missions
PayloadsUse cases:

Ariane-5
Avionique-XDomain

Inputs projects (for lessons learned)
or studies (on future missions):

Data handling, Spacecraft
AOCS, FDIR

Payload Data handling and
processing, inst ruments cont rol

Guidance, navigation and
control / Flight t elemet ry

MISSION, SpW-D, AOCS
SpW, N-Mass,...

Bepi Columbo, Solo,
N-Mass

System features

METRICS

Implementation
Constraints

Funct ional

Mechanical

Elect rical

Satelites Platforms Launchers

103

mailto:Olivier.notebaert@airbus.com

A number of robotics-specific needs should be taken in
consideration for the definition of SpW-2, covering aspects
such as mechanical design of cables and connectors, data
handling architecture, FDIR and network management. In front
of this requirements envelope, an analysis of the capabilities
provided by the current state of the SpaceWire standard system
(SpaceWire, SpW rev1 and SpaceFibre) identifies potential
remaining gaps that the future SpaceWire-2 should fulfil to fit
the future robotics missions’ needs.

II. FUTURE ROBOTICS MISSIONS AND USE CASES
We can easily support the vision that the growing share of

automation in many complex ground applications (as human
assistants first and then in full autonomy) shall logically be
derived in space sooner or later. Currently, the extremely fast
development of robotics applications on ground together with
the progress in sensors and effectors critical technologies,
mechatronics, microelectronics, data processing and software
enables the development of innovative concepts that will
increase science return with in-situ robotics. Compared with
the past decades, we can expect a drastic increase of the use of
robotics systems in future space mission. This applies
especially for planetary exploration and in-orbit operations.

PLANETARY OBSERVATION
Future planetary exploration missions planned by ESA

following ExoMars 2020 are for instance:
• Phobos Sample Return (PHOOTPRINT): a sample-

return mission to the Mars moon Phobos proposed for
launch in 2024. This mission will require a robotic arm
equipped with sampling tools (Fig. 1)

• Mars Sample Return (MSR) will include a robotic arm
dealing with the return of the sample cache from a
mobile platform (Fig. 2)

Several concepts are being investigated to return samples
from asteroids (e.g. ESA Asteroid sample return, ESA Marco-
Polo), or planetary moons such as the Moon or Phobos (e.g.
ESA PhootPrint, Phobos Sample Return). All these concepts
involve a single lander platform with a robotic manipulator
tasked to retrieve a sample from the surface. A variety of
robotics tools will have to be connected to, and used by, the
robots involved in the mission. The low gravity, vacuum and
dust environment will be critical in the design of such end-
effectors and their interfaces.

Fig. 1 - Phobos Sample Return Lander Concept with the sampling arm

extended

Rovers and robotic arms/manipulators are used in most of
the missions being considered. A robotic manipulator can be
used to facilitate the placement of payload heads onto the
surface (e.g. Raman/LIBS spectrometer, microscope) or to
deploy specific payload elements (e.g. seismometer). When
numerous operations need to be performed by a single
manipulator, a tool exchange system can be used to swap end-
effector to carry out various tasks such as trenching, drilling or
in-situ imaging and analysis.

In terms of rovers, the current MSR concept relies on a
main lander element that includes a Mars Ascent Vehicle
(MAV) for the return of the sample, a Sample Fetching Rover
(SFR) and a sample cache, deposited earlier on the surface of
Mars by a caching mission. The SFR is deployed from the
MSR lander or a secondary platform and is tasked to recover a
passive sample cache by means of a robotic manipulator. The
rover then returns to the MSR lander and the sample cache is
transferred to the MAV (by the rover manipulator or a separate
lander arm).

Tool exchange as well as the variety and complexity of the
various vehicles mission modes poses several issues on the
data handling system as in particular the scalability and the
capability to partly, dynamically and autonomously reconfigure
communication networks with change of functional interfaces.

Fig. 2 - Mars Sample Return Lander Concept with the arm dealing with

the return of the sample cache from a mobile platform

IN-ORBIT OPERATIONS
Closer to Earth, the need for robotics systems for

autonomous manoeuvres and manipulation will increase.
Future missions put a particular focus on debris removal but
also on in-orbit spacecraft servicing (Fig. 3).

Missions in preparation are for instance:
• e-Deorbit, for making rendezvous and docking with

the old and large ENVISAT spacecraft target and
steering down for a controlled burn-up in the
atmosphere (Fig. 4, [18][19]);

• more generally the whole Clean Space initiative of
ESA for improving technologies enabling to clean the
thousands of accumulated space debris in GEO and
LEO orbits [20];

• the Airbus Defence & Space Space-Tug concept [21],
containing fuel and powered by electrical propulsion,
staying in a parking orbit for servicing spacecraft for
various types of missions such as spacecraft tugging
from Low Earth Orbit to GTO or cis-lunar orbit, in-
orbit spacecraft repair, upgrade, refuel or reboost,
debris tugging to controlled re-entry etc…

104

Fig. 3 – DEOS concept for In-orbit satellite servicing [22]

Fig. 4 - e-Deorbit concept for ENVISAT capture ([19])

In all these missions, the capabilities to navigate
autonomously as well as in-situ manipulations are necessary.
This will require robotic arms with an adapted variety of tools,
visual and other local sensors and a real-time on-board
processing capability. So the identified critical technologies
that need to be further developed or improved are Vision Based
Navigation (VBN) and on-board high performance processing
for in-situ images analysis and autonomous real-time control.
In all these systems, sensors and control data will require to be
transported from various points through datalinks that will
induce specific requirements for real-time performance and
reliability.

In other words, to achieve future robotics missions,
spacecraft bodies will require better brains and be completed
by eyes, articulated arms, hands with agile fingers possibly
capable of touch feeling, and few other sensors and tools. Of
course, a network of nerves (data links) will be needed to carry
data between all these.

Fig. 5 – Spacecraft gripping demonstration, source DLR [23]

III. PHYSICAL LAYER
Mechanical constraints may apply to robotics systems. An

analysis of these constraints w.r.t. to the current SpaceWire
standard is provided below with some recommendations as
input to SpaceWire-2 definition.

CABLES
The SpaceWire cable consists of four 100 Ohm differential

twisted pairs for each link, each with a shield and jacket; these
are encased around a central filler and enclosed with an overall
shield and protective jacket. This configuration as shown
below (Fig. 6) presents a very robust cable assembly with good
EM shielding and high signal performance. However, the
robustness of this solution is paid in terms of non-negligible
harness mass and cost brought to the data-handling hardware.

The standard SpaceWire cable has a dynamic bend radius
of 60 mm, which is suitable to most of satellite applications but
can easily become a limiting factor with robotics, which are
usually made of modular and movable parts. In fact, in a recent
feasibility study made by Airbus Defence and Space in UK
about the implementation of a full SpaceWire-based control
system for the LARAD arm, it was found that the standard
SpaceWire cable would impair the degrees of freedom of the
arm. Detailed analysis revealed that a maximum bending radius
of 15 mm must be met in order to preserve the mobility of the
parts. Several non-standard cable products are available for
instance from Axon that bring better bending characteristics
with less weight (TABLE II.).

Fig. 6 – Standard SpaceWire cable [1]

CONNECTORS
Miniaturization is extremely important for many robotic

applications, especially in space exploration missions for which
every gram, cm3 and Watt counts. The standard Sub-D
connector is not really miniaturized. SpaceWire specifies the
use of 9 pin micro-D connectors: despite of being quite smaller
than the Sub-D connector, these still require a large amount of
both space on the board for the socket, as well as room behind
the connector to properly terminate all the shields into the
connector. The size of the micro-D is 7.57 x 19.69 x 10.57 mm.

105

Axon proposes a new alternative, the nano-D (size: 3.18 x 9.53
x 5.33 mm) (Fig. 7), which may bring benefits to robotics. Such
a miniaturized connector should be proposed at least as an
option in SpW-2.0.

Aging and damage with repetitive mating and un-mating is
generally not a problem is satellites but may be a problem with
robotics (e.g. connection/disconnection of robotic modules,
robotic arms with exchangeable end-effector). Connectors shall
also be preferably designed to resist to many mate/un-mate
cycles.

Dust is not a problem for orbital applications but it is a
problem for planetary exploration. Mars, for instance, has dust
and strong winds, hence exposed connectors have to be
designed to operate under these hostile conditions. Industrial
solutions have been proposed (e.g. dust-tolerant connectors by
honeybee, Fig. 8) which may be taken in consideration.
Unfortunately, these solutions are far from being miniaturised!

TABLE II. CABLE OPTIONS MAIN CHARACTERISTICS
SOURCE:www.axon-cable.com [25]

Fig. 7 – AXON Nano-D connectors

SOURCE: www.axon-cable.com [26]

Fig. 8 – Honeybee robotics dust tolerant connector. The red membranes

cover the electrical contacts before mating
SOURCE: www.honeybeerobotics.com [27]

IV. DATA HANDLING SYSTEM ARCHITECTURE
There are two main drivers that are viewed as specific to

robotics needs in terms of data network architecture.
On the one hand, to carry on the analogy with human

bodies above in this paper, a data-link network shall be the
nerves linking the brain with eyes, arms, hands, fingers and all
other potential sensors. Many peripheral systems inducing
various network topologies shall be reliably linked together and
with the brain (on-board processing device); this all depends on
the type of specialized action the robot is made for, and it also
may be moving and/or disconnected and reconnected w.r.t.
each other. Flexibility of the network topology, modularity and
easy in-flight re-configurability shall therefore be driving
requirements for SpaceWire-2 within the picture of a full
spacecraft data network in which a SpW/SpF based backbone
may connect to a diversity of other sensor-buses such as CAN,
SPI, I2C, MIL-STD-1553, PowerLink, etc…

On the other hand, beside the flexible topology issue, the
autonomy is the other main issue in space robotics applications.
This means autonomous real time control for critical operations
which cannot be tele-operated by humans due to the space
situation: recognizing targets, navigating for rendezvous,
gripping, latching, clamping, screwing, etc… Indeed, except
for manned flight that, in few cases, may allow for direct and
interactive robot-human operations as, for instance, on the
International Space Station, the signal delay itself between an
Earth-based control center and the spacecraft is too long to
allow for remote operations. Typical robotic systems
applications imply hard-real-time closed loops with frequencies
in the range of 100 Hz, which is sensibly above the classical
spacecraft Attitude and Orbit Control requirements (typically
10 to 20 Hz). Finally, emergency action in case of failure or
hazardous situation is also to be done autonomously: this is
treated below in the section V on FDIR and network
management).

TOPOLOGY
Within a robotic system, the topology of the data network,

linking the controlling brain to all sensors and actuators, is

106

http://www.axon-cable.com/
http://www.axon-cable.com/en/02_products/03_connectors/04
http://www.honeybeerobotics.com/portfolio/dust-tolerant-connector/

highly dependent on the application. For example, the
Lightweight Advanced Robotic Arm Demonstrator (LARAD)
robotic arm (Fig. 9) will have a Daisy Chain shape for the data
network while a rover vehicle for planetary exploration like the
Bridget demonstrator (Fig. 10) will have Tree like network, i.e.
with multiple branches. Moreover, robotic arms may be
mounted on larger robots with or without use of a single or
several independent networks. Each project needs therefore to
explore the space of architectural solutions, this being made
easier thanks to networks modeling and analysis tools such as
MOST [32], in particular to pre-check real time performance
provided by the possible topologies.

In the case of the Lightweight Advanced Robotic Arm
Demonstrator (LARAD), several topology options have been
explored in the frame of the development of a control system
architecture fully based on the SpaceWire [28]. The classical
star topology, the bus chain and several variants of ring
topologies have been traded-off to link the LARAD On-board
Computer (OBC) with the Joint Electronics (JE) units and the
End Effector (EE). The “Ring with Interleaved Connections
topology (Fig. 11) is finally the preferred option with respect to
harness mass, reliability and estimated performance of the
network. Complementary analysis has also been performed on
these topologies to determine the network data latencies typical
and worst cases for the nominal case and with a disconnected
link (Fig. 12). This analysis confirms this topology as the best
option (detailed results are presented during this SpaceWire
conference [29]).

Fig. 11 – LARAD SpaceWire Network, Ring Topology with Interleaved

Connections [28]

Fig. 12 – Worst-case SpaceWire latencies for the telecommand (a) and
telemetry (b) data flows in the interleaved ring network topologies with

failures at 10Mbps [29]

V. FDIR AND NETWORK MANAGEMENT
The on-board network topology of robotic systems often

changes during operation due to connection/disconnection to
other robots or spacecraft and, in case of arms, due to end-
effectors exchange. Moreover, a common driver for most
robotic missions is that the effect of faults may result in
physical damages of part of the system thus potentially
jeopardizing the mission. And when human beings (e.g.
astronauts) or human vital assets (e.g. inhabited space vehicle)
are involved in the operations, it becomes safety critical. In this
context, a first level FDIR function that is reactive,
autonomous and integrated within the network management
function may be extremely beneficial.

The SpW-FDIR protocol ([11],[12]), later to be integrated
into a wider Network Management Service Suite (N-MaSS),
provides a solution for simplifying network management and
autonomous network level fault detection, isolation and
recovery. It has been defined for SpaceWire networks and
provides additional functions that could be standardized to be
included in SpaceWire-2, i.e. SpaceWire/SpaceFibre networks.
SpW-FDIR manages network topology and configuration,
node identity and configurations. It autonomously maintains
the connectivity and performance of data handling networks in
the presence of failures.

The SpW-FDIR components as part of the N-MaSS
architecture are illustrated below (Fig. 13). Main features are:

• SpW-FDIR is scalable and can be applied for networks
up to 256 nodes;

• SpW-FDIR is designed for extremely fast response
• Protocol overhead is minimal
• SpW-FDIR requires a FDIR Handler function within

each node and switch
SpW-FDIR sit in the Network Layer of SpaceWire. At this

level, it is well-positioned to interact with ‘Device Discovery’
and ‘Resources Management’ functions (Fig. 14); this is highly
beneficial for systems that have reconfigurable topologies (i.e.
modular, reconfigurable robots).

Fig. 13 – SpW-FDIR components as part of N-MaSS architecture [12]

Fig. 9 – LARAD robotic arm

Fig. 10 – Bridget on the Mars

yard in Stevenage

107

Fig. 14 – Context and N-MaSS position in the SpaceWire protocol stack

VI. SPACEWIRE / SPACEFIBRE FUNCTIONAL PROPERTIES
The current SpaceWire ECSS standard [1] and SpaceFibre

draft specification [2] should basically allow to efficiently
implementing most of the space robotics data links. However, a
few weaknesses w.r.t. high level user needs such as, for
instance, some physical layer properties as discussed in section
III above, may require improvements. This could either be
introduced as standard evolutions (e.g. the addition of a
SpaceWire/SpaceFibre networks management protocol),
through options in the future SpaceWire-2, or treated at project
level by classical waivers mechanism. Some typical functional
features for the future SpaceWire/SpaceFibre networks are now
discussed in more details below and commented with some
specific robotic application standpoint.

DATA RATE PERFORMANCE
With a typical range [100-200 Mbps] for SpaceWire and a

demonstrated 2.5 Gbps line rate with current flight technology,
6.25 Gbps line rate planned, and a demonstrated Multilaning x
4 up to 10 Gbps with the SUNRISE project shown at DASIA
2016 [30][31], the SpaceWire/SpaceFibre system completely
covers the robotics applications needs for e.g. controlling a
robotic arm while carrying visual or radar sensor data.

TRAFFIC POLICY
There are noticeable improvements in the SpaceFibre from

the current SpaceWire standard such as the split of packets into
frames of limited size with three associated levels of integrated
Quality of Service (QoS) based on Priorities, Bandwidth Credit
Precedence and Scheduled traffic. Also, both at Node and
Routing Switch ports level, the definition of Virtual Channels
allows creating segregated routes within the same wire so that a
SpaceWire packet flowing through one Virtual Channel does
not block another packet flowing through another Virtual
Channel.

SCALABILITY
The 32 Virtual Channels (VCs) per switch or node allowed

by the SpaceFibre specification is probably enough for simple
robotic applications (e.g. robotic arm). It will be a limitation in
larger systems with many effectors, potentially interconnected
and implementing a strong scheduling policy for time
criticality purpose. Workaround in robotics systems will be a
physical split in several networks which may increase the
complexity of the architecture and system control software.
This limitation also becomes a problem when using Time and
Space Partitioning (TSP) execution platform as expected for
most critical applications in the future (see below in this
paper).

DETERMINISM
Bounded Latency and Jitter properties are inherited from

SpW, i.e. variable based on topology, data volume and speed
of links, estimated ≤10 µs in most cases. Network real-time
analysis will be required for most use cases which should be
eased through efficient tools for representative network
modelling and simulation. Analysis of the network topology
and configurability will allow performing network calculus to
mathematically compute the maximum latency and jitters in
nominal cases. But worst case computation of latency/jitter so
that to avoid overflow is tricky: indeed, it becomes extremely
challenging to verify/guarantee that the system is schedulable
when QoS features such as automatic retries are taken into
account. Tools based on schedulability theories can help here.
There is currently no network calculus model or tool suite as
commercially available product. SpaceWire and SpaceFibre
modelling is possible to a certain extend with MOST [32]
based on the OPNET® network simulation system which could
be a basis for further development.

SYNCHRONISATION AND TIME MANAGEMENT
In the current SpaceFibre specification, time stamping,

clock synchronization and global time Distribution keeps the
same approach thus the same limitations than for SpaceWire:
time codes not clearly defined in current version of the
specification but interpreted as covered through the existence
of short high priority broadcast frames. Routing of those
frames at switch level is neither described nor specified and the
message broadcasting is still to be defined. Covering such
functions in a standard way for SpaceWire-2 would be useful
to robotic systems as well as for many other real-time and
autonomous space applications concerned about
synchronization of distant units such as sensors, actuators,
effectors and computers.

FAULT CONTAINMENT
There is no fault containment at VC level in a SpaceFibre

node: a failure detection at node level leads to reset the whole
faulty link which becomes silent if no auto-start is configured.

There are also no bus guardian features described that could
avoid fault propagation if implemented at switch level (e.g.
such as with SpW-FDIR). However, some fault propagation
may be prevented through the check that VC is properly

108

configured in the switch or node when routing from the input
port to the output port. There is also no standard traffic policy
provided based on bandwidth allocation per VC for instance.

BABBLING IDIOT AVOIDANCE
With SpaceFibre, several mechanisms exist allowing the

detection and preventing the propagation of errors with
babbling idiots:

• erroneous application behavior can be detected through
VC buffers allocations and QoS;

• failure of a node, End-System (E/S) or switch, may be
detected through sequence number monitoring for
instance in case of repeated emission of the same
frame or emission of a spurious frame;

• failure of QoS management may be detected at the E/S
node level only (no verification at switch level).

NETWORK MANAGEMENT
SpaceFibre specification lacks the definition of standard

configuration tables, process and usage domain. Configuration
data of the End-Systems can be specified as part of the
Management Information Base but configuration of Routing
Switches without traffic policy are deemed to be static
(generated offline) equivalent to SpaceWire configuration. This
does not help for defining dynamic routing, network discovery
or autonomous FDIR which could be useful in some robotics
systems. The specification of a standard network management
also covering network FDIR such as the N-MaSS as described
in section V above would be required for SpaceWire-2.

COMPATIBILITY WITH TIME AND SPACE PARTITIONING
Future execution platforms for on-board critical systems

will feature Time and Space Partitioning (TSP) allowing
functions with different levels of criticality to securely share
the same computing and network resources [33]. This will also
be beneficial to robotic systems. SpaceWire and SpaceFibre are
not exactly designed to be TSP friendly – as for instance AFDX
is [34]. Virtual Channels and QoS policies introduced at data
link layer for SpaceFibre are useful but some design limitations
and implementation choices deserve some specific attention as
they can jeopardize TSP compliance.

The limitation to a maximum number of 32 Virtual
Channels (Clause 5.7.2.b, page 130 in [2]) is probably too
restrictive for Time and Space Partitioned systems. Indeed the
Virtual Channel concept implies a usage domain where at most
(VC number-1) equipment can be configured to send messages
to the same equipment without compromising the QoS
guarantees between them. Similarly the VCs allocation applied
to a TSP system would limit the number of partitions per
equipment to the number of available Virtual Channels for a
given link and increase the combinatory expansion of VCs
allocations. The necessity to reserve point-to-point VCs for
preserving partitioning properties with Peer to Peer
connections comes from the packet switching inherited from
SpaceWire: for a given port, a given VC remains occupied as
long as the current packet transmission is not completely
transmitted. SpaceWire packet being of potentially infinite

length, sharing a VC at switch port level is then not compliant
with the partitioning concept.

The number of Virtual Channels necessary to achieve such
point to point partitioned connections between nodes (switch
ports), can be expressed as

 F(n) = 2log2(n−1)+1 − 1 for n > 1 (1)

This is plotted in Fig. 15 and illustrated with 5 equipment units
on Fig. 16 using a SUNRISE router [30][31] offering 4 VCs.
We can only allow defining strong QoS policies between 4
non-TSP equipment units, and adding a fifth equipment unit
would require 7 VCs.

The frame sequence numbering is not segregated per
Virtual Channels but is managed at lane/link level, impacting
all messages. Loss of one message is a source of timing
interference for all packets/frames.

The routing at switch level is based on packet routing:
sharing of a Virtual Channel between two switches’ input ports
is not recommended as there is no control on packet length and
no input port round robin as long as a packet is still in progress
for the given Virtual Channel.

The routing switch configuration policy and parameters are
not defined yet, assuming that routing is performed through
legacy SpaceWire addressing (logical or physical). Routing
interference is under the sole control of each application at
packet building time with no guardian or traffic policing at
switch level. This breaks a little bit the benefits of partitioning.

Fig. 15 – Minimum number of Virtual Channels to guarantee the existence of

QoS controlled connections between all nodes

Fig. 16 – SpaceFibre Virtual Channels configuration vs. partitioning

Mass Memory

OBC1

 Instrument 2

 Instrument 1
VC0
VC1
VC2
VC3

VC0
VC1
VC2
VC3

VC0
VC1
VC2
VC3

VC0
VC1
VC2
VC3

VC0
VC1
VC2
VC3

VC0
VC1
VC2
VC3

P
O
R
T
1

P
O
R
T
4

P
O
R
T
3

P
O
R
T
2

N
o
d
e

N
o
d
e

VC0
VC1
VC2
VC3

N
o
d
e

VC0
VC1
VC2
VC3

N
o
d
e

VC1VC1VC1
VC2
VC3

VC2

VC2

VC3

VC3

VC2

VC2VC3

VC3

VC2

VC3

VC1VC1 VC1

VC4VC5

VC4

 Instrument 3
VC0
VC1
VC2
VC3

VC0
VC1
VC2
VC3

P
O
R
T
5

N
o
d
e

VC4
VC5

VC5

VC6
VC7

VC6 VC7

VC6
VC7

VC7

VC4
VC5
VC6
VC7

VC6

VC5 VC4VC4

VC7VC6

VC5

VC4
VC5
VC6
VC7

109

VII. WAY FORWARD AND CONCLUSION
The future space exploration and in-orbit operation projects

foresee a more intensive use of robotics systems featuring more
autonomous and accurate skills. As this happens more and
more with ground applications, also human in-orbit operations
and exploration toward the Moon or Mars will benefit from the
assistance of smarter robots. One of the main stakes in the near
future is the near-Earth active debris removal addressed in the
Clean Space initiative of ESA [35].

To face this challenge, technology evolution is necessary as
classical and reliable datalinks such as the MIL-STD-1553 or
the CAN bus become clearly limited with bandwidth capacity
below 1Mbps for carrying images or other data intensive
sensors, which will require performance in the range of 100
Mbps or higher. Robotics in ground application typically use
Ethernet based solutions such as the popular EtherCAT [36],
an Ethernet based fieldbus standard which provides high
bandwidth with an excellent real-time response for command
and control as well as deterministic properties ensuring the
level of safety required for working in a human environment.
EtherCAT technology has also been successfully used for a
robotic arm demonstrator within preparatory studies for the
Deutsche Orbitale Servicing Mission project (DEOS) [37].

For space applications, SpaceWire and SpaceFibre have the
required high bandwidth and low latency capability and could
be a good candidate for future robotics with the advantage of
being a standard already used for space payload and platforms
data handling. However, some aspects of the SpaceWire
standard and the SpaceFibre draft standard are not directly
adapted to robotics specific needs such as, for instance
connectors, cables or error management for FDIR and a few
functional aspects that could be corrected. There are also
identified drawbacks that may prevent evolution toward larger
and more complex systems than just robotic arms, capture
mechanisms or rovers that may emerge in the future. A
SpaceWire-2 standard covering an evolution of the current
SpaceWire and SpaceFibre networks would be beneficial if, in
addition to the coverage of future platform and payload needs,
it could take into account the specific needs of space robotics
including margin for evolutions for the benefit of the future
development of space exploration and in-orbit operations.

Fig. 17 – Space robotics: One Giant leap for Robots

SOURCE: www.robotzeitgeist.com [37]

REFERENCES
[1] ECSS Standard ECSS-E-ST-50-12C; SpaceWire, Links, Nodes,

Routers and Networks, European Cooperation for Space Data
Standardization, July 2008

[2] Steve Parkes, Albert Ferrer, Alberto Gonzalez, Chris
McClements (University of Dundee); SpaceFibre Specification,
Draft H4: April 2016

[3] SpaceWire Standardisation planning, presented by Martin Suess
(ESTEC) at the 21st SpaceWire Working Group Meeting, in
ESTEC, Noordwijk, The Netherlands on 17th September 2013

[4] SAVOIR-UNION status, presented by Christophe. Honvault
(ESTEC) at ADCSS in ESTEC, Noordwijk, The Netherlands on
20th October 2015

[5] Performance evaluation of SpaceWire-R IP Core and updates of
the specification, presented by Dr. Takayuki Yuasa (RIKEN) at
the 24th SpaceWire Working Group Meeting in ESTEC,
Noordwijk, The Netherlands on 23rd September 2015

[6] SpaceWire-R implementation and test considerations, presented
by Krzysztop Romanowski (ITTI) at the 24th SpaceWire
Working Group Meeting in ESTEC, Noordwijk, The
Netherlands on 23rd September 2015

[7] SpaceWire-D User Requirements presented by Jérôme Lachaize
and Clément Pruvost (Astrium) at the 21st SpaceWire Working
Group Meeting in ESTEC, Noordwijk, The Netherlands on 18th
September 2013

[8] Steve Parkes, David Gibson - University of Dundee, Space
Technology Centre and Albert Ferrer - STAR-Dundee Ltd,
United Kingdom; SpaceWire-D: Deterministic Data Delivery
over SpaceWire, DASIA Conference, Warsaw, Poland, June
2014

[9] SpaceWire-RT Project Results, presented by Steve Parkes
(University of Dundee) at the 21st SpaceWire Working Group
Meeting in Noordwijk, The Netherlands, 17-19 September 2013

[10] Network Discovery Protocols Final Presentation, presented by
Stuart Fowell (SciSys) at the TEC-ED and TEC-SW Final
Presentation Days in Noordwijk, The Netherlands, 10th
December 2014,

[11] Giuseppe Montano - Astrium Ltd, United Kingdom, David
Jameux – ESA/ESTEC, The Netherlands, Barry Cook, Roger
Peel, Ecaterina McCormick, Paul Walker - 4Links Ltd, United
Kingdom, Vangelis Kollias, Nikos Pogkas - Teletel, Greece;
Network Management and FDIR for SpaceWire Networks (N-
MaSS), DASIA Conference, Warsaw, Poland, June 2014

[12] Giuseppe Montano – Airbus Defence and Space Ltd, United
Kingdom, David Jameux – ESA/ESTEC, The Netherlands,
Barry Cook, Roger Peel, Ecaterina McCormick, Paul Walker -
4Links Ltd, United Kingdom, Vangelis Kollias, Nikos Pogkas,
Antonis Tavoularis - Teletel, Greece; Standardisation of the
Network Management Service Suite (N-MaSS) for Fault
Detection, Isolation and Recovery for SpaceWire, 6th SpaceWire
International conference, Athens, Greece, November 2014

[13] ECSS-E-ST-50-12C-Rev1 status, presented by David Jameux
(ESTEC) at the 24th SpaceWire Working Group Meeting in
Noordwijk, The Netherlands on 22nd September 2015 |

[14] Steve Parkes, Chris McClements - University of Dundee, Space
Technology Centre, United Kingdom, Albert Ferre, Alberto
Gonzalez Villafranca - STAR-Dundee, United Kingdom;
SpaceFibre Implementation, Test and Validation, DASIA
Conference, Warsaw, Poland, June 2014

110

http://robotzeitgeist.com/2009/11/space-robotics-one-giant-leap-for.html

[15] Olivier Notebaert, Jérôme Lachaize, Rémi Clavier, Andre
Fueser, Hans-Juergen Herpel, Giuseppe Montano, Luc Planche,
Airbus Defence and Space France, UK and Germany;
SpaceWire-2: needs and evaluation metrics, 6th SpaceWire
International conference, Athens, Greece, November 2014

[16] Alain Benoit - ESA/ESTEC, The Netherlands; Space Avionics
open Interface Architecture (SAVOIR), First European Space
Technology Harmonisation Conference, ESA/ESTEC, The
Netherlands, 18-19 March 2014

[17] Christophe Honvault – ESA/ESTEC, The Netherlands; Avionics
– Embedded Systems / On-Board Software, First European
Space Technology Harmonisation Conference, ESA/ESTEC,
The Netherlands, 18-19 March 2014

[18] ESA/ESTEC, e.deorbit Implementation Plan, Issue 1.0,
18/12/2015

[19] Airbus Defence and Space e.Deorbit Phase B1 results
presentations at the Clean Space Industrials days in ESTEC,
Noordwijk, The Netherlands on 23rd to 27th May 2016,
https://indico.esa.int/indico/event/128/

[20] Clean Space Team (ESA/ESTEC), CleanSat presentation at the
Clean Space Industrials days in ESTEC, Noordwijk, The
Netherlands on 24th May 2016

[21] Michel Frezet (Airbus Defence and Space), Space Tug
Presentation at the Clean Space Industrials days in ESTEC,
Noordwijk, The Netherlands on 24th May 2016

[22] Automation and Robotics within the German Space Program &
the DEOS Mission, presented by Bernd Sommer at the European
Conference on On-Orbit Satellite Servicing and Active Debris
Removals in Brussels, Belgium, October 30th 2012

[23] Jordi Artigas (DLR), The OOS-SIM: An On-ground Simulation
Facility For On-Orbit Servicing Robotic Operations, 2015 IEEE
International Conference on Robotics and Automation (ICRA)
Washington State Convention Center, Seattle, Washington, May
26-30, 2015

[24] Dr. Gordon Roesler (DARPA) Robotic Servicing of
Geosynchronous Satellites (RSGS) Program Overview, Future
In-Space Operations Colloquium, June 15, 2016

[25] Axon cable and interconnect: High speed links,
www.axon-cable.com/publications/HIGH-SPEED-LINKS.pdf

[26] www.axon-cable.com/en/02_products/03_connectors/04
[27] www.honeybeerobotics.com/portfolio/dust-tolerant-connector/

[28] Marek Rucinski, Adam Coates, Giuseppe Montano, Elie
Allouis, Airbus Defence & Space; David Jameux ESA-ESTEC;
SpaceWire-based Control System Architecture for the
Lightweight Advanced Robotic Arm Demonstrator (LARAD),
DASIA Conference, Barcelona, Spain, May 2015

[29] Network Latency Analysis of a SpaceWire-based Control
System for Space Robotic Arm; Giuseppe Montano, Marek
Rucinski, Elie Allouis, Olivier Notebaert, David Jameux |
International SpaceWire Conference | 25-28/10/2016

[30] Steve Parkes, Chris McClements, David McLaren – University
of Dundee, Scotland, UK, Albert Ferrer Florit, Alberto Gonzalez
Villafranca, STAR-Dundee Ltd, Scotland, UK, SpaceFibre: The
Standard and the Multi-Lane Layer, DASIA Conference,
Tallinn, Estonia, May 2016

[31] Steve Parkes, Chris McClements, David McLaren, University of
Dundee; Albert Ferrer Florit and Alberto Gonzalez Villafranca
STAR-Dundee Ltd; SUNRISE: A SpaceFibre Router, DASIA
Conference, Tallinn, Estonia, May 2016

[32] Brice Dellandrea, Thales Alenia Space, France; Steve Parkes,
University of Dundee, United Kingdom; David Jameux,
ESA/ESTEC, The Netherlands; MOST: Modeling of SpaceWire
& SpaceFibre traffic, 6th SpaceWire International conference,
Athens, Greece, November 2014

[33] SAVOIR-IMA - Integrated Modular Avionics and Time and
Space Partitioning, SAVOIR report: TEC-SW/09-247/JW
available at https://essr.esa.int/

[34] Marie-Hélène Deredempt - Astrium, France, Vangelis Kollias -
Teletel, Greece, Zhili Sun - University of Surrey, United
Kingdom, Ernest Canamares - GTD, Spain, Philippe Ricco -
CES, Switzerland; An AFDX Network for Spacecraft Data
Handling, DASIA Conference, Warsaw, Poland, May 2014

[35] www.esa.int/Our_Activities/Space_Engineering_Technology/Cl
ean_Space

[36] EtherCAT, the Ethernet fieldbus, https://www.ethercat.org
[37] P. Rank, Q. Mühlbauer, Kayser-Threde; W. Naumann,

SpaceTech; K. Landzettel, Institute of Robotics and
Mechatronics DLR; The DEOS automation and robotics
payload, ASTRA conference, ESA/ESTEC, Noordwijk, The
Netherlands, 12-14 April 2011

[38] Robotics Zeitgeist - Artificial Intelligence and Robotics blog,
Space robotics: One Giant leap for Robots
http://robotzeitgeist.com/tag/mars-rovers

111

https://indico.esa.int/indico/event/128/
http://www.axon-cable.com/publications/HIGH-SPEED-LINKS.pdf
http://www.axon-cable.com/en/02_products/03_connectors/04
http://www.honeybeerobotics.com/portfolio/dust-tolerant-connector/
https://essr.esa.int/
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Clean_Space
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Clean_Space
https://www.ethercat.org/
http://robotzeitgeist.com/tag/mars-rovers

BepiColombo - building a robust Data Management

Subsystem utilising SpaceWire networks
Missions and Applications, Long Paper

James Windsor

Wahida Gasti
European Space Research and Technology Centre

Noordwijk, The Netherlands

James.Windsor@esa.int, Wahida.Gasti@esa.int

Ignacio Clerigo

European Space Operations Centre

Darmstadt, Germany

Ignacio.Clerigo@esa.int

Abstract— This paper presents the approach used by the

BepiColombo data management subsystem and its SpaceWire

network to handle system resets following major anomalies and

to ensure availability of communication with the payload and

platform units. The system autonomy requirements are presented

with a discussion on how they drive the robust implementation of

the data management subsystem. Two on-board SpaceWire

networks are presented accompanied by an overview of the

SpaceWire links, the link failure scenarios, and a description of

the functions needed to manage the network. The network

management functions are mapped to specific nodes in the

SpaceWire network which enables the data management

subsystem to initialize the network, detect failures, perform

recovery actions, ensure network availability for critical nodes;

and that the data transmission performance is acceptable with

specific protection against excessive data transfer to the on-board

computer. The role of each unit in the SpaceWire network and

their contribution to the overall data management subsystem is

described.

Keywords—SpaceWire; data management subsystem; routers;

networks

 INTRODUCTION

BepiColombo [1] is an Interdisciplinary Cornerstone
Mission to the planet Mercury, in collaboration between ESA
and ISAS/JAXA of Japan. It consists of two scientific orbiters,
the Mercury Planetary Orbiter (MPO) and the Mercury
Magnetospheric Orbiter (MMO), which are dedicated to the
detailed study of the planet and of its magnetosphere. The
system baseline envisages the launch of the MPO and MMO
composite spacecraft on an Ariane 5 vehicle. The nominal
duration of the Interplanetary Cruise Phase (from launch until
insertion into the operational Mercury orbit) will be
approximately 6 years and will involve a combination of a
number of Earth, Venus and Mercury gravity assists, and Solar
Electric Propulsion. The nominal MPO operational life will be
at least 1 Earth year in Mercury orbit. An extended MPO
operational life will be possible of at least 1 Earth year in
Mercury orbit beyond the nominal operational life.

The BepiColombo spacecraft system consists of the
following modules, as shown in Figure 1:

 Two science spacecraft: The MPO carrying remote
sensing, magnetometry and radioscience
instrumentation, and the MMO, carrying fields and
particles science instrumentation (including the MMO
Separation System)

 An MMO Sunshield and Interface Structure (MOSIF)

 A Mercury Transfer Module (MTM)

This paper focuses on the BepiColombo Data Management
Subsystem (DMS) with its SpaceWire network [2], hosted in
the MPO spacecraft and the implementation of the mission
autonomy.

MISSION AUTONOMY REQUIREMENTS

The mission has five distinct phases, ranging from Launch
and Early Orbit, near-Earth commissioning, interplanetary
cruise, Mercury approach and finally the Mercury Orbit phase.
Over these phases the composition of the spacecraft changes as
modules (the MTM, MMO and MOSIF) are separated. The
autonomy requirements are driven by the demands of each
mission phase, ground visibility and the solar environment.

The requirements address the need for continued mission
production generation (i.e. science), nominal operations
(platform management), and spacecraft safety when in an
emergency. The spacecraft shall be able to continue mission
product generation without the need for Ground contact for a
period of at least 7 days. The spacecraft shall be able to
continue nominal operations without the need for Ground
contact for a period of at least 14 days. The spacecraft shall be
able to operate in its Safe Mode for the longest expected
ground outage (14 days in cruise and 7 days in mission orbit);
in addition there are solar conjunction periods of up to 35 days
in cruise (with minimal science operations) and up to 10 days
in mission orbit (with full science operations), where no ground
support is possible and that the spacecraft shall operate in its
nominal mode.

112

mailto:James.Windsor@esa.int
mailto:Wahida.Gasti@esa.int
mailto:Ignacio.Clerigo@esa.int

Fig. 1. BepiColombo spacecraft and module composition

In addition to the autonomy duration requirement there are
two further constraints. Firstly the system must have attitude
control at all times in order to prevent sensitive elements of the
spacecraft from being exposed to the sun (e.g. radiators,
payload sensors, electric propulsion, and maintenance of solar
arrays temperatures within qualification limits). The
specification calls for the recovery of any system-level
anomaly to be initiated with an on-board computer (OBC)
reboot thereby ensuring a clean and consistent system start. A
system reboot can take several minutes which would cause
unacceptable attitude degradation so the AOCS and DMS
together must ensure that attitude control is maintained over
any reboot. Secondly, in order to ensure spacecraft safety in
any situation, thruster valve commands must be dispatched
immediately which means that the data link must guarantee
that the thruster commands are received instantaneously and in
a coherent manner.

The design of the DMS must be sufficiently adaptive and
robust to cope with these requirements, must be resilient to
any single failure and must be able to support the autonomy
duration requirements. This led to the selection of a SpaceWire
network approach as the main communication technology in
the DMS design.

DATA MANAGEMENT SUBSYSTEM ARCHITECTURE

At first glance the BepiColombo DMS subsystem is
typically of many spacecraft. It is responsible for the storage of
generated data, the retrieval and downlink of on-board data,
commanding and control over the spacecraft units and

subsystems, data acquisition from numerous on-board platform
sensors (e.g. thermistors, relays, sun sensors, Star Trackers,
IMUs), and the implementation of autonomous functions (e.g.
mission timeline, control procedures, parameter monitoring).

The BepiColombo Prime Contractor is Airbus Defence and
Space GmbH based at Friedrichshafen, Germany. Airbus DS is
responsible for the DMS subsystem, and they designed a
subsystem that is functionally split into an architecture for
normal operations, and a separate architecture which is only
used to recover from a system failure. The solution
implemented by Airbus DS is presented in Figure 2 and uses
two SpaceWire networks and associated nodes:

 The Payload network connects the Solid State Mass
Memory (SSMM) to the On-Board Computer (OBC)
and the nine Payload instruments.

 The Failure Control Equipment (FCE) network
connects the FCE to the Remote Interface Units (RIU)
and the OBC.

SpaceWire was selected as the common payload data link
for the command, control and transmission of science data
because of severe power and mass constraints on the
spacecraft. There are nine payloads hosted on the network with
a total mass budget of 60 kg, a total power budget of 140W and
data rates in the order of 10 Mbit/s. Previous ESA Science
missions had lower numbers of payloads, less demanding data
rates with higher total mass and power budgets. BepiColombo
needed a solution where a common set of interfaces could be
used across all payloads to ease integration, that was compliant
to the mass and power budgets, and provided the required data
rates. SpaceWire was the only candidate option with only the
AT7910E SpW router and SMCS332SpW driver devices
available at the time (the avionics design kicked-off in 2007).

As can been seen from Figure 2, the OBC acts as the hub
and bridge for the SpaceWire networks. The responsibility for
command and control of the networks is distributed across the
OBC, SSMM and to a lesser extent the FCE. It is this
distribution of responsibility that is the foundation of the
network’s robustness and adaptiveness.

The nominal AOCS and TT&C subsystems use a redundant
MIL-STD-1553B data bus for command and control over the
remainder of the S/C units (e.g. StarTrackers, Inertial
Measurement Units, Deep Space Transponder).
Communication with the MMO is also via MIL-STD-1553B.

A. Network Redundancy Management

The DMS uses a nominal and redundant unit management
approach. The units are either physically separated (e.g.
separate instruments) or the single unit internally houses a
nominal and redundant side, examples of the latter are the
OBC, FCE, SSMM and the two RIUs. Each side of these units
is then connected to the SpaceWire network as shown in Figure
2. Unlike other data links such as the MIL-STD-1553B where
there is a nominal and a redundant bus, the SpaceWire network
does not have a physically separate redundant network. The
nominal and redundant interfaces on the network are cross-
strapped which allows for a failed router to be bypassed or for
access to a redundant unit via an alternative routing path. In

113

PM B

PM A

SMCS A

SpaceWire
Management

FCE A

SpW
Router

A
FCE B

MPO RIU

SpW I/F
A

SpW I/F
B

MTM RIU

SpW I/F
A

SpW I/F
B

File
Management

Function

SpW
Router

Function
B

SpW
Router

Function
A

TFG

Memory
Controller A

Memory
Controller B

SSMM
 FCE

OBC

SpW
Router

B

SMCS B

Instruments

Fig. 2. Data Management Subsystem Architecture with SpaceWire

addition using logical addressing of destinations for SpW
messages, rather than physical addressing, separates the
addressing from the physical use of the unit redundancy. This
means that when commanding or sending telemetry, the
transmitter does not need to be aware whether the nominal or
redundant destination is in use. The network via the routers will
automatically transfer the SpW packets to the correct end
destination. The BepiColombo DMS networks build upon the
following two foundations: Group Adaptive Routing and
project specific extensions to SpaceWire.

1) Group Adaptive Routing
Re‐routing a packet out of one of several possible output

ports in a SpW router switch is known as group adaptive
routing (GAR). Links that connect to the same destination
(node or routing switch) are called a group. Any link in a group
can be used to transfer data to their destination. GAR is a
means of routing packets to a requested destination over
different paths through a network and provides a means of
managing allocation of link bandwidth ensuring optimised use
of the network resources.

Group adaptive routing can be implemented relying on the
configuration registers to hold information about equivalent
output ports. When a packet is received it can be routed to any
of the equivalent output ports that are currently free, or to
whichever port become available first. Assignment of a packet
to an output port involves also the consideration of any
arbitration scheme that is implemented within the routing
switch.

Adaptive grouping can remove some tasks from the system
design (e.g. understanding which side of a unit is active and
actively selecting the target logical address) and it makes the
system more robust and transparent to failures; but at the cost
of visibility – the network autonomously decides which
adaptive branch to take and does not report or record this event
which could mask a failure in the network. Another drawback
is that GAR potentially lowers the system determinability
because different routes are possible which could lead to packet
collisions and network congestion.

B. Extensions to SpaceWire Standard

SpaceWire [2] is a full‐duplex, point‐to‐point, serial high
speed data link (between 2 Mb/s and 400 Mb/s) for the
transmission of payload data and control information on-board
a spacecraft. The SpW standard defines a number of levels:

Physical level: defines connectors, cables, cable assemblies
and printed circuit board tracks.

Signal level: defines signal encoding, voltage levels, noise
margins, and data signalling rates.

Character level: defines the data and control characters used
to manage the flow of data across a link.

Exchange level: defines the protocol for link initialisation,
flow control to avoid overflow of the receiving buffers, link
error detection and link error recovery.

Packet level: defines the packetisation used for transmitted
data over a SpaceWire link. The data to be carried across the
link is called the SpW cargo. The standard [2] does not define a
protocol to be used for this cargo. In the case of BepiColombo
there were three cargo protocols adopted as shown in as shown
in Figure 3.

 A Packet Utilisation Standard [3] (PUS) compliant
single Telemetry (TM) or Telecommand (TC) packet
structure was used with the PUS packet carried as cargo
in the SpW packet.

 A collection of PUS Telemetry packets bundled
together into the cargo field for the OBC-SSMM
transfer of data. This maximises the utilisation of the
SpW link.

 Remote memory access protocol (RMAP) [5] for the
RIU communications to allow direct read (i.e. data
acquisition) and write (commanding) access to the RIU
memory array.

Network level: defines the structure of a SpaceWire
network and the way in which packets are transferred from a
source node to a destination node across a network, and how to
handle link and network level errors.

Two new layers have to be added to those specified in [2].
They are the Application Level and the System Level. They
both reside above the network level. The Application Level is
hosted at each network node and contains the services for
supporting the different types of packet level traffic used on
each network:

 PUS packets between FCE and OBC.

 RMAP exchange is used to transmit telecommand and
telemetry between the RIUs, OBC, and FCE.

 RMAP to control SpW routers supported by the OBC
and SSMM.

 OBC supporting PUS to the payloads and grouped PUS
packets to the SSMM.

114

Logical Address

Protocol ID

Padding Byte

Padding Byte

Single TM / TC PUS Packet Field
Group of TM PUS Packets

RMAP Protocol

End of Packet Marker (EOP)

C
ar

go
 F

ie
ld

1 Byte

1 Byte

1 Byte

1 Byte

TM Packet 4112 Bytes max
TC Packets 238 Bytes max

1 Byte

Fig. 3. SpaceWire Packet Structure

The System Level covers the management of the SpW
networks and the reminder of the spacecraft, e.g. the other
networks (e.g. 1553), operators, and subsystems.

C. Impact of SpaceWire on System Determinism

A SpaceWire network by nature is asynchronous.
Wormhole routing is used to secure a path via links and routers
to ensure that a packet maintains its integrity as it is transported
through the network. As per the standard, when a packet
arrives at a router it is sent to the allocated output port if that
output is free. If it is in use, i.e. congested, then the incoming
packet is stalled waiting for the output to be free. Routers do
not have extensive memory buffers for storing stalled packets
which means the packet is stalled from the point in the network
where the collision has occurred back to the transmitter device.
This wormhole along the network stalls any other packet that
needs to access the congested ports. A similar problem occurs
if the destination node is not ready to receive the packet. The
packet is stalled on the final link to the destination device and
blocks the path back to its source.

This causes a major challenge for providing a deterministic
communication over a SpW network. Data has to be able to
flow through the network and when the data arrives the
application level must process it sufficiently quick enough to
allow new packets to arrive. Currently the only solution to this
challenge is to design the network communication to have
sufficient bandwidth margin to avoid congestion and to ensure
that the application software can rapidly process incoming
SpW packets. The application software must take into account
the asynchronosity to avoid the data bus from pre-empting
critical system software tasks and upsetting the system’s
schedulability.

D. SpaceWire Fault Tolerant Links

SpaceWire is based on a fairly robust physical layer based on

a driver/receiver pair and a shielded cable with very good

EMC properties (BER = 10-12). If a transient error does occur

then the SpaceWire Codec immediately disconnects the link

electrically and goes through the re-initialisation process. In

20 µs the link is up and running again. The packet that was in

the process of being transferred is truncated and terminated by

a special Error End of Packet (EEP) character to indicate that

it was terminated prematurely.

The System Level is then responsible for managing the EEP to

resend or request the missing packet. Protocols for providing

this type of service are thus at system level.

E. SpaceWire failures

It is possible to derive a number of failure definitions that
are generic to a SpaceWire network implementation based on
the failure modes identified in the SpW standard.

1) Link Errors
The SpW standard defines clear cases, such as due to parity

errors in the transmitted data, when a link should be restarted
either by the transmitter or the receiver end. The standard
defines at exchange level the failure detection and recovery
approach to be followed at device level, i.e. by either the
AT7910E SpW routers and SMCS332SpW drivers, and when
the error should be reported to a system level, as shown in
Figure 4.

2) Router failure
If the router fails to work then the symptoms are either

continued link disconnects on the nodes connected to the
device, the disappearance of SpW packets from the system
because the router is losing them, or data corruption with
invalid packets or timecodes.

The network level cannot detect a router failure. It is only at
system level, or spacecraft operator level, that all of the
symptoms can be detected, consolidated and a correct
diagnosis made. A router failure can be automatically bypassed
if Group Adaptive Routing is enabled on the SpW routers. This
allows all routers connected to the failed router to detect an
unavailable link and use an alternative routing path to transfer
packets but without reporting the anomaly.

3) Node failure
If the node connected to the network has failed then the

failure symptoms are continued link disconnects with the
connected driver or router, or the unit does not send any
packets on the network. SpaceWire does not have an
acknowledge protocol for non-RMAP traffic so if a packet has
been lost on the network, e.g. due to a router failure or a link
disconnect, then there is no indication at network level that the
packet is missing. The only indication can be at system level
when either the commanded behaviour is not observed or
telemetry is not received from the node.

A complication arises that a router failure provides similar
symptoms as a node failure (missing packets) so it is necessary
when diagnosing a potential failure that the complete SpW path
is checked.

4) Missing data
Missing data can only be detected by missing telemetry

reports that are sent upon request by a user, or a failure for a
telecommand to change the on-board state, or by the ground
operators due to jumps in the telemetry source sequence
counts. It will be unclear what is the cause of the anomaly. It
could be any of the failure cases (link errors, router or node
failures) and the cause of the anomaly can only be determined
at system level through a process of elimination.

If the RMAP protocol [5] is used then each communication
on the network becomes a message exchange. A write

115

Link Reset

Link Error

Parity Error

Disconnect
Error

Character
Sequence

 Error

Credit Error

Escape Error

Hardware
Unresponse

(timeout)

SpW Node is not
powered, incorrectly
configured, or failed

Cable failure

Report to System
Level

Fig. 4. SpaceWire Link Errors management

command results in a the destination node sending a copy of
the write result back to the transmitter. A read command results
in the read data being returned. This protocol allows missing
data to be detected without providing the root cause.

SPACEWIRE NETWORK FUNCTIONS

Based on the previously identified network failure cases, it
is possible to further derive a set of functions that are need by
the DMS in order to effectively manage the network are
presented in the following subsections. For BepiColombo these
functions are distributed across the DMS. A mapping of where
the network management functions are implemented is
provided in Table 1.

F. Network Initialisation

This function is responsible for ensuring that the network is
powered in the correct sequence, the node SpW specific self-
tests are performed, and the SpW links are running (i.e.
exchange of NULL tokens).

G. Network (re-)configuration

This system level function is responsible for selecting the
nominal or the redundant interfaces of the network, which are
defined in terms of nodes, routers and links.

A network reconfiguration shall be a failure recovery
following an anomaly in either the network’s nominal (or
redundant) interface or a failure at payload level which
necessities a reconfiguration in order to access the redundant
payload. It is possible to have a full reconfiguration which is a
complete switch the complete set of interfaces, or a partial
reconfiguration where cross-strapping is used to replace only
those failed elements of the network with their redundant
elements.

H. Router (re-)configuration

This network level function programmes the router using
dedicated SpW commands. Routers can be configured at any
time as long as the router is powered.

A router reconfiguration shall be needed if a link has failed
and its port allocation needs to be removed or its behaviour

needs to be modified.

I. Router health monitoring

There is no dedicated health reporting provided by the
AT7910E router so the system level must contain a function
which is able to verify the health of the routers and to ensure
that they are correctly configured.

J. Link health monitoring and SpaceWire packet error

detection

The AT7910E router detects and recovers from link errors
on each of its ports and sets an error register. This is
implemented at network level, however there is no convenient
means to report this to the system level. A dedicated function
has to be added to the network level to access the router error
registers in order to flag link errors to the application layer.

The SMCS332SpW driver will detect and recover from a
link error while raising an interrupt to the application layer.

K. System Traffic volume and data flow protection

In the SpaceWire standard flow control is implemented at
exchange level and ensures data is only transmitted when there
is available space at the receiver buffer. This is a low level
implementation and has no knowledge if the receiving
application, or node, is ready for the data. Sending excessive
volumes of data to a destination node in a so called ‘babbling
idiot’ [6], essentially an unintentional Denial of Service attack,
can lead to network performance degradation and in the worst
case, a severe impact on the performance of the receiving node.
In the case of BepiColombo the receiving node is the central
OBC meaning any degradation in the unit’s performance due to
excessive incoming SpW packets will endanger the mission
safety. A system function is needed to implement a network
level flow control mechanism because it is not supported in the
SpaceWire standard.

PAYLOAD NETWORK

The Payload Network has its external SpW links
configured to be 10 Mbit/s between the SSMM, OBC and
payloads, with one exception for a payload-SSMM link which
is configured to be 100 Mbit/s. The network has several
purposes:

 It must transfer commands and TM from the OBC to the
SSMM for processing and storage.

 The OBC must receive housekeeping telemetry from
the SSMM and payloads for monitoring, and it must be
able to command the nine payload nodes. The SSMM
must receive both Science data (stored directly in the
packet stores hosted inside the SSMM) and forward the
non-Science housekeeping telemetry to the OBC.

 The OBC distributes the time throughout the network.

 To enable the downlink of data from the packet stores
within the SSMM via the Telemetry module built into
the OBC.

The SSMM is defined in full detail in [4]. The SSMM is
supplied by Thales Alenia Space – Italy, Milan and has itself
an embedded SpaceWire network running at 20 Mbit/s based

116

TABLE I. SPACEWIRE NETWORK MANAGEMENT FUNCTIONS

SpaceWire
Function

Payload network

(OBC, SSMM, Payloads)

FCE network

(OBC, FCE,
RIUs)

Network

initialisation

SSMM, OBC, Payloads OBC, FCE,
RIU.

Network

(re-)configuration

OBC sends commands to SSMM
which then performs the
configuration activities on the
payload interfaces.

The SSMM is capable of
automatically configuring its
output interfaces to the
Telemetry Frame Generators for
downlink of data.

OBC.

FCE – only its
inteface to
router.

Router

(re-)configuration

SSMM.

All direct configuration activities
are localised to the SSMM. This
ensures that only the SSMM
needs to be aware of the
different configuration options
thereby lowering the effort
needed at system level.

OBC.

Router health
monitoring

Router health check is only
during SSMM intialisation.

OBC.

Link health
monitoring and

SpW packet error

detection

SSMM – monitors its own
routers and reports errors to the
OBC.

OBC – monitors its own
interfaces. Reacts to errors
reported to it and its own errors.

Payloads – monitors its own
interfaces and reports errors to
the OBC.

OBC.

FCE – only its
link to the
router.

System Traffic

volume and data

flow protection

SSMM – caching function to
smooth out bursts of traffic.

None.

Group Adaptive
Routing

Used for load balancing traffic
transferred into the memory
management controller.

Used for
managing link
errors.

on ten AT7910E SpW routers ASICs connecting three SpW
nodes (the memory, Supervisor A and Supervisor B) to the
external nodes (nine instruments, OBC, Telemetry modules,
and test equipment). The unit provides the command, control
and time code distribution link between the OBC and the
payloads.

As shown in Table 1, the majority of the network functions
are hosted in the SSMM. This was done to lower the work load
on the system and ground levels and to centralised all of the
router configurations. The nominal and redundant Supervisor
modules each house an ERC32 TSC695F microprocessor that
run the unit’s application software (ASW) which implements
all of the allocated network functions. The unit maintains a
copy of its internal state and configuration in non-volatile
memory so that following any recoveries from minor
anomalies the unit can restore itself to its previous setup. Any
major anomalies will lead the unit to enter its Service mode. In
this case the unit management hosted in the OBC will then
reconfigure the SSMM supervisor to its redundant side if not
already in use to permit continued operations.

A. Network Initialisation

The SSMM initialises the network such that the routers that
interface with the payloads, and the payloads themselves, have
the ‘link-start’ configuration meaning that immediately
following power-on they attempt to start the link. This ensures
that if the payloads are ready to transmit then the network is
configured to receive the data. The side of the network not used
(e.g. the redundant side) is disabled as part of the initialisation
logic. This prevents any SpW links running on the non-used
sides which could happen when both the nominal and
redundant sides of the receiver (e.g. SSMM) and both the
nominal and redundant sides of the transmitter (e.g. Payloads)
are cross-strapped and incorrectly configured.

B. Network Configuration and Health Monitoring

The OBC is supplied by Thales Alenia Space – Italy, Milan
and is based on the Leonardo architecture which has heritage
from other ESA missions such as CRYOSAT and SWARM.
The OBC uses a ERC-32 based Processor Module architecture
and supports data exchange via SpW using the SMCS332SpW
driver to interface to the network. The OBC is the source of all
commands dispatched into the network and the destination of
all non-science telemetry generated by the payloads and
SSMM. The system autonomy and monitoring is implemented
within the OBC. The SSMM management function is
implemented in the OBC and is responsible for ensuring the
availability of the SSMM and the Payload network. The
SSMM-OBC links are cross-trapped and the OBC selects the
link and takes care of reconfiguring it in case of failure.

It is necessary for the SSMM to be fully aware of all
possible router configurations in order to ensure that the
network can be reconfigured to ensure the command, control
and time link between the OBC and the payloads. The unit can
detect SpW link errors and notify the OBC. The OBC will then
determine if further correct action is needed (the SSMM will
automatically restart the SpW link as per the standard)
otherwise the OBC will record the event for further
consideration by system level failure management functions
and spacecraft ground operators.

If at either system or spacecraft operations level it has been
decided to reconfigure the network, then commands are sent to
the SSMM notifying it of the new external interfaces to use and
also any payload commands are sent to switch over to the
redundant (or back to nominal) sides. The OBC does not
specify which router to select or what the programming is to
be. It simply commands select Payload Interface Nominal or
Redundant. The SSMM is aware of the state/health of its
network and is able to take the necessary steps to reconfigure
the routers to ensure that the OBC has the requested command,
control and time link. It is this level of decentralised control at
SSMM level that reduces the complexity of the DMS
subsystem, thereby improving its robustness.

The only approach for the SSMM to verify the health status
of its routers is to send an RMAP interrogation command
requesting the status of certain registers. There is not a
dedicated register reporting the overall health of the router,
meaning it is not possible to poll a single entry instead several
entries must be checked and then compared against previous

117

values in order to find an anomaly (frozen or out-of-range
value). This approach has not been implemented on the
Payload Network because it would add additional traffic – the
RMAP protocol is a command-and-response message meaning
each register check would add two messages for each of the ten
routers to the overall communication budget.

C. Volume and Data Flow Protection

The System Traffic volume and data flow protection for
this network is implemented in the SSMM as a caching
function. This prevents a babbling instrument from swamping
the OBC with SpW exchanges. The SSMM has a pre-defined
number of packets that it can transmit per second and it limits
the exchange of non-Science telemetry packets to that limit.
The SSMM can detect an excessive accumulated packet rate
and will report this to the OBC. The SSMM is not able to read
the contents of the packets and so is unable to determine the
culprit(s) for the excessive packet generation rate.
Implementing such an ability would have required dedicated
firmware within the unit because the AT7910E router does not
support such a monitoring. Examining the content of each
packet would have been detrimental to the overall goal of fast
SpW operations. It then becomes the responsibility of the
spacecraft operators to analysis the available data and
determine the culprit.

D. Network Design Driver

The mission critical design driver of the network is to
ensure reception of the non-Science telemetry from the
payloads in order to ensure their safety. The on/off power
commanding of the payloads is via dedicated control lines in
the Power subsystem and is independent to the SpW link.
During a spacecraft emergency the instruments need to be
switched off in a controlled manner. Immediately removing
power from several of the instruments could lead to damage
because a power-down cycle is needed before cutting power. In
addition, an unexpected system failure recovery will involve
thruster actuation leading to a risk of internal misalignment of
sensitive surfaces and sensors within several of the instruments,
therefore these sensitive instruments must enter a safe mode to
protect themselves. Due to the asynchronous nature of
SpaceWire there is no guarantee that a ‘enter safe mode’
command sent by a system level failure manager to each
payload notifying them that a system restart is about to be
triggered will reach the destinations, so a different approach
was adopted that builds on the SpW timecode mechanism.

The network uses the one second SpW timecode pulse as
the heartbeat of the OBC-SSMM-Payload network. The
timecode is sent by the OBC and is absent during a system
reconfiguration. Therefore if an instrument does not receive a
timecode, then it starts to prepare to enter its safe mode. A
drawback to this approach means a failure at router or link
level could lead to an unintentional safeing of the instruments.
To avoid this, a consecutive number of timecodes must have
been missed before the instruments take action.

FAILURE CONTROL EQUIPMENT NETWORK

The FCE network is purely a command and control
network with no payload involvement. It connects the two
flight computers, the On-Board Computer and the Failure
Control Equipment, with the Remote Interface Units. The
purpose for the FCE network is to ensure that the spacecraft
attitude knowledge and pointing is preserved at all times,
including across a system reboot. The FCE network has only
four nodes: FCE, OBC, MPO RIU and MTM RIU.

Unlike the Payload network there is no dedicated System
Traffic volume and data flow protection implementation on the
FCE network. Instead the SpW standard flow control token
mechanism is used and the amount of data exchanged between
nodes is limited at design level.

A. Network Initialisation

As shown in Table 1 the OBC is the node responsible for
the initialisation and configuration of the FCE network and
routers. The network initialisation involves the OBC
configuring the routers to support group adaptive routing in
order to allow RIU communication to automatically be routed
correctly to the destination without the system needing to know
the health of the network in terms of failed port/links.

B. Network Configuration and Health Monitoring

The OBC monitors the status of its links with the routers. If
consecutive transmission or reception errors are detected then
the OBC will reconfigure its interface to the routers to avoid
using the failed SpW link. There are only two hot redundant
routers used on the FCE network and so the assumption has
been made that a router failure will be detected as a
consecutive series of transmission or reception errors, and so
can only be considered as a link error. The only recovery
possible is to avoid using the failed link to the router. The
adaptive routing and the router addressing table ensures that the
commands reach the correct destination without needing any
router re-configurations. The health monitoring of the router is
performed by the OBC polling router registers via RMAP read
commands and the values reported in telemetry and available
in the datapool. Note that this approach is not used on the
payload network due to the number of routers involved
(Payload has 10 routers versus 2 with the FCE). Failures could
then be diagnosed and acted upon at system level or by ground
operators.

The FCE is supplied by Thales Alenia Space – Italy, Milan
and is a derivative of the OBC with an additional module to
house the routers and access to dedicated sensors. The FCE
does not configure the router or the network but it does monitor
the status of its links with the routers. If consecutive
transmission or reception errors are detected then the FCE will
reconfigure its interface to the routers to avoid using the failed
SpW link. The adaptive routing and the router addressing table
ensures that the commands reach the correct destination
without needing any router re-configurations. This routing
approach provides the adaptiveness needed at network level to
handle failures and ensure the robustness of the subsystem.

The RIUs are supplied by Thales Alenia Space – UK Ltd,
Bristol (formerly the Space division of Systems Engineering
and Assessment Ltd, UK). The RIUs decouple the discrete

118

interfaces from the OBC and acts as the central interface units
of the satellite. Each RIU contains a nominal and redundant
SpW Controller module. Each of these modules (nominal and
redundant) has a SpW interface. These signals are cross-
strapped to allow both the nominal and redundant SpW
controller modules access to the main and redundant
SpaceWire links. The cross-strapped signals are passed via a
dedicated cross-strap connector which allows the RIU SpW
controller to be commanded from either FCE router A or B.

C. Network Design Driver

Any system level failure will lead to a system reset
requiring an OBC reboot. The duration of the system restart
and initialisation is such that any on-going attitude
perturbations will cause sensitive surfaces to be exposed to the
sun and damaged. To avoid this the FCE takes over control of
the RIUs and commands the attitude pointing and platform
management. When the OBC is ready to resume spacecraft
control, the FCE returns commanding authority and transfers
the attitude data to the OBC. Consequently, the key objectives
for the network are outlined below:

 Availability of the FCE – OBC link to transfer attitude
data back to the OBC following a system reset.

 Availability of the links OBC – RIU and FCE – RIU in
order to control thruster actuations.

It is the latter objective that drove the decision to deploy
SpaceWire on the FCE network. Using a router allows the
master control of the RIUs to be instantly switched from the
OBC to the FCE during a system reset. The FCE network is
implemented with two AT7910E routers operating in hot
redundancy and hosted with their own dedicated power supply
as part of the FCE unit. There is no “switch on” or “switch off”
service for the router equipment because they are permanently
powered. The network is configured to run at 10 Mbit/s except
the MTM-RIU link which is at 4 Mbit/s, and all links are
initially on autostart mode. As shown in Figure 2 each router
unit is able to communicate with all nodes (both OBC PMs,
both FCE PMs, both sides of each RIU equipment), but, in the
case of the RIUs, the actual cross-strapping is ensured by the
bridge link between both routers (router A can only access RIU
side A and router B the RIU side B) such that packets have to
be forwarded between the routers in order to access the other
RIU side. This forwarding is ensured by the adaptive routing
mode programmed in both router units. If the direct link to the
destination is not active, then the incoming packet is forwarded
to the second link as part of the adaptive routing. The second
router would then have the active link to the destination node.

LESSONS LEARNT

BepiColombo is the first ESA mission to deploy multiple
SpaceWire networks but it has not been an easy adoption of the
technology. Fundamental problems have been addressed
related to a limited hardware selection, missing key features in
the standard [2] (inability of routers to report link errors, no
provision of a higher level flow control management where
packet rate can be specified per port) which forced
workarounds to be implemented at application and system
levels. Supporting documentation for the SpaceWire devices

and applications at first was poor but evolved over the course
of the project, and there was a corresponding lack of previous
experience utilising SpaceWire with the spacecraft avionics
manufacturers and on-board software developers. Instead a
MIL-STD-1553B viewpoint was often applied to SpaceWire
which led to inconsistencies between hardware, software and
system levels. These issues were discovered and resolved only
very late in the System AIT programme. This has led to a firm
realisation that it is impossible to build a classical deterministic
system in SpaceWire equivalent to a MIL-STD-1553B
implementations. It also highlighted a need for training to
improve awareness at system level of the advantages and
disadvantages of deploying a SpaceWire network on a
spacecraft

CONCLUSION

The BepiColombo data management subsystem needed a
data link which met stringent mass, power and data rate
requirements for the links to the payloads, whilst ensuring an
instantaneous switch of RIU control from the OBC to the FCE.
A robust data management subsystem has been implemented
that is able to autonomously adapt to failures and react to
changes in the spacecraft state during system resets
incorporating the functions supported by the SpW standard,
and implemented in the AT7910E SpW and SMCS332SpW
devices. A new set of system level management functions had
to be implemented within the OBC and SSMM software in
order to coordinate the initialisation of the SpW networks,
monitor the network health and take all necessary recovery
actions.

BepiColombo is the first ESA mission deploying on-board
SpaceWire networks and it has been challenging identifying
and implementing the management functions. The industrial
team, Airbus DS and Thales Alenia Space, have overcome
these challenges and have developed a data management
subsystem that meets the needs of this Cornerstone Mission to
Mercury.

REFERENCES

[1] Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H.,
Novara M., et al., “BepiColombo - Comprehensive Exploration of
Mercury: Mission Overview and Science Goals,” Planetary and Space
Science, Vol. 58, Issues 1-2, Elsevier, 2010, pp. 2-20.

[2] SpaceWire - Links, nodes, routers and networks ECSS-E-ST-50-12C. 31
July 2008. http://www.ecss.nl/

[3] Telemetry and telecommand packet utilization. ECSS-E-70-41A, 30
January 2003. http://www.ecss.nl/

[4] M. de Meo, G. Saldi, G. Rosani, W. Gasti, J. Noyes, J. Windsor, J.
Poeckentrup, R. Eilenberger, “BepiColombo solid state mass memory
employing SpaceWire,” International SpaceWire Conference 2013.

[5] SpaceWire - Remote memory access protocol ECSS-E-ST-50-52C.
5February2010. http://www.ecss.nl/

[6] I. Broster and A. Burns. The babbling idiot in event triggered real-time
systems. In G. Fohler, editor, Proceedings of the Work-In-Progress
Session, 22nd IEEE Real-Time Systems Symposium, YCS 337, pages
25–28. IEEE, Department of Computer Science, University of York,
2001.

119

http://www.ecss.nl/

SpaceWire Fabric Used to Control Family of
Standardized High Performance SpaceVPX Modules

Missions and Applications, Long Paper

Joseph R. Marshall, Lisa Assadzadeh, Richard Berger

BAE Systems
Manassas, VA 20112

joe.marshall@baesystems.com

Abstract— This paper will describe the various modules and
daughter cards under development. Interconnects between these
modules will be highlighted with special emphasis on SpaceWire
ports, routers and backplane routings. Performance of the
modules and their interconnects will be summarized. SpaceVPX
Backplanes, cabling and test equipment for bringing up and
testing these modules will be described highlighting leveraging of
COTS elements.1

Index Terms—SpaceWire, Networking, RapidIO, Spacecraft
Electronics, SpaceVPX, Ethernet, RAD750 SBC, RAD5545 SBC,
RADSPEED DSP, Virtex V5QV, DDR2, DDR3, XR-DIMM, PCI

I. INTRODUCTION
Future spaceborne systems will require additional onboard

processing and much greater interface connectivity. Many
efforts worldwide are starting to address these needs.
SpaceVPX, a recently released ANSI/VITA standard [1] [2]
[3], was created to provide the structure and definition for
interoperable modules that will be created to meet these needs.
It provides a multi-layer set of fabrics using SERDES, LVDS
and LVCMOS devices to provide interconnects in a scalable
and fault tolerant way. SpaceWire is setup as both a control
plane for command and data handling throughout the box as
well as a medium speed data plane.

Building on previous SpaceWire network elements, BAE
Systems is creating a set of silicon application specific standard
products (ASSP) [4] [5] [6] to provide power efficient general
purpose building blocks for the creation of scalable SpaceVPX
modules across these three fabrics. These building blocks are
key to a new family of SpaceVPX processing and network
modules being developed for a wide variety of space
applications. These include a RAD750® Single Board
Computer [7], a RAD5545™ Single Board Computer, a
Virtex-5 based Reconfigurable Computer Module, a dual
RADSPEED™ Digital Signal Processor Module and multiple
types of standalone function modules focused on memory or
unique I/O. All of these modules contain at least dual
redundant SpaceWire ports to be utilized by the System

1 Approved for Public Release – ES-ISR-082216-0107

Controller for command and data handling or between modules
for medium speed data transfers. BAE Systems has also
defined daughter cards that may plug into some of these
modules which also include SpaceWire links for extending the
control, data handling and data transmission. Additionally BAE
Systems is exploring ways to interact between Ethernet and
SpaceWire for testing and other ground based activities with
these modules.

II. SPACEVPX SYSTEM
SpaceVPX was approved as an ANSI/VITA standard in

2015 and is beginning to see usage across spacecraft systems.
It uses three main interface fabrics, RapidIO [8] (up to 20 Gbps
per 4 lane port), SpaceWire [9] (up to 400 Mbps per port) and
I2C (up to 400 Kbps per port) to provide a scalable
interoperable form factor spanning almost five orders of
magnitude of performance.

Figure 1 shows a SpaceVPX system made up entirely of
SpaceWire links for command and data handling as well as
medium speed data movement. The controller module (lower
left) directs this through a star topology providing a SpaceWire
link to each module. SpaceVPX is also important for its fault
tolerance – full single point failure protection is carried
throughout the standard. Thus if a system like Figure 1 has
redundant modules, the controller would connect to each of
those as well. The redundant controller would have an
equivalent set of SpaceWire links to each primary and
redundant module.

Six instruments are postulated in this system – connections
to those instruments may be direct from the controller module,
through a remote interface with additional module ports and
using heritage or other unique I/O. An internal mass memory
is also shown and due to its need to collect or transmit data in
larger quantities, it is shown with twice as many connections.
This of course could be even higher. Figure 2 shows a slightly
expanded system, this time using all three fabrics. As such, the
data plane provides significantly more data flow between
modules, yet each module still retains it SpaceWire interfaces.
Note the ability to connect to instruments using RapidIO,
XAUI or other SERDES interfaces and SpaceWire to best

120

match the performance of each instrument. A data plane
switch is also added to avoid a large RapidIO connection mesh.

BAE Systems has or is developing many of these

SpaceVPX modules. This paper will describe the RAD750®
single board computer (SBC), which may be used as a small
system controller, a data processor or some other intelligent

payload. Other modules to be described are the RAD5545™
SBC, which may play similar roles but with up to 10x the
performance, a RADSPEED DSP module and a
Reconfigurable Computing module, each which may function

Instrument 1 Instrument 2 Instrument 3 Instrument 4 Instrument 5 Instrument 6

Remote InterfaceI/O Conversion

14

Control Plane SpaceWire

Utility Plane (P0) 6

SpaceUM Power
SupplyPower

Supply
SpaceUM

Controller
Controller

RAD5515™ SoC

Utility Plane (P6)

User Defined I/O

SpaceVPX
chassis

Top of Module SpaceWire
Top of Module SpaceWire

Data Processor
Data Processor

RAD5545™ SoC

Telemetry Formatter
& EncryptionTelemetry Formatter

& Encryption SpW EP

Remote Interface
SpW RB4

I/O Conversion
SpW EP

Mass Memory
Mass Memory

SpW RB4 or SRIO EP

Figure 1: SpaceVPX system using SpaceWire for control and data. Solid horizontal lines represent point to point backplane connections.

Instrument 1 Instrument 2 Instrument 3 Instrument 4 Instrument 5 Instrument 6

14

Control Plane SpaceWire

Utility Plane (P0) 7

Power
SupplyPower

Supply

Controller
Controller

RAD5515™ SoC

Utility Plane (P6)

User Defined I/O

SpaceVPX
chassis

Top of Module
SpaceWire and RapidIO

Top of Module XAUI

Data Plane RapidIO

Telemetry Formatter
& EncryptionTelemetry Formatter

& Encryption SRIO EP

Data Processor
Data Processor

RAD5545™ SoC

I/O Conversion
I/O Conversion

SRIO EP

Mass Memory
Mass Memory

SRIO EP (1 or 2)

12

Data Switch
Data Switch

SRIO PS

SpaceUM
SpaceUM

Instrument 7

Remote Interface
Remote Interface

SRIO EP XP

Figure 2: SpaceVPX system using SpaceWire for control and RapidIO for data

121

as a Data Processor. The green blocks in each diagram
highlight developed application specific standard products that
provide the major interface and or processing element for that
module. Other modules under development but not discussed
in this paper include mass memory, data switch, SpaceUM and
power supplies. Taken together, systems of various
performance and bandwidth can be constructed out of these
interoperable modules.

III. RAD750® SBC
The RAD750 SBC, as shown in Figure 3, is based upon the

upgrades to BAE Systems’ RAD750 CPU. It is our first
SpaceVPX module and utilizes the 6U-220 form factor to
provide room for 128 MB of radiation-hardened SRAM with
SECDED and 512 MB of TMR flash. The RADNET™ SpW-
RB4 [10] provides the system interfaces to a RAD750 V2 or
V3 processor with 1 MB of L2 cache attached. Four 320 MHz

SpaceWire ports connected through an internal nine port router
provide over a Gbps of external bandwidth. A 32 bit PCI bus
interface is also brought to the SpaceVPX P5/J5 backplane
segment for connection to heritage modules over the expansion
plane. A dual redundant MIL-STD-1553B interface is
implemented and routed on the backplane over user defined
pins. A utility FPGA, implemented using the Microsemi
RTAX2000S device, provides SpaceVPX connections to the
utility plane, conversion of voltage levels to the SRAM and the
TMR flash interface. This module can be used as a SpaceVPX
controller for systems of up to five modules or with a separate
control plane switch module, as many as are needed. It also
may be used as medium performance data processor where
processing up to 500 DMIPs are required or as a bridge to
heritage CompactPCI modules.

IV. RAD5545™ SBC
The RAD5545 single board computer (SBC) as shown in

Figure 4 is based upon the RAD55xx™ Power Architecture®
system-on-chip (SoC) processor platform component that can
be configured into multiple personalities including the
RAD5545 quad-core processor [5]. The 6U-220 format SBC
with SpaceVPX connectors [1] can be used in either a payload
or controller slot as defined by the VITA 78 standard
leveraging the 16-port SpaceWire router integrated into the
RAD55xx platform as the central hub of the SpaceVPX control
plane. Twelve of the sixteen SpaceWire links are connected to
the SpaceVPX connector, along with three and optionally four
of the four lane RapidIO ports, two Gb Ethernet SGMII ports,
and the UARTs through external RS422 drivers and receivers.

The other key component on the RAD5545 SBC is also a
Microsemi RTAX2000S FPGA. The FPGA includes logic to
provide a triple modular redundant (TMR) NAND Flash
memory interface driven by the single Flash memory interface

on the RAD5545 processor, the signals required for the
SpaceVPX utility plane based on I2C interfaces from the
RAD5545 processor, an interface to the configuration
EEPROM that is fed into the RAD5545 SRAM/EEPROM port,
and a 1 pulse-per-second (1 PPS) input/output.

The DDR3 DRAM memory controller of the RAD5545

processor feeds to a ruggedized dual inline memory module
(XR DIMM) connector, providing the flexibility to insert RAM
modules of different sizes and features onto the base 6U-220
module. The SBC will accept 2, 4 or 8 GB of DDR3 SDRAM
with error SECDED correction on a single memory rank using
standard commercial DRAM components.

The front side of the card as shown in Figure 5 includes six
point-of-load (POL) regulators to generate the various low
voltages required that cannot be viably distributed from a
centralized power supply. The power up/down sequence is
controlled by logic on the back side of the card.

Figure 3: RAD750 SBC block diagram

122

The back side of the base module includes the connector

for a daughter card 5.22” in length and 3.88” in width. The
daughter card may be configured by user to add customized
features to the SBC. From the processor, four SpaceWire
ports, a 32-bit parallel PCI bus, and optionally one x4 RapidIO
port (mutually exclusive with the fourth RapidIO port to the
backplane) are routed to the daughter card connector. Power
conversion from the base card POL regulators is also supplied
through the daughter card connector. Likely applications for
the daughter card would be to add additional unique functions
or heritage interfaces that would leave the subsystem such as
MIL-STD-1553 and Controller Area Network (CAN), both of
which employ unique physical layers. There is sufficient space
on the daughter card format for one FPGA device.

V. RECONFIGURABLE COMPUTING MODULE
Many payload electronics boxes require signal processing.

The Reconfigurable Computing Module (RCM) meets this
need in a SpaceVPX 6U-220 format. A block diagram of the
module is shown in Figure 6. Two Xilinx Virtex-5QV RAM-

programmable FPGAs provide significant reprogrammable
logic for implementing signal processing algorithms. Each
FPGA has 1 GB of DDR2 SDRAM attached to it and each
connects to a small daughter card (3.8” x 2.86”) for
personalizing any external I/O that is connected (e.g. ADCs for
analog inputs or DACs for analog outputs).

The 18 SERDES lanes on each FPGA are connected to the
backplane (8 lanes) through a cross-point switch, to the
daughter card (4 lanes) and to the other FPGA (6 lanes). A
utility FPGA provides the utility plane connections for the
module, a flash interface to up to 8 GB of TMR flash and either
a SpaceWire control plane interface or an internal embedded
microcontroller. As such the module may be controlled
remotely through the SpaceWire port or by loading and
executing code on the module. FPGA bit files are stored in the
flash and are loaded under direction of the remote or local
controller.

Figure 7 shows CAD drawings of the RCM with major
components identified. Note that heat pipes are used to remove
heat from the two FPGAs to the wedge locks. The two

Figure 5: Front and back side CAD drawings of the RAD5545 SBC

Figure 4: RAD5545 SBC block diagram

123

daughter cards may be plugged into identical connectors on the
top of the front view of the module. In order to maximize
function, the daughter card may span the two sets of
connectors, especially if only one side of the card has
implemented function or interfaces. Besides the obvious ADC

and DAC functions, FPGA daughter cards may be used for
redundant SERDES connections, electrical to optical or
extended memories.

VI. RADSPEED™ DSP MODULE
Providing a lower power per GFLOPS signaling processing

solution, the RADSPEED DSP SpaceVPX module includes
either one or two single instruction, multiple data (SIMD)
digital signal processor components, supported by a unique
variant of the RAD55xx™ family called the RADSPEED HB
[5] [6]. The RADSPEED HB is a host/bridge that
communicates with the two DSPs across a unique high

performance parallel bus called the ClearConnect® Bridge,
shown in the block diagram in Figure 8 as “CCBR”.

Each RADSPEED DSP contains two independent multiple
thread array processors (MTAP) each of which consists of 76
identical processing elements. Each processing element
includes a full double precision floating point engine, fixed
point logic unit, multi-port register file, and 6 KB of SRAM.
The aggregate capability of both MTAPs is 70 GFLOPS of
peak throughput providing up to 140 GFLOPs in total on the
module and supplemented by the horsepower of the quad-core

Figure 7: Front and back side CAD drawings of the RCM

Figure 6: Reconfigurable Computer Module block diagram

124

RADSPEED HB as appropriate. Each MTAP includes a
dedicated DDR2 DRAM port and the module includes 1 GB of

DRAM on each port.
.

The DDR3 DRAM interface on the RADSPEED HB SoC

can support up to 8 GB of memory, mounted on an XR-DIMM
identical to the one provided for the RAD5545 SBC. Also, as
included on the RAD5545 SBC, an RTAX2000S FPGA is
included to provide the triplicated Flash interface and to
generate the SpaceVPX Utility plane signals.

Because the process technologies of these key components
are different, the supply voltages are also not identical. As a
result, the RADSPEED DSP module includes a myriad of POL
regulators to generate all of the local voltages. These various
voltages are also power sequenced.

The SIMD architecture RADSPEED DSP is well suited to
both signal processing and image processing, leveraging
features such as an optimized Fast Fourier Transform (FFT)
library function. Performance analysis of both Space-Time
Adaptive Processing (STAP) and Synthetic Aperture Radar
(SAR) functions as well as analysis of hyperspectral imaging
have been performed. Some of the benchmarks executed on
the RADSPEED DSP are the Complex Ambiguity Function
(CAF) [11] and image processing algorithms such as the Harris
Corner Detector for feature detection and the Histogram of
Oriented Gradient (HOG) for object detection [12]

VII. MODULE TESTING
The RAD750 SBC has completed checkout and is now

supporting its applications. The RADSPEED DSP module is
in design. The RAD5545 SBC and the RCM should complete
fabrication and move to the lab checkout and bring-up by
4Q16. All of these modules align with the SpaceVPX 6U
Payload/Controller slot profile family and the latter three have
user defined signals in the same locations, enabling them to be
interoperable. (The RAD750 SBC with its heritage PCI Bus
and 1553 I/Fs on the backplane requires a different slot though
user I/O are consistent with the other three modules.) Thus a
common test structure and two test backplanes (peripheral and
payload) have been created for use across these modules and
many others that may be created in the future. The test
backplane is designed to route signals for the utility, control,
data, and expansion planes for Controller and Payload slot
types. Each Module is tested in accordance to their system slot

type. Each slot type has a different backplane signal routing.
Table 2 captures the different slot types supported for each
module described above.

Table 2 – Module Slot Types

Slot Type Backplane Module
Controller/Payload
/Peripheral Peripheral RAD750 SBC with PCI
Controller/Payload Payload RAD750 SBC without PCI*
Controller/Payload Payload RAD5545 SBC without PCI
Controller/Payload
/Peripheral Peripheral RAD5545 SBC with PCI*
Payload Payload RCM
Peripheral Payload RCM with PCI*
Payload Payload Single RADSPEED DSP*
Payload Payload Dual RADSPEED DSP
Payload Payload Storage Module*
Switch Switch* RapidIO Packet Switch*
Controller/Switch Switch* Controller w/ Packet Switch*

*Future
The test fixture is side loading which allows for backplane

probing. The backplane is designed to be compatible with a
commercial chassis, leveraging OpenVPX infrastructure and
commercial modules for workbench testing. The test fixture
supports up to two redundant modules of each type. This will
allow for testing of module redundancy. Backplane slot
profiles adhere to the SpaceVPX defined profiles as
summarized in the family slot profile shown in Figure 9. The
main difference between the Peripheral and Payload
backplanes are the expansion planes in P2/J2 and P5/J5. The
peripheral backplane routes connector single-ended signals for
the PCI Bus in P5/J5 and most test user defined signals on
P2/J2. The Payload P2/J2 has very few test user defined
signals due to routing challenges with the data plane in P1/J1
and instead uses connector differential for these signals on
P5/J5. The test interfaces include JTAG connections. Test
signals are all common on the backplane regardless of slot
profile used and are located in the Utility Plane per the
standard.

Figure 8: Block diagram of the RADSPEED DSP card

125

Figure 11 depicts the tester backplane connections and
supported signals required for test of up to two controller or
payload modules. Note that the controller cards are tested
independently of each other therefore two cards are not
required for bring up and test. Single string processing is also
supported. The tester backplane routes signals needed for
module testing. All interfaces, such as the SpaceWire,
RapidIO, clocks and discretes are routed to backplane
connectors for testing or wrapping. Management signals on the
utility plane are also routed to the backplane.

High performance interfaces such as SpaceWire or

RapidIO require test equipment that can drive or monitor
these interfaces. Figure 10 diagrams the test setup and
general connections for these advanced high performance
modules (VPX modules). Existing SpaceWire test
equipment such as those from Star Dundee and / or 4 Links
will be used for working with and analyzing the SpaceWire
signals. RapidFET designed by Fabric Embedded Tool
Corporation will be used to test RapidIO interfaces.
Because of its diagnostics capability, this tool can be used
during board bring up and component testing as well.

Ethernet is an interface that many organizations use in
non-space labs for testing or development between
terrestrial equipment. Currently being developed with the
NSF Center for High-Performance Reconfigurable
Computing (CHREC) [13] is an Ethernet - SpaceWire box
which will use SpaceWire as a medium to transport Internet
protocol (IP) packets. Device drivers will enable these
packets to be used directly by processors in the SpaceVPX
module with IP awareness. This will facilitate lab testing
and application development without requiring an Ethernet
port on the space hardware. The system test equipment
(STE) PC can communicate with such processor
applications as if they are IP. Similarly, IP will be usable
for inter-processor communication over the SpaceWire
network within the box.

Also being developed is a software/hardware
Prototype development fixture which will allow customers
to develop applications on these modules without requiring
the System Tester. This will expedite customer
development.

VIII. SUMMARY
This paper has described a family of SpaceVPX modules

that will greatly increase the processing options for creating
scalable single string and single point fault tolerant payloads.
All of the modules utilize the same group of SpaceVPX slot
profiles and thus are interoperable with appropriate backplane
routings of the utility, control, data and expansion planes.
SpaceWire is part of all of these and provides a critical
function as the control plane as well as medium speed data
movement. Several other modules are under development that
will provide additional functions and connectivity within the
same structures.

Table 2 provides a summary of the modules presented
along with their key technical specifications.

REFERENCES
[1] “SpaceVPX Standard”, ANSI/VITA 78.00-2015, www.vita.com
[2] Collier, Charles Patrick, et al., “Next Generation Space

Interconnect Standard (NGSIS): A Modular Open Standards
Approach for High Performance Interconnects for Space”,
Proceedings of 2015 IEEE Aerospace Conference, Big Sky MT
USA, March 2015

 [3] P. Collier, J. Marshall, R. Berger, M. Enoch, S. Goedeke, “Next
Generation Space Interconnect Standard (NGSIS): A Modular
Open Standards Approach for High Performance Interconnects
for Space”, AIAA 8 Reinventing Space 2013 Conference
Proceedings, Los Angeles CA USA, September 2013.

[4] D. Rickard, et. al., “On-Board Networks with Radiation
Hardened 45nm SOI Standard Components”, Proceedings of the
IEEE Aerospace 2015 Conference, Big Sky MT USA, March
2015.

[5] R. Berger, et. al., “Quad-Core Radiation-Hardened System-on-
Chip Power Architecture Processor”, Proceedings of the IEEE
Aerospace 2015 Conference, Big Sky MT USA, March 2015.

[6] J. Marshall and R. Berger, “High Performance Network
Components for Scalable Spaceborne Processing Needs”,
Proceedings of the 2016 International SpaceWire Conference,
Yokohama, Japan, October 2016.

[7] R. Berger, et al, “The RAD750 – A Radiation Hardened
PowerPC Processor for High Performance Spaceborne

Figure 10: Test Setup Block Diagram

Figure 9: Interface Planes Mapped to Slot Profiles

126

Applications”, IEEE Aerospace Conference 2001, Big Sky MT,
USA, March 2001

[8] RapidIO Interconnect Specification 3.1, www.rapidio.org,
September 2014

[9] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire, Links,
Nodes, Routers and Networks”, Issue 1, European Cooperation
for Space Data Standardization, July 2008.

[10] J. Marshall, D. Stanley, J. Robertson, “Matching Processor
Performance to Mission Application Needs”,
Infotech@Aerospace 2011 Conference Proceedings, St. Louis
MO, USA, March 2011.

[11] J. Marshall, et. Al., “Applying a High Performance Tiled Rad-
Hard Digital Signal Processor to Spaceborne Applications”,
IEEE Aerospace Conference 2012, Big Sky MT, USA, March
2012.

[12] Fijany, A. and Hosseini, F., “Image processing applications on a
low power highly parallel SIMD architecture”, IEEE Aerospace
Conference 2011”, Big Sky MT, USA, March 2011.

[13] www.CHREC.org
All figures are Copyright BAE Systems – used with permission

Table 2 – High Performance SpaceVPX Module using SpaceWire Summary

Module MIPS MFLOPS GB RAM
GB

NVM

Data
Port
Rate
Gbps

Data
Ports

SpaceWire
Port Data

Rate Mbps

Space-
Wire
Ports

Daughter
Board

Connectors

RAD750 SBC 500 250 0.128 0.5 1 1 256 4

RAD5545 SBC 5600 3700 8 4 16 4 320 12 SBC, DIMM

Dual V5 FPGA RCC 10000 2 4 10 6 100 4 2-RCC
Dual 90nm RADSPEED
DSP 6200 143700 12 4 16 4 320 4

Figure 11: Controller/Payload Tester Backplane. (SpW = SpaceWire)

127

http://www.chrec.org/

 Test & Verification (Short)

128

MOST: Modeling of SpaceWire & SpaceFibre

traffic

NOT PERMITTED TO PUBLISH PAPER

129

 SpaceFibre (Short)

130

SpaceFibre and Serial RapidIO Network Layers
(GRSPFI/GRSRIO)

SpaceFibre, Short Paper

Felix Siegle, Sandi Habinc
Cobham Gaisler AB
Gothenburg, Sweden

[felix | sandi] @gaisler.com

Kostas Marinis
European Space Agency

Noordwijk, The Netherlands
kostas.marinis@esa.int

Abstract—Cobham Gaisler presents a network layer
implementation for easy integration of SpaceFibre and Serial
RapidIO into modern System-on-Chips.

Index Terms— Serial RapidIO, SpaceFibre, System-on-Chips

I. INTRODUCTION
SpaceFibre (SpFi) [1] is a new high-speed serial data link

specifically designed for spaceflight applications that
incorporates several Quality-of-Service (QoS) techniques.
Independent communication channels can be combined into a
single network stream by means of virtual channels. The virtual
channels are multiplexed based on reserved bandwidth,
priorities, time-slots, or a combination of these mechanisms.
Integrated Fault Detection, Isolation and Recovery (FDIR)
support guarantees fault-free communication. SpFi is particu-
larly well suited for, but not limited to, device-to-device
intercommunication.

Serial RapidIO (SRIO) [2] is another high-speed serial data
link considered for space applications. With support for inter-
process messages, doorbell messages and memory I/O
operations, it is particularly well suited for chip-to-chip and
board-to-board intercommunication.

Cobham Gaisler is currently working on a modern network
layer implementation for both SpaceFibre and Serial RapidIO
(also referred to as “logical layer”). Due to major similarities
between these two communication standards, a single, modular
concept is developed, in which only a few blocks must be
swapped depending on the underlying physical layer. The new
architecture advances earlier concepts as it is specifically
designed to handle high data throughput rates and also targets
multi-core and multi-memory systems.

II. DIFFERENCES AND SIMILARITIES BETWEEN
SPACEFIBRE AND SERIAL RAPIDIO

While there are fundamental differences between
SpaceFibre and Serial RapidIO in terms of error-recovery
management and QoS mechanisms, the actual data transmitted
over both protocols shows many similarities.

SpaceFibre uses for raw data transmission the simple
SpaceWire packet format [3], which consists of one or several
addresses, the packet payload and an End-of-Packet (EOP)
marker. In theory, the packet length of such a raw packet is not
limited. By using the additional Remote Memory Access
Protocol (RMAP) protocol [4], remote memory I/O access
becomes possible via SpaceWire/SpaceFibre as well.
SpaceFibre also supports broadcast frames, which are multi-
purpose high-priority messages. These messages are comparable
to SpaceWire time-codes but in addition to a simple sequence
number they also comprise a data payload of 8 bytes.

Serial RapidIO is a more packet-based protocol that already
includes remote memory I/O access operations (defined in the
logical I/O specification) and messages (defined in the
messaging specification). Data streaming is in contrast to
SpaceFibre rather a supplement than an essential part, which
also reflects the different application domains of these two
protocols since SRIO is clearly targeted at chip-to-chip
communication. However, with the optional data streaming
protocol (defined in the data streaming logical specification),
complex streaming applications can also be implemented over
Serial RapidIO.

Thus, by adding RMAP to SpaceFibre and the data
streaming protocol to Serial RapidIO, three basic data transfer
types can be identified that must be handled by a common
network layer, see also Table I. The first type describes
interrupt-style short messages, which are used for example for
processor to processor communication. The SpFi broadcast
messages and the SRIO doorbell messages clearly fall into this
category. The SRIO data message, however, is more complex as
it can also carry larger payloads of up to 4K data and it therefore
does not have a real equivalent in the SpaceFibre domain. The
second type describes memory I/O access operations, for
example read, write or read-modify-write operations and for this
data transfer type the differences between RMAP and the I/O
logical specification are rather small. The third type describes
data streams, which are made possible over SRIO using the data
streaming protocol. In principle, streaming over SpaceFibre can
be realized by only using the SpaceWire packet format but for

131

more advanced applications it might be worth to consider an
additional protocol like the CCSDS packet transfer protocol [5].

TABLE I. SUPPORTED DATA TRANSFER TYPES

Type SpaceFibre Serial RapidIO

Interrupt messages Broadcasts Messages, Doorbells

Memory I/O access RMAP Protocol I/O Logical Spec.

Data Streams
SpaceWire Packets
and/or CCSDS packet
transfer protocol

Data Streaming
Specification

III. NETWORK LAYER ARCHITECTURE

Fig. 1. Simplified block diagram of the GRSPFI/GRSRIO Network Layer

A. Overview
A simplified block diagram of the network layer is shown in

Figure 1. The virtual channels of the SpaceFibre port or several
ports of a Serial RapidIO endpoint are connected to one or
multiple network layer processing cores via inbound and
outbound routing switches. Each processing core is connected to
a generic bus master. At present, the AMBA bus is directly
supported for a simple integration with the Gaisler product line.

A processing core comprises a configurable number of
transmission and reception queues for interrupt messages, one
transmission and one reception queue for data streams and one
transmission queue for memory I/O access operations. Control
and status registers for each queue are clearly separated and can
be mapped for example to 4K boundaries to allow a Memory
Management Unit (MMU) to restrict the access of specific
queues to specific CPU cores.

In a multi-memory system, several processing cores can be
instantiated, which all comprise their own bus master. Then, data
can concurrently be transmitted and received over several SpFi
virtual channels / SRIO ports at the same time.

The front-end of the bus master, i.e. the interface to the
processor core, has separate FIFO-like read- and write-channels.
The back-end of the bus master can be configured for different
bus widths (e.g. 32 bit, 64 bit or 128 bit) and bus protocols
(AMBA or AXI4). Due to the generic FIFO interface
architecture, the bus master could even be replaced by custom-
built logic, e.g. by a bridge to a Network-on-Chip (NoC), a local
on-chip memory or a direct interface to a microcontroller.

This highly flexible design allows many different System-
on-Chip (SoC) approaches. For instance, several SpFi virtual

channels can be shared by one single core, multiple cores can
manage one single SpFi virtual channel, or specific virtual
channels can exclusively be managed by a particular CPU core.

B. Handling of interrupt messages
1) Data Messages (SRIO)

For these messages, multiple queues on both inbound and
outbound side can be installed during design time by
corresponding VHDL generics. If multiple processing cores are
used, a particular queue is always managed by one particular
processing core, although this affiliation can be reprogrammed
dynamically during runtime by software.

On inbound side, each message reception queue comprises a
filter that allows the mapping of a mailbox number or a range of
mailbox numbers to this specific queue. For instance, the user
could set up five queues, the first four queues accepting
messages addressed to mailbox 0 to 3 and the fifth queue
accepting messages addressed to all other, higher mailbox
numbers. As an additional feature, data messages can also be
filtered based on their destination ID. If a message is received,
which is addressed to a mailbox number / destination ID
combination that is not accepted by any message reception
queue, the processing core automatically generates and
transmits ERROR responses to the source node. Concurrent
reception of letters is not supported. If a message packet is
received with a letter number different to the one of the currently
processed message, this message is dropped and RETRY
responses are generated and transmitted to the source node. Both
aforementioned events are logged in status register fields and
can optionally trigger interrupts.

On outbound side, each message transmission queue is set
up to transmit messages to one particular (or several alternative)
port numbers. However, this port number(s) can also be changed
dynamically during runtime by software. The queues are
serviced by the processing core in a round-robin fashion.

Each message reception and transmission queue comprises a
circular buffer that contains DMA descriptors set up by
software. The depth of the circular buffer as well as its location
in memory can be changed during runtime, effectively allowing
the software to swap queues if necessary. On both inbound and
outbound side, the head pointer to the circular buffer is managed
by software and the tail pointer is managed by the DMA engine.

For incoming messages, the software first sets up descriptors
that point to free memory spaces and then increments the head
pointer accordingly. By doing so, it signals to the DMA engine
that the new descriptors are ready to be processed. Once the
DMA engine has received and stored a message successfully,
the current descriptor is updated and the tail pointer is
incremented. By doing so, the descriptor and thus also the
received message is handed over to software. Furthermore, the
processing core generates and transmits a DONE response to the
source node. Each message descriptor is updated with a time-
stamp value after successful reception that is taken from an
external source, e.g. an external timer module.

For outgoing messages, the descriptors point to memory
spaces containing the message payloads to be transmitted.
Again, the software signals to the DMA engine that the

132

descriptors are ready for processing by incrementing the head
pointer. Once the DMA engine (i) committed a message
successfully to the Serial Rapid IO endpoint and (ii) received a
response (DONE, ERROR) from the destination node, the
descriptor is updated with the result and the tail pointer is
incremented accordingly. By doing so, the software is informed
that the descriptors are free again and both the descriptors and
the corresponding memory spaces can be reused by software. In
case of a RETRY response, the processing core retries the
message automatically until the message is either accepted by
the destination node or until a retry threshold level is reached.
Not until then, the descriptor is handed over to software.

For both the outbound and inbound side, interrupts can be
enabled for each message independently that are either triggered
after successful processing or when an error condition occurred.
In addition, an interrupt can be enabled on inbound side that is
triggered when a particular message reception queue becomes
full. In case of a full message reception queue, the processing
core also generates and transmits RETRY responses to the
source node.

For multi-packet messages, timeout mechanisms are
available on both outbound (request-to-response) and inbound
side (response-to-request) that limit the allowed time in which
the destination node sends a response packet (outbound side) or
the next message segment (inbound side). Timeouts are flagged
in status registers and can also be set up to trigger interrupts.

2) Doorbell Messages (SRIO) / Broadcast Messages (SpFi)

For doorbell/broadcast messages, multiple circular buffers
exist for both inbound messages and outbound messages. The
buffers use the same concept of handshake between software
and hardware as is the case for other messages, that is, the
software manages a head pointer and the DMA engine manages
a tail pointer. In contrast to normal messages, however, the
buffers do not contain descriptors but rather the doorbell/
broadcast messages themselves.

On inbound side, the DMA engine stores incoming
doorbell/broadcast messages automatically to an assigned buffer
as long as free space is available, that is, as long as the head
pointer is ahead of the tail pointer. The doorbell/broadcast
messages can be assigned to particular reception buffers by
filtering their destination ID (SRIO) or their broadcast channel
number or a range of broadcast channel numbers (SpFi). Once a
message is successfully received and stored to memory, the
DMA engine increments the tail pointer accordingly and the
processing core generates and transmits a DONE response to the
source node (only SRIO, SpFi broadcasts are never
acknowledged). Under normal conditions the software will
ensure that the head pointer of the doorbell reception queue is
ahead of the tail pointer by a couple of messages. However, if
the software cannot process the incoming doorbell/broadcast
messages fast enough, it can apply back-pressure by simply not
incrementing the head pointer. If the reception buffer is full, the
processing core automatically generates and transmits RETRY
responses to the source node (only SRIO). Each
doorbell/broadcast message is stored with a time-stamp value

that is taken from an external source, e.g. an external timer
module.

On outbound side, the software can set up one or several
doorbell/broadcast messages at once and then increment the
head pointer as desired. Once the DMA engine committed a
doorbell/broadcast message successfully to the SRIO/SpFi
endpoint the tail pointer is incremented. In case of a RETRY
response, the processing core retries the doorbell message
automatically until the message is either accepted by the
destination node or until a retry threshold level is reached (only
SRIO). Not until then, the buffer space is handed over to
software.

For both the outbound and inbound side, interrupts can be
enabled that are either triggered after successful processing or
when an error condition occurred. In addition, an interrupt can
be enabled on inbound side that is triggered when the
doorbell/broadcast message reception buffer becomes full.

Furthermore, one doorbell/broadcast output signal for each
processing core is available at the network layer port. If enabled,
the signal is pulsed after the reception of a doorbell/broadcast
message and the doorbell/broadcast message payload value is
signaled on dedicated output pins. Optionally, the payload of the
doorbell/broadcast is first compared to a programmable value
and mask. Only if the comparison succeeds, the output signal is
pulsed. In addition, doorbell/broadcast input signals for each
processing core enable external hardware components to
generate and transmit doorbell/broadcast messages directly. The
payload value of the doorbell/broadcast message is also
provided by the external component via dedicated input signals.

C. Handling of memory I/O operations (SRIO/SpFi)
On outbound side, I/O operations are managed in a similar

way as outbound messages. Each processing core comprises one
I/O transmission queue. This queue makes use of a circular
buffer that contains DMA descriptors set up by software. The
depth of the circular buffer as well as its location in memory can
be changed during runtime, effectively allowing the software to
swap queues if necessary. The head pointer to the circular buffer
is managed by software and the tail pointer is managed by the
DMA engine.

For outgoing I/O operations, the descriptors contain all
required information about the operation itself as well as
pointers to memory spaces, which are either reserved for data
that is read from a remote device or which contain data that shall
be written to a remote device.

Just as for the message handling, the software signals to the
DMA engine that the descriptors are ready for processing by
incrementing the head pointer. Once the DMA engine (i)
committed an I/O operation successfully to the SRIO/SpFi
endpoint and (ii) received a response from the destination node,
the descriptor is updated with the result and the tail pointer is
incremented accordingly. By doing so, the DMA engine hands
over the descriptor as well as the memory space to the software
for further processing.

Incoming I/O operations can gain direct access to the local
memory space. Translation between SRIO/RMAP addresses
and local addresses is accomplished by an optional, fixed
memory offset value. Memory protection can be implemented

133

by defining up to four memory partitions where each partition
can be configured to be either read and writable or read-only.
Interrupts can be enabled for successful memory accesses.
Furthermore, interrupts can be generated in case of errors on the
bus or if the remote node tries to access a forbidden memory
area. Then, the processing core also generates and transmits an
ERROR response to the source node.

D. Handling of data streams
The handling of data streams is not yet fully defined but it is

planned that raw SpaceWire packets and CCSDS packets will
be supported for SpaceFibre and the data streaming protocol for
Serial RapidIO. On inbound and outbound side, data streams
will be managed in a similar way as messages. Each processing
core will comprise multiple transmission and reception queues,
which store DMA descriptors in circular buffer structures.

IV. VERIFICATION
At present, a preliminary version of the GRSRIO Serial

RapidIO network layer has been implemented that includes one
processing core and that implements all data transfer types
except of the optional data stream protocol.

Fig. 2. Simplified block diagram of the GRSRIO testbench environment

A full VHDL testbench environment has been set up, see

Figure 2 for a block diagram. The GRSRIO IP core is connected
to two concurrent processes mimicking a Serial RapidIO
physical layer and another process simulating the AMBA bus
master. The main testbench process runs 38 tests altogether,
covering all aspects of the logical I/O and messaging
specification and is achieving 100% statement coverage.

V. IMPLEMENTATION RESULTS
Example synthesis results for a GRSRIO IP core with two

transmission and reception queues for messages and two

transmission and reception buffers for doorbell messages can be
found in Table II for a Xilinx Virtex-5 FX130 device. The
internal data path of the GRSRIO IP core is 128-bit wide.

TABLE II. IMPLEMENTATION RESULTS ON VIRTEX-5 FX130

Max. Throughput Rate: > 25 Gbps (ƒ = 156.25 MHz)

Slice LUTs: 7619/81920 (9%)

Slice Flip-flops: 2218/81920 (2%)

Block RAMs: 2/298 (0%)

VI. CONCLUSIONS
Cobham Gaisler offers with the SpaceFibre and Serial

RapidIO network layers innovative solutions for the integration
of these protocols into modern System-on-Chips with multiple
cores and/or multiple memories. The flexible architecture offers
good scalability and can support several bus back-ends like
AMBA and AXI4. A preliminary version of the Serial RapidIO
network layer was fully verified and synthesis results show high
maximum throughput rates at reasonable resource utilization.

ACKNOWLEDGMENT
The development of the Serial RapidIO logical layer is

funded by the European Space Agency as part of the “Inter-
Processor Link for Future OBCs” activity.

REFERENCES

[1] Space Technology Center/University of Dundee, “SpaceFibre

Specification Draft H1”, Aug. 2015.
[2] RapidIO Trade Association, "RapidIO Interconnect

Specification. Revision 2.1". Aug. 2009. [Online]. Available:
www.rapidio.org/rapidio-specifications/.

[3] European Cooperation for Space Standardization, “SpaceWire –
Links, nodes, routers and networks. ECSS-E-ST-50-12C”. July
2008.

[4] European Cooperation for Space Standardization, “SpaceWire –
Remote Memory Access Protocol. ECSS-E-ST-50-52C”. Feb.
2010.

[5] European Cooperation for Space Standardization, “SpaceWire –
CCSDS Packet Transfer Protocol. ECSS-E-ST-50-53C”. Feb.
2010.

134

Design and implementation of test equipment for

SpaceFibre links
SpaceFibre, Short Paper

Daniele Davalle, Alessandro Leoni, Luca Dello Sterpaio, Luca Fanucci

Dept. of Information Engineering

University of Pisa

Via Caruso 16, 56122, Pisa, Italy

daniele.davalle@for.unipi.it, alessandro.leoni@ing.unipi.it, luca.dellosterpaio@ing.unipi.it, luca.fanucci@unipi.it

Abstract—SpaceFibre is the upcoming European standard for

on-board high-speed communications. The need for data-rate

beyond 1 Gb/s is already present in space missions, and it is

currently fulfilled by non-standard approaches based on

Serialiser/Deserialiser components such as Texas Instruments

TLK2711. The SpaceFibre standard also integrates Quality of

Service and Fault Detection, Isolation and Recovery mechanisms,

which allow a highly reliable communication, suitable for space

systems.

The abovementioned features make the SpaceFibre standard

undoubtedly complex; therefore an adequate test equipment is

necessary for the validation of systems based on this standard.

In this paper, a test equipment for SpaceFibre links is presented.

This is designed to support the development of new SpaceFibre

devices, as well as complex systems based on SpaceFibre. A system

demonstrator was implemented to validate the equipment

features.

Index Terms—SpaceFibre, test equipment, high-speed serial

link, EGSE (Electrical Ground Support Equipment)

I. INTRODUCTION

Modern and forthcoming missions for Earth Observation

and science (e.g. Euclid, Juice, Metop-SG, CarbonSat…), are

more and more demanding very high-speed reliable data

transmission especially within the different units in a payload

(beyond 2 Gbps) . Thanks to the evolution of technology for

detectors, each single payload can comprise different

bandwidth/channels of operations at a very high-speed. In such

a context, being able to manage the science data handling and

transmission within a payload and from payloads to platforms

on-board is still an open point. SpaceWire networks are suitable

for single links working up to 400 Mb/s while there is still no

standardised solution for higher data-rate.

The European Space Agency (ESA) is therefore finalising a

new standard for high-speed data links called SpaceFibre [1],

supporting data-rates beyond 2 Gb/s. As such, the SpaceFibre

standard allows highly reliable and very high speed point-to-

point connections. SpaceFibre defines a complex protocol in

order to cope with such stringent requirements, therefore specific

competences and a considerable effort are necessary to develop

and validate systems based on this standard.

In this paper, a device for test and validation of SpaceFibre-

based systems is presented, which provides a powerful yet simple

way of validating and debugging such systems. Among its

features, the SpaceFibre test equipment can be used to analyse

SpaceFibre traffic at different protocol levels, inject SpaceFibre

packets and verify the conformance to the SpaceFibre standard.

The SpaceFibre test equipment can be controlled by means of a

PC through a user-friendly Graphical User Interface. The main

use cases of the SpaceFibre test equipment and test results are also

presented.

The SpaceFibre test equipment is built upon the experience of

the University of Pisa on the SpaceFibre standard. Indeed, the

University of Pisa has been working on the SpaceFibre standard

since 2014, under a collaboration with ESA for the review and

consolidation of the SpaceFibre draft standard. During the work

on the topic, a SpaceFibre interface IP-core was independently

developed and interoperability with other implementations was

demonstrated [2]. The design of the IP-core was carried out using

a robust hardware design and verification flow, involving the

development of a formal verification environment to prove the

functionality and compliance of the IP-core to the SpaceFibre

standard [3].

This paper is organised as follows:

The current state-of-the-art in the field of test equipment for

SpaceFibre is presented in Section II.

Section III presents the proposed SpaceFibre test equipment.

Section IV describes the implementation of such test

equipment.

Section V shows the tests on the system prototype.

Finally, the conclusions are drawn in Section VI.

II. RELATED WORK

SpaceFibre is a high-speed serial link standard, specifically

designed for use on-board spacecraft, and developed by the

University of Dundee for ESA. The standard is currently under

finalisation by the European Cooperation for Space

Standardization (ECSS).

SpaceFibre is able to operate over fibre-optic and copper

cable and supports data rates as 2.5 Gb/s, 3.125 Gb/s and 6.25

Gb/s per lane, up to a maximum of 20 Gb/s with multilane

design. SpaceFibre is backwards compatible with the SpaceWire

135

standard at packet level, which allows easy integration of the

new standard into existing systems based on SpaceWire.

SpaceFibre will be used in all cases where data-rate

requirement is 1 Gb/s and beyond, which is already a

requirement for currently designed space mission payloads.

Other than the high-data rate, the SpaceFibre link will take

advantage of Quality of Service (QoS) and Fault Detection,

Isolation and Recovery (FDIR) capabilities. One of the possible

applications of SpaceFibre is the multiplexing of multiple

SpaceWire channels over a single SpaceFibre link, in order to

reduce the harness on the spacecraft [4]. Each SpaceFibre

Virtual Channel (VC) can be seen as a SpaceWire link;

therefore, a bundle of SpaceWire links can be replaced by a

single SpaceFibre link resulting in a considerable mass reduction

and compact system setup, adding QoS and FDIR features to

SpaceWire links.

STAR-Dundee produced StarFire [5], a test unit to support

the development and early adoption of the SpaceFibre standard.

The unit can generate random packets over the SpaceFibre links

as well as consume received data. StarFire can route the

SpaceWire ports to VC0 or VC1 of the SpaceFibre interfaces.

The unit supports 2.5 Gb/s single-lane SpaceFibre link rate.

III. SYSTEM DEFINITION

The SpaceFibre test equipment presented in this paper, also

referred to as “SpaceFibre Analyser”, comprises the following

main features:

 Two SpaceFibre interfaces

 Two SpaceWire interfaces

 Compliant with SpaceFibre and SpaceWire standards

 Ethernet / PCIe interfaces for host PC communication

 Real-time communication with the host PC through PCI

communication

 8 Virtual channels for each SpaceFibre interface, which

is seen as sufficient for present and future device needs

 SpaceWire/SpaceFibre bridging

 Link-Analyser mode to monitor the

SpaceFibre/SpaceWire links

 Can be used as Electrical Ground Support Equipment

(EGSE) for the validation of satellites based on

SpaceFibre/SpaceWire.

 Hardware packet generator and packet consumer to allow

the easy saturation of the SpaceFibre link and enable

stress testing of the SpaceFibre network

 Error injection/Word replacement capability to facilitate

conformance testing of the system under-test

 TX/RX trace memory of 8192 4-byte words to check

protocol-specific features such as flow-control,

acknowledgement, frame re-transmission

 Simple to use with either graphical user interface, or

command line interface for test automation.

Fig. 1. SpaceFibre test equipment

The test equipment features a sophisticated error injection

mechanism on the SpaceFibre link in order to test all the

functionality of the Device Under Test. The error injection is

available in the following different options:

 Bit Error Rate (BER) mode, in which the user sets a

desired BER and the test equipment randomly injects bit

flips on the TX/RX data according to the selected BER.

 Bit flip, in which the user sets the desired word to corrupt

 Word replacement, in which a certain word can be

replaced by another one selected by the user

In particular, the bit flip and word replacement modes are

useful to test various corner cases of the protocol, e.g., device

not receiving ACKs, device not receiving FCTs, etc. All the error

injection options listed above, are fully customisable by the user

through the Graphical User Interface on the host PC.

In the following sections, the use modes are briefly described.

A. EGSE operation mode

In EGSE operation mode, the SpaceFibre test equipment can

be used to emulate a device in a SpaceFibre network, generating

predefined packets and responding to user-defined packets. The

SpaceFibre test equipment is able to generate and to consume

SpaceFibre packets in real time. The user can choose to use the

internal hardware packet generator/consumer or reading/writing

packet contents from/to a file on the host PC.

B. Link Analyser operation mode

The SpaceFibre test equipment allows the monitoring of the

link. In this operation mode the SpaceFibre test equipment is

connected in the middle of two different SpaceFibre nodes.

The SpaceFibre traffic that flows on the link can be monitored

by the user through the host PC. Errors can be injected on the link

to verify the reliability of the communication.

Host PC

SpFi link SpFi link

SpaceFibre
Test Equipment

SpFi node 1 SpFi node 2

136

C. Conformance tester operation mode

The SpaceFibre Analyser provides to the user a list of

conformance tests, in order to verify the correct features

functionality expected from the SpaceFibre standard.

Tests available are useful for the verification of the

SpaceFibre initialization protocol, FDIR and QoS capabilities of

DUT, and for the correct handling of corner cases such as

reception of empty packets.

IV. IMPLEMENTATION

The proposed SpaceFibre Analyser is implemented as a highly-

optimized AXI4-centric system. AXI4 is part of the AMBA 4

specification for high performance systems. All the peripherals

are connected to the AXI subsystem, this allows to have a high

flexibility and, at the same time, to move data among the

different interfaces at a very high speed.

Fig. 2. SpaceFibre test equipment implementation overview

The user, interacting with the GUI, generates commands that are

forwarded through the Host interface to the Analyser

Microprocessor. The Microprocessor is responsible for the

configuration and the control of the entire SpaceFibre test

equipment. The Host interface can also be exploited for sending

and receiving high-speed data streams from one, or multiple,

SpaceFibre and SpaceWire ports.

SpaceFibre and SpaceWire CODEC IPs used are from

IngeniArs S.r.l. The IngeniArs SpaceWire CODEC IP-core [6]

has considerable heritage in space projects, both on ground and

flight hardware. The IngeniArs SpaceFibre CODEC IP-core [7]

was intensively verified with a complete and structured

SystemVerilog/UVM based test environment reaching the

complete code coverage of the RTL [3]. Additionally, the

SpaceFibre CODEC IP was demonstrated interoperable with

third-party SpaceFibre equipment such as the StarFire

equipment [2].

The SpaceFibre and SpaceWire CODEC IPs share a common

implementation structure, as depicted in Figure 3. They are

equipped with a high-performance AXI interface and a highly

optimised DMA engine interfacing with the AXI system, which

allows efficient data movement on the system bus connecting

the system memory to the SpaceFibre/SpaceWire ports. At the

same time, it allows to realise a simple yet efficient bridging

between SpaceFibre and SpaceWire ports.

The Hardware Packet Generator and Consumer are

implemented in such a way they do not interfere with the other

peripherals of the test equipment. They can unobtrusively fulfil

the SpaceFibre or SpaceWire link bandwidth.

The Error Injection module acts at the lowest possible word-

level, allowing to accurately insert very specific errors on the

data stream in order to stimulate complex scenarios.

Fig. 3. SpaceFibre/SpaceWire Codec IP structure

The Trace Memory, finally, can be programmed to trigger on a

user defined word and show to the user all the words flown

through the port within a time window centred on the triggered

word.

Each subsystem of a SpaceFibre/SpaceWire Codec IP, and of

the Analyser in general, is highly configurable by the user at run

time using the GUI, thanks to the specific system architecture

adopted.

V. TEST AND RESULTS

The complete SpaceFibre test equipment was tested in with the

two SpaceFibre ports connected with a physical loopback, as

shown in Figure 4.

The SpaceFibre test equipment is connected to the Host PC

running the GUI through the Ethernet port and the loopback on

SpaceFibre ports is realised through an eSATA cable.

Many specific tests were carried out in order to verify the correct

behaviour of all the subsystems.

137

Fig. 4. SpaceFibre test equipment demonstrator connection for testing

Some of the most remarkable tests are:

i) Hardware packet generators and consumers were

intensively tested with a lot of different packet sizes and

bandwidths. Figure 5 shows the SpaceFibre test

equipment GUI for the setup of the SpaceFibre port. The

most useful parameters are directly visible on this

window for all the Virtual Channels, so that the user can

have a quick and complete overall view of the system.

More specific parameters for each VC can be configured

in a detailed section of the GUI.

Fig. 5. GUI showing Hardware Packet Generator/Consumers on different

Virtual Channels

ii) The Trace Memory was programmed to trigger in many

different cases, both in transmission and in reception,

completely exploiting and testing the trigger

functionality of the component (Figure 6).

Fig. 6. Trace memory shown on the GUI

iii) The Error Injection module was greatly stressed. To

verify its functioning the built-in trace memories of the

SpaceFibre test equipment were used, testing all the three

operation modes (bit flip, error on specific words and

BER insertion on the link). The BER tests also verified

the theoretical maximum error rate sustainable before the

link disconnection (10−5).

iv) The Software Packet Generator and Consumer were

intensively used. This software tool generates a stream of

fixed-step incremental data that is sent to a certain Virtual

Channel of one of the SpaceFibre ports. By using the

loopback connection, this stream is received by the other

SpaceFibre port and sent back to the Host PC by the

SpaceFibre test equipment unit. The software Packet

Consumer also checks the correctness of the received

data.

v) The software File Reader and File Writer were also used

to test the SpaceFibre Analyser functionality. The

working principle is the same of the Software Packet

Generator and Consumer, but the data is read from a user-

specified file and written back to another file. There is an

option to read the file to send continuously, re-starting

from its beginning when it ends, in order to stress more

the test equipment. The correctness of the received data

was proved by comparing the two files with external

tools.

VI. CONCLUSIONS

A SpaceFibre test equipment, with its features and hardware

architecture, was described in this paper. The proposed test

equipment comes together with a complete Graphical User

Interface that allows the user to extensively configure the unit

itself and to put in place complex and automatically verifiable

data transmission and reception schemes from and to the Host

PC, using a variety of different interfaces to the host (Ethernet,

PCIe).

The test equipment, with its two SpaceFibre and two SpaceWire

ports, can be effectively used in many different situations, acting

like an EGSE, or like a link analyser to monitor the link between

two SpaceWire/SpaceFibre nodes, or performing some

conformance tests to verify a third party SpaceWire/SpaceFibre

device.

To accomplish these tasks, the SpaceFibre test equipment has

many embedded tools:

SpFi link

Ethernet

Host PC

138

 integrated Hardware Packet Generators and Consumers

 Trace Memory able to trigger on a user specified word

and to show a window of the words flowing on the link

 Advanced Error Injection module able to insert errors in

different modes (bit flips, word replacement, BER) and

completely configurable by the user to artificially create

particular operational scenarios.

Additionally, the test equipment is able to realize the bridge

between the SpaceFibre and SpaceWire ports.

A great effort was spent in the configurability of all the aspects

of the SpaceFibre test equipment by means of the GUI. The GUI,

running on basically every OS, provides a compact yet complete

view of every Virtual Channel of the SpaceFibre ports and

provides to the user the complete control over all the aspects of

the SpaceFibre test equipment. It also includes some very

advanced functionality, like an automatic Software Packet

Generator and Consumer/Checker and the possibility to send

data to the Analyser reading from a file and, on the other hand,

to write data received from the Analyser into a file.

All these features were deeply tested, making the SpaceFibre test

equipment a powerful tool for the verification of external

SpaceWire/SpaceFibre devices in many different situations.

REFERENCES

[1] S. Parkes, A. Ferrer, A. Gonzalez, C. McClements, “SpaceFibre

Specification Draft H4”, University of Dundee, April 2016

[2] D. Davalle, A. Leoni, L. Fanucci, “Implementation of a

SpaceFibre CODEC compliant with the standard draft F3,” 22nd

SpaceWire Working Group Meeting, 2014

[3] D. Davalle, A. Leoni, L. Fanucci, “Verification environment for

a SpaceFibre CODEC compliant with the standard draft F3,” 23rd

SpaceWire Working Group Meeting, 2015

[4] S. Parkes, C. McClements, D. McClaren, A. Monera, A. Ferrer,

A. Gonzalez, “SpaceFibre Implementation, Test and Validation,”

6th International SpaceWire Conference, 2014

[5] A. Ferrer, A. Gonzalez, C. McClements, S. Parkes, “STAR Fire:

SpaceFibre diagnostic interface and analyser,” 5th International

SpaceWire Conference, 2013

[6] SpaceWire CODEC IP-core, IngeniArs S.r.l.,

http://www.ingeniars.com/english/products/space/spacewire-

codec-ip-core.html

[7] Gigabit Serial Link Controller IP-core, IngeniArs S.r.l.,

http://www.ingeniars.com/english/products/space/gigabit-serial-

link-controller-ip-core.html

139

http://www.ingeniars.com/english/products/space/spacewire-codec-ip-core.html
http://www.ingeniars.com/english/products/space/spacewire-codec-ip-core.html
http://www.ingeniars.com/english/products/space/gigabit-serial-link-controller-ip-core.html
http://www.ingeniars.com/english/products/space/gigabit-serial-link-controller-ip-core.html

A new Generation of SpaceFibre Test and

Development Equipment
SpaceFibre, Short Paper

Alberto Gonzalez Villafranca, Steve Parkes,

Chris McClements, Bruce Yu, Pete Scott,

Albert Ferrer Florit

STAR-Dundee Ltd.

STAR House, 166 Nethergate, Dundee, DD1 4EE, UK

E-mail: alberto.gonzalez@star-dundee.com

Abstract— SpaceFibre is a new technology for use onboard

spacecraft that provides point-to-point and networked

interconnections at Gigabit rates with in-built Quality of Service

and Fault Detection, Isolation and Recovery. The SpaceFibre

standard is virtually finished, with the ECSS standardisation

activity to be ended this year.

There is a need for equipment to support the development and

testing of applications of the entire protocol stack. This paper

describes the new generation of SpaceFibre equipment designed

for this purpose. They provide users with several options for

platforms and connectors, such as FMC, USB 3.0, cPCI, PXI,

PXIe and SpaceVPX. The number of platforms supported and

the flexibility of the equipment provides the end user with a

broad range of options to include SpaceFibre in their current

system design. This helps to promote the adoption of SpaceFibre

technology.

A number of designs using the equipment here described is

currently available or under development. They include the

SUNRISE SpaceFibre Router and the Multilane SpaceFibre

interface, among others. When combined, these new boards and

designs offer a powerful and rich set of tools to help with

SpaceFibre designs.

Index Terms— SpaceFibre, RTG4, USB, cPCI, PXI, PXIe,

SpaceVPX, EGSE, FMC

I. INTRODUCTION

SpaceFibre (SpFi) will be released as an ECSS standard

later this year [1]. With the addition of the network and

multilaning layers the standard is virtually finished.

STAR-Dundee released a few years ago the STAR Fire unit [2]

to help with the SpFi implementation and adoption in the initial

stages of the protocol. However, a new generation of

Electronic Ground Support Equipment (EGSE) products is

required to provide users with suitable hardware to implement

and test the whole SpFi protocol stack. Furthermore, there is a

need for demonstrators with space-qualified components to

increase SpFi maturity. In this article a new family of products

specifically designed to provide a platform to support SpFi

adoption is presented.

II. STAR FIRE MK3

The STAR Fire Mk3 is the evolution of the initial STAR

Fire device [2]. It shares with the old version some of its

features. It has two SpFi and two SpaceWire (SpW) interfaces,

two MICTOR connectors for connecting a Logic Analyser, and

four SMB connectors. Three of those are external input

triggers, and one is an external output trigger. Fig. 1 illustrates

the block diagram of the STAR Fire Mk3 design. Fig. 2 shows

the STAR Fire Mk3 unit.

Pattern
Gen/Chk

DDR

USB

3

Router
SpW 2

SpW 1

2

1

6
7

SpaceFibre
Port 1

(8 Virtual
Channels)

SpFi

Analyser
Mictor

SpaceFibre
Port 2

(8 Virtual
Channels)

DDR Analyser

SpFi

Mictor

RMAP Configuration
(RMAP Target)

5

Configuration Bus

Router
Configuration

0

VC0

VC1
VC2

VC7

…

BC

VC0

VC1

VC2

VC7

…

BC

Pattern
Gen/Chk

8
9

VC0

VC1
VC2

VC7

…

BC

VC0

VC1

VC2

VC7

…

BC

4

Figure 1. STAR Fire Mk3 architecture

The new STAR Fire unit can operate as a SpFi link

analyser, SpFi interface and as a bridge between SpFi and

SpW, among others. It has embedded pattern data generators

and checkers. The Mk3 version features a USB 3.0 micro B

interface, which provides communications with a much higher

140

data rate with the host PC. This means that the SpFi link can be

directly interfaced from a computer at very high data rates. The

old version can only use instead basic internal data generators

and checkers for this purpose.

A bigger FPGA has also allowed an upgrade of the internal

data generators and checkers to emulate realistic instruments.

Specifically, this new unit features some of its Virtual

Channels connected to advanced data generator and checkers.

These provide with complex data generation capabilities, thus

allowing more realistic data streams automatically generated

and checked by the STAR Fire unit without the need for

computer intervention. Some of the capabilities of these new

data generators and checkers are:

 The type of data pattern can be selected among

different options: random pattern, incrementing

pattern, fixed word value, alternating word values, left

or right circularly rotating four byte pattern

 Data value/seed is configurable

 Data pattern and packet lengths are configurable

 Length of data bursts and data rate can be configured

 EEP can be inserted in a specific position

 The initial four words of each packet can be configured

The capabilities of the embedded Analyser have also been

improved. Now it is possible to trigger on any given data or

control word received and also to select the Virtual Channel

when triggering in data frames. Finally, a DDR memory is

used instead of the internal FPGA memory to store the

captured values, resulting in greater recording capabilities.

Figure 2. STAR Fire Mk3 unit

III. SPACEFIBRE PXI BOARD

PXI (PCI eXtensions for Instrumentation) is an industry

standard widely used as a platform for electronic

instrumentation in automated test systems [3]. It is currently

used in many industry areas, including aerospace. PXI uses

PCI in the communication backplane.

PXI Express (PXIe) uses the same PXI form factor but

features PCI Express (PCIe) as backplane communication

protocol. Switching from PCI to PCIe allows multiplying the

available bandwidth from 132 MB/s up to 12 GB/s [4].

The SpaceFibre PXI board has been developed to

implement a range of SpW and SpFi devices. The board is a

3U compatible with PXI, Compact PCI (cPCI) or PXIe racks.

It can also be provided with the PXIe interconnection if

required.

The board offers DDR memory and programmable clock

sources to provide the end user with a very flexible architecture

to implement multiple designs. It features a novel set of front

panel interconnects. There is a set of flexible interface

connectors that can be used to customise the board, such as

SpFi, SpW, external triggers, etc. Thus, the board can be easily

modified to accommodate different designs. This allows using

the same PXI board to implement many different products.

Several designs have already been implemented using the

PXI Board, such as the SUNRISE 8-port SpFi Router (Fig. 3),

the STAR Fire design (Fig. 1), a 4-port SpFi interface, a

Multilane (up to 4 lanes) SpFi interface, or a SpW to SpFi

bridge.

Figure 3. PXI Board configured as SpaceFibre Router. The front panel has

8 SpFi ports and 4 SpW ports

A. The SUNRISE SpaceFibre Router

The SUNRISE router is the first implementation of a SpFi

routing switch. Fig. 4 depicts the router block diagram. It

features 8 SpFi interfaces with 4 Virtual Channels each, plus 4

SpW interfaces tied to a ninth SpFi port. All of them are

accessible over the front panel, as shown in Fig 3. There is also

an internal configuration port (Port 0).

This router implements path and logical addressing, group

adaptive routing, virtual networks, time distribution and

message broadcast. It also fully supports the Quality of Service

(QoS) and Fault Detection Isolation and Recovery (FDIR)

capabilities native to SpFi.

141

Figure 4. SUNRISE SpaceFibre Router Block Diagram

IV. SPACEFIBRE RTG4 PXIe BOARD

The SpaceFibre RTG4 PXIe board is a variation of the

standard PXI board. This board is a 3U featuring a Microsemi

RTG4 PROTO FPGA instead of a Spartan 6. This allows

implementing designs with multiple SpFi and SpW interfaces

in radiation-hardened technology.

Like the standard PXI, this board offers two banks of DDR

memory, and a PXIe interface. It also offers the same set of

flexible interfaces connectors as the PXI card. Up to 8 SpFi

interfaces are supported. Furthermore, various front panel

options are offered, also with an option for a custom front

panel to support custom applications.

Current designs with this board include a multilane SpFi

interface. Others designs planned for the near future include a

10-port SpFi router or an 8 lane-SpFi interface.

Figure 5. SpaceFibre RTG4 PXIe board

V. SPACEVPX-RTG4 LITE BOARD

SpaceVPX (also known as VITA 78) [6] uses the

OpenVPX (VITA 65) backplane standard [5] adding features

required for space to the VPX standard. They include

important aspects in space, such as single-point failure

tolerance, fault detection on critical configuration signals,

robust system diagnostics, etc. Moreover, SpaceVPX offers the

possibility of using SpW and SpFi for control and data planes.

A SpaceVPX Lite board will be made available in the

coming months. Similar to the aforementioned PXIe-RTG4

board, this is a 3U unit with a Microsemi RTG4 PROTO

silicon and a SpaceVPX [6] interface supporting a SpW control

plane and a SpFi data plane along with standard management

functions. In the front panel there are available two SpW and

two SpFi connectors for user access.

An FMC daughterboard connector is available, with a

family of daughter boards planned. Among them, a dual

3 GSamples/s ADC FMC board will be released with the

board.

Figure 6. SpaceVPX-RTG4 PCB design

VI. FMC SPACEWIRE/SPACEFIBRE BOARD

The FMC-SpaceWire/SpaceFibre board (Fig. 7) is an

FPGA Mezzanine Card (FMC) which is designed to extend the

capabilities of an FPGA development board by adding support

for SpW and SpFi interfaces. The board features a standard

FMC High Pin Count (HPC) connector and has four SpW ports

with accompanying tri-colour status LEDs, and two SpFi ports.

The SpW signals are connected via LVDS buffers, and all SpFi

signals are AC coupled. This adds protection preventing

damage to the FPGA in case of signals levels being out of

specifications.

There is an on-board 125 MHz oscillator that can be used

as a reference clock inside the FPGA. Also, two SMA

connectors provide with the option of using an external

differential clock input instead of the on-board oscillator. 20

GPIO pins are available to the user.

142

Two sets of switches are used to set different connections

of the SpW and SpFi signals on the FMC connector. The FMC

board can be configured using the switches to work with a

number of FPGA development kits including but not limited

to:

 Microsemi RTG4 Development Kit - HPC1 and HPC2

 SmartFusion2 Adv Dev Kit - HPC and LPC

 Xilinx VC707/VC709 Board

Figure 7. FMC-SpaceWire/SpaceFibre board

VII. CONCLUSION

The SpaceFibre standard is now basically complete. There

is a growing number of space applications that can benefit from

the SpFi features, namely, multi-Gbps data rate and in-built

QoS and FDIR. Consequently, there is a growing interest on

SpFi. A new set of products to support its adoption is required.

In this article a new generation of SpFi test and

development equipment has been described. The equipment is

flexible and supports popular platforms and connectors such as

FMC, USB 3.0, cPCI, PXI, PXIe and SpaceVPX. Furthermore,

a number of designs using this equipment is ready or under

development and will be also made available by

STAR-Dundee. These include the SUNRISE SpFi Router,

Multilane or Multiport SpFi interfaces, etc. When combined,

these new boards and designs offer a powerful and rich set of

tools to help with SpFi designs.

REFERENCES

[1] S. Parkes, A. Ferrer, A. Gonzalez and C. McClements,

“SpaceFibre Standard”, Draft H4, April 2016, available from

https://indico.esa.int/indico/event/126/session/0/contribution/1

(last accessed 29th August 2016).

[2] A. Ferrer Florit, A. Gonzalez Villafranca, C. McClements, S.

Parkes, “STAR Fire: SpaceFibre diagnostic interface and

analyser”, SpaceWire Conference 2013, Goteborg.

[3] PXI-1 Hardware Specification Revision 2.2, PXI Systems

Alliance, September 22 2004.

[4] PXI-5 PXI Express Hardware Specification Revision 1.0, PXI

Systems Alliance, August 22 2005.

[5] VPX: Base Specification, ANSI/VITA 46.0, www.vita.org,

2007.

[6] SpaceVPX Systems, ANSI/VITA 78.00, www.vita.org, 2015.

143

https://indico.esa.int/indico/event/126/session/0/contribution/1
http://www.vita.org/
http://www.vita.org/

 Networks & Protocols 1 (Long)

144

The Geostationary Operational Satellite R Series

SpaceWire Based Data System
Session: SpaceWire Networks and Protocols, Long Paper

William Anderson

GOES-R Flight Data System Lead Engineer

NASA Goddard Space Flight Center

Greenbelt, MD USA

william.h.anderson@nasa.gov

Michael Birmingham

GOES-R Embedded Software Engineer

NASA Goddard Space Flight Center

Denver, CO USA

mike.j.birmingham@lmco.com

Alexander Krimchansky

GOES-R Mission Systems Manager

NASA Goddard Space Flight Center

Greenbelt, MD USA

alexander.krimchansky@nasa.gov

Matthew Lombardi

GOES-R Simulation and Test Engineer

Lockheed Martin

Denver, CO USA

matthew.s.lombardi@lmco.com

Abstract - The Geostationary Operational

Environmental Satellite R-Series Program (GOES-R,

S, T, and U) mission is a joint program between

National Oceanic & Atmospheric Administration

(NOAA) and National Aeronautics & Space

Administration (NASA) Goddard Space Flight Center

(GSFC). SpaceWire was selected as the science data

bus as well as command and telemetry for the GOES

instruments. GOES-R, S, T, and U spacecraft have a

mission data loss requirement for all data transfers

between the instruments and spacecraft requiring

error detection and correction at the packet level. The

GOES-R Reliable Data Delivery Protocol (GRDDP) [1]

was developed in house to provide a means of reliably

delivering data among various on board sources and

sinks. The GRDDP was presented to and accepted by

the European Cooperation for Space Standardization

(ECSS) and is part of the ECSS Protocol Identification

Standard [2].

GOES-R development and integration is complete

and the observatory is scheduled for launch November

2016. Now that instrument to spacecraft integration is

complete, GOES-R Project reviewed lessons learned to

determine how the GRDDP could be revised to

improve the integration process. Based on knowledge

gained during the instrument to spacecraft integration

process the following is presented to help potential

GRDDP users improve their system designs and

implementation.

I. INTRODUCTION

The GOES-R, S, T, and U spacecraft program is a key

element of the National Oceanic and Atmospheric

Administration's (NOAA) weather satellite observation

operations. The GOES-R spacecraft uses European

Cooperation for Space Standardization (ECSS)

SpaceWire (SpW) [3] for the transfer of sensor, telemetry,

ancillary, command, time code, and time synchronization

information between instruments and the spacecraft. In

addition, the spacecraft and instruments are required to use

the GRDDP for all data transferred over on-board
SpaceWire links.

In an effort to minimize risk the GRDDP underwent a

robust testing program by the GOES-R Project, instrument

providers, and spacecraft developer. Several SpaceWire

router implementations were used in this testing as well

final mission integration. These implementations included

two different ASICs and three different FPGAs designs.

Integrating this diverse combination of SpW routers

proved to be a challenge for GOES-R. The current version

of GRDDP will not be modified for the follow-on GOES

spacecraft. Hardware and software for the GOES-S, T,

and U spacecraft are copies of GOES-R. The construction

and integration of these spacecraft have progressed to the

point where it is cost prohibitive to make changes to their
hardware and software.

145

mailto:William.h.anderson@nasa.gov
mailto:mike.j.birmingham@lmco.com

II. CURRENT GRDDP FEATURES

The GRDDP uses the lower level SpaceWire data link

layer to provide reliable packet delivery services to one or

higher level host application processes. For the GOES-R

series spacecraft, the lower level protocol is the Packet

Level service specified in the ECSS SpaceWire standard

[3]. The original GRDDP requirement goal was to have

no data loss with a simple to implement protocol using

microcontroller, ASIC, or FPGA designs.

The GRDDP design philosophy is that all good

received packets must send an acknowledgement packet

(ACK) to the transmitter. Packets with errors are

discarded and not acknowledged. The header is eight bytes

and has an eight bit CRC trailer. The protocol can be used

in simple point-to-point full duplex interfaces or a full

networked environment. GOES-R has both point-to-point

and networked environments.

The GRDDP has two protocol services which are

Reliable Delivery (RD) and Urgent Message (UM). The

RD service requires a positive acknowledgement for all

received error free packets. This service is used for data

that is critical to the mission. Examples of RD data types

are instrument sensor data, commands, and critical

telemetry. UM service is for data that is fire-and-forget

such as ancillary data and less critical telemetry that

updates at higher rates. RD packets must utilize the header

sequence number for sliding window, missing packet

detection, duplicate packet detection, and packet order
processing where UM packets do not.

There is a virtual channel capability included in the

GRDDP. This allows up to 96 virtual channels (VC) to be

used on a single physical SpW link. VCs are defined by

SpW Logical Address (SLA) pairs that are required to

operate independently. The VC capability allows mixing

of low, medium, and high rate data on a single physical
SpW connection, while having a logical separation.

Packet segmentation is not allowed in order to comply

with the keep-it-simple philosophy for the protocol. If a

user has shorter packets it is allowed to pack out the 64k

application space. Any error condition outside the

protocol’s ability to manage it causes the GRDDP to stop
and report this condition to a higher level process.

III. GRDDP STARTUP REQUIREMENTS

MISSING FROM ORIGINAL

SPECIFICATION

There are five instruments on the GOES-R spacecraft

covering a wide range of Earth and Solar sensing

capabilities. The data rates from these instruments varies

widely. The instruments started development before a

spacecraft contractor was selected. This created a

situation where the spacecraft provider wasn’t in a

position to negotiate instrument operation over the SpW

GRDDP links. The instrument providers all implemented

the startup operation of their GRDDP interfaces

differently since the specification was not explicitly

specific. This caused the spacecraft to develop unique
startup processes for each instrument.

 During GRDDP development and proof-of-concept

testing, the GOES-R Project development system host

processors were up and running long before instrument

links were established. This case was reversed when the

instruments were integrated with the spacecraft. The

instrument’s GRDDP interfaces established links with the

spacecraft before their host processors were fully

functional. Another difference between GRDDP

development and spacecraft integration is that

development system startup procedures were

implemented manually where the spacecraft procedures

are automated. This prevented testing during development

that could have identified startup interface failures due to

host processor initialization delays. Additional problems

relating to instrument reset/reboot and timecode
processing were encountered.

Post GRDDP development and when the instrument

providers delivered emulators, integration and software

verification testing proceeded using spacecraft host

processors and simulators. The spacecraft simulators had

functionally equivalent spacecraft SpW network routers

and were used to test command products and procedures

in operational configurations. This testing revealed

problems with instrument reset/reboot, router flow control,

and timecode processing. These issues were analyzed and

resolved.

 The primary and highest rate GOES-R instrument

GRDDP interface establishes links with the spacecraft and

buffers messages until the instrument’s host processor is

ready. It takes approximately 3 seconds for this

instrument’s host processor to reach the state where it can

configure the GRDDP interface and process messages.

Due to GOES-R timecode processing requirements, the

instrument needs to receive time information from the

spacecraft as soon as the link is established. In order to

deal with these issues procedures were created holding

146

high rate and ancillary packets for 3 seconds. No delays
were implemented for time messages.

The link to host processor startup latency issue was a

problem for all GOES-R instruments. The corrective

action implemented, shown in Figure 1, was creation of a

programmable delay in the instrument startup procedures

holding off link initialization until the host was fully

operational. This programmable delay is different with

each instrument and defined in spacecraft to instrument
Interface Control Documents (ICD).

Figure 1. GOES-R GRDDP Startup Host Delay

Compensation Procedure

The next highest rate GOES-R instrument is the first of

four instrument nodes, as seen from the spacecraft, in an

onboard network. This instrument designed their flight

software to initiate an internal reset every 1.3 seconds if a

spacecraft transmit channel is not opened causing a

disconnect/reconnect cycle. This causes the SpW

timecode hardware to lose synchronization with the other

nodes on the router, since a disconnect on any port resets

the six bit SpW timecode count for all ports. If this

instrument’s internal resets continue, the other instruments

on the link will see a loss of timecode for a period of

greater than ten seconds. This condition, by GOES-R

requirements, causes the other instruments on the link to

safe themselves. To mitigate this problem, procedures

were developed that powered this instrument on and

opened GRDDP channels before the other instruments

sharing the same link were powered on and activated.

Also, procedures diagramed in Figure 2 were implemented

that powered this instrument down after shutting down the
other instruments on the link.

Based on GOES-R integration experience as discussed

above several modifications to the GRDDP specification

are recommended. In order to deal with link to host

initialization delays GRDDP users should revise the

protocol with the following:

From:

7.2 Reset Command
When a Transmit End Point (TEP) transitions to

the Enabled state, it shall send a Reset command

to its remote Receive TEP and initiate an

acknowledgement timer.

To:

7.2 Reset Command
When a Transmit TEP transitions to the Enabled

state and all associated processors are fully

operational, it shall send a Reset command to

its remote Receive TEP and initiate an

acknowledgement timer.

This compensates for link to host startup delay issues and

eliminates the need for programmable delays in startup
procedures.

GOES-R has implemented a dual redundant SpW

architecture between the spacecraft and onboard

instruments. If GRDDP users implement redundant SpW

interfaces GRDDP requirements need to be added to

insure transmitters and receivers are connected to the
correct link.

Figure 2. Startup and Shutdown Procedure

Instrument has powered on
and is looking for Reset Packet

from spacecraft

Instrument receives Reset packet
and sends ACK packet

opening link

Instrument host processor
starts boot process

Instrument host processor
completes boot process

Spacecraft starts sending
time ticks and time messages

Spacecraft implements
programmable delay

All GRDDP links are open and
handling traffic

Power on first instrument
in network chain and open

it’s GRDDP channels

Initiate first instrument’s
host processor delay

Procedure

Spacecraft starts sending
time ticks and time

messages

All GRDDP links are open
and handling traffic

Power on remaining
instruments in network

chain and open

their GRDDP channels

Initiate remaining
instrument’s host processor

delay procedures

Startup proc

Close all GRDDP channels

Shut down the first
instrument in the chain

Shut down all instruments
except the first one in the

chain

Shut down proc

147

IV. GRDDP PRIORITY PROCESSING

The current GRDDP requirements for transmit
priority processing are as follows:

4.1.2 Transmit Priority
When more than one packet is available for
transmit, all Acknowledge packets shall be

transmitted first, then Reset Command packets,

then Urgent Message packets, then

retransmit packets, then Data packets.

4.1.3 Data Transmit Queue
When data packets from more than one channel

are available for transmit, packets shall

be transmitted in the order in which they are
queued.

4.1.4 Urgent Message Transmit Queue
When Urgent Message packets from more than

one channel are available for transmit, packets

shall be transmitted in the order in which they are
queued.

The GOES-R spacecraft uses the GRDDP UM service

to distribute ancillary packets at a 100Hz rate to the

primary instrument. There is a latency requirement for this

ancillary data. The spacecraft implemented flight

software compliant with the GRDDP specification. Due

to a unique set of circumstances, this instrument’s

operational procedures caused delays in transmitting

ancillary data packets outside the latency requirement. It

was determined the ancillary packet latency requirement

was more important than meeting GRDDP priority

requirements. A modification was made to transmit

packets that met the latency requirement and violated
GRDDP requirements.

It is recommended that GRDDP transmit packet

priority processing requirements be changed to allow a

more adaptive design. The basis for this requirement

change is that when a packet is ready and the channel is

idle it should be sent immediately instead of being sent to

a queue. In the case where the channel is busy the packet

should be sent to a queue. As soon as the channel returns

to an idle state queued packets need to be transmitted
highest priority first.

V. HEADER REVISION

The current GRDDP specification defines a single

header format for all protocol packet types and is shown

in Figure 3. Based on experience gained from GOES-R

spacecraft and instrument integration a revision to the data

packet header is proposed. In addition, an ACK packet

and Reset packet header are to be added to the GRDDP.

These changes enable the protocol to be more robust. Also,

these recommendations improve error detection and
management capabilities.

The first of these recommended header revisions is

addition of a version number to all three packet types. The

version number aids in detecting packets that may be in

the data stream, but are not valid for a specific mission

need. Inclusion of a version number replaces the user

defined nibble in the original GRDDP header. The

proposed GRDDP Data packet header is shown in Figure

4.

Originally it was intended that the spacecraft and

instruments cooperatively develop and Interface Control

Document (ICD) defining GRDDP user selectable

parameters. It was assumed the spacecraft to instrument

ICD would be adequate and allow “trouble free”

spacecraft to instrument communications. However, as

spacecraft and instrument development advanced into

integration mismatches occurred. The reason for these

mismatches was due to the lack of a requirement for either

side to verify the other side’s operation. The Reset packet

header format is to be lengthened by 5 bytes and is shown
in Figure 5.

This proposed Reset packet header allows a plug-and-

play environment where programmable protocol

parameters would be provided to protocol receivers. The

receiver could optionally adaptively configure for that

channel’s parameters. The ACK to the Reset packet

could either verify matching parameters to a

predetermined configuration or indicate some

requirement is beyond the receiver’s capabilities.

148

Figure 3.

Current

GRDDP

Header

Figure 4. Proposed Data Packet Header

Figure 5. Proposed Reset Packet Header

Protocol ID = 238
Version Number = ’1’

Packet Type = 0 for RD
Packet Type = 3 for UM
Sequence Number = 0 for UM

Payload

Packet
Type
4 Bits

Destination
SLA

1 Byte

Protocol
ID

1 Byte

Source
SLA

1 Byte
Version
Number
4 Bits

Packet Control

MSB
1 Byte

LSB
1 Byte

Channel
Number
1 Byte

Sequence
Number
1 Byte

Application Data

1 to 65535 Bytes

CRC

1 Byte

SpaceWire Packet

Embedded GRDDP Data Packet

EOP

Packet Length

0 or more
destination
addresses

Version Number = ’1’

Packet Type = 2
Packet Length MSB and LSB = ‘0’

Channel Type = ‘0’ for RD

Channel Type = ‘1’ for UM
Window Size = [1, 2, 4, 8, 16, 32, 64] for RD
Window Size = ‘1’ for UM

Transmit Retries = 0 to 255 for RD
Transmit Retries = 0 for UM
Transmit Timeout ms MSB = 0 to 255 for RD
Transmit Timeout ms MSB and LSB = ‘0000’ for UM

Sequence Number = 0

Payload

SpaceWire Packet

Embedded GRDDP Reset Packet

Channel
Type
1 Bit

Destination
SLA

1 Byte

Protocol
ID

1 Byte

Source
SLA

1 Byte
MSB

1 Byte
LSB

1 Byte

Sequence
Number
1 Byte

CRC

1 Byte
MSB

1 Byte
LSB

1 Byte

Transmit
Retries
1 Byte

MSB
1 Byte

LSB
1 Byte

EOP

Packet
Type
4 Bits

Version
Number
4 Bits

Packet Control

Window
Size
7 Bits

Window Control Transmit Timeout (ms)Packet Length Max. Data Size

0 or more
destination
addresses

0 or More
Destination
Addresses

Payload
0 or More

Destination
Addresses

Packet
Type
4 Bits

Destination
SLA

1 Byte

Protocol
ID

1 Byte

Source
SLA

1 Byte
User

Defined
4 Bits

Packet Control
Packet
Length
MSB

1 Byte

Packet
Length

LSB
1 Byte

Channel
Number
1 Byte

Sequence
Number
1 Byte

Application Data

0 to 65536 Bytes

CRC

1 Byte

SpaceWire Packet

Embedded GRDDP Packet

149

Figure 6. Proposed ACK Packet Header

VI. MISCELLANEOUS

RECOMMENDATIONS

There is no current GRDDP requirement that a channel

should exclusively deliver RD or UM packets. In order to

reduce the possibility of complications, it is recommended

that such a requirement be added. Reset packet rate has

proven to be a problem. It is recommended that a

requirement be added controlling GRDDP Reset packet
rate to something on the order of once a second.

It is essential that the spacecraft disable the redundant

port to the instrument prior to power on. Also the

instrument should initiate communications after

determining which side is active based on the link’s run

status. In order to eliminate programmed delays in power

up sequences the spacecraft needs to detect when the

instrument is “alive.” This is accomplished when the

spacecraft receives a Reset packet. The next step is to

open timecode and command channels. When all

channels are in the Open state telemetry data should
commence.

REFERENCES

[1] NASA Goddard Space Flight Center GOES-R

 Project "GOES-R Reliable Data Delivery Protocol,"

 417-R-RPT - 0050 Version 2.1, 2008

[2] European Cooperation for Space Standardization,

 ECSS-E-ST-50-51C 5, “Space Engineering SpaceWire

 Protocol Identification,” February 2010

[3] European Cooperation for Space Standardization,

 ECSS-E-50-12A, “SpaceWire – Links, Nodes,

 Routers and Networks,” 2003

Version Number = ’1’

Packet Type = ‘1’

Packet Length MSB and LSB = ‘0’

Error Number = 0 No Error
Error Number = 1 Channel Type Error
Error Number = 2 Window Size Error
Error Number = 4 Retries Error
Error Number = 8 Timeout Error
Error Number = 16 Data Size Error
Error Number = 32 Out of Window Sequence Error

Payload

Destination
SLA

1 Byte

Protocol
ID

1 Byte

Source
SLA

1 Byte
MSB

1 Byte
LSB

1 Byte

Error
Number
1 Byte

Sequence
Number
1 Byte

CRC

1 Byte

SpaceWire Packet

Embedded GRDDP ACK Packet

EOP

Packet
Type
4 Bits

Version
Number
4 Bits

Packet Control Packet Length

0 or more
destination
addresses

150

Streaming Services over SpaceFibre Networks
SpaceWire networks and protocols, Long Paper

Ilya Korobkov, Elena Suvorova, Yuriy Sheynin, Valentin Olenev

Saint-Petersburg State University of Aerospace Instrumentation

Saint Petersburg, Russia

{ilya.korobkov, valentin.olenev}@guap.ru, {suvorova, sheynin}@aanet.ru

Abstract — Modern and prospective spacecraft data system

networks consist of many systems and sensors producing

streaming traffic. Outside spacecraft video cameras also generate

intensive data streams. Motion video traffic requires specific

latency and speed. Video frames should be delivered with small

delays and jitter over high-rate SpaceFibre networks.

The paper considers live streaming video over onboard

spacecraft networks with its fixed packet size and periodical

issue, detection of packet reordering, small delays. ARINC-818-2

and CCSDS Digital Motion Imagery streaming traffic,

characteristic of video streams are analysed, requirements for

streaming services and transport protocol are presented, the

overview of existing streaming protocols is done.

The STP-2 protocol was proposed for streaming data service in

SpaceFibre networks. It is based on STP, which provides a

number of native streaming features. STP-2 has some significant

modifications that improve delivery of streaming data flows over

high-rate SpaceFibre networks. Use cases for it application

illustrate its benefits.

Index Terms — Spacecraft, Onboard Networks, Live Video,

Streaming Features, SpaceFibre, STP-2.

I. INTRODUCTION

Modern communications and data exchange between

onboard spacecraft systems could be cyclic [1] and streaming

[2, 3]. This is especially true for optical and television systems,

for example, onboard video camera. Live streaming video

forms special requirements for data delivery speed, latency and

jitter.

To provide necessary bandwidth for transmitting video

streams over onboard spacecraft networks high-speed

SpaceFibre networks may be used [4]. SpaceFibre has a

compatibility with SpaceWire standard on Network level.

SpaceFibre specification describes only three bottom layers of

the OSI model and does not cover transport layer and

streaming service. Therefore, there is an essential task to

analyze existing transport layer protocols for streaming data,

taking into account characteristics of video streaming traffic

and the compact implementation in spacecraft onboard

systems.

To solve this problem the research of streaming traffic and

its features was done. The industrial aerospace standards for

streaming video ARINC-818-2 [5] and CCSDS Digital Motion

Imagery [6], characteristic of video streams are analysed,

requirements for streaming services and transport protocol are

represented, overview of existing streaming protocols is done.

II. STREAMING TRAFFIC: DEFINITION AND MAIN FEATURES

There are several definitions of streaming traffic:

1) Traffic type characterized by viewing and/or listening for

information as new information becomes available [7].

2) Streaming data transfer is a way of transferring real-time

or buffered data such as sound, video, documents or photos

through the networks with acceptable Quality of Service.

Receiving system can start playback or display data before

receiving full information [8].

3) Streaming traffic is the uniform data stream with a

constant bit rate [9].

The third definition is more general but, it is the most

representative for streaming traffic. There are several main

features of streaming traffic: fixed packet size (no wide range

of sizes); periodic packet issue with stable intensity; tolerant to

single and sporadic corruption; allow to predict buffer size,

optimise and streamline sender\receiver equipment [2].

Here is a short summary of industrial standards for

streaming video ARINC-818-2 and CCSDS 766.1-B-1 Digital

Motion Imagery.

III. SUMMARY OF ARINC-818-2 AND CCSDS 766.1-B-1

ARINC-818-2 (ARINC) is the standard that describes

interfaces for transmitting video information to cockpit

displays of civil and military aircrafts: Boeing 787, Airbus

A380, A400, C-130, F18, F22, F35. ARINC specification

describes video/audio transmission in real-time, information

indicating on the pilot cabins displays [5]. Transmitted data can

be uncompressed, compressed or encrypted. ARINC standard

includes information about parameters of transmitting video

(TABLE I.).

TABLE I. PARAMETERS OF VIDEO TRAFFIC IN ARINC-818-2

Resolution

*Frame

size,

Kbyte

*Line

size,

Kbyte

Playback

frequency
Accepted latency

VGA 640х480 600 1,25

15 - 120 Hz

CCSDS 2015

conference:

50 ms – telerobotics

SVGA 800х600 937,5 1,56

XGA 1024х768 1536 2,00

151

Resolution

*Frame

size,

Kbyte

*Line

size,

Kbyte

Playback

frequency
Accepted latency

WXGA 1366х768 2049 2,67 NASA;

60, 75 ms – critical

communication;

100 ms –

interactive video.

SXGA 1280х1024 2560 2,50

SXGA+ 1400х1050 2871,1 2,73

WSXGA 1600х1024 3200 3,13

UXGA 1600x1200 3750 3,13

1920x1440 5400 3,75

* - results are for 16 bit color depth.

CCSDS 766.1-B-1 Digital Motion Imagery (hereinafter

referred to as CCSDS) is a standard that identifies which

television and video industry standards should be utilized for

interoperability in a spacecraft, between spacecrafts and

between a spacecraft and Earth. The CCSDS specification

describes real-time video data transmission and video

streaming (telecasting). Transmitted data can be uncompressed,

compressed or encrypted (Secure JPEG2000) [6]. CCSDS

includes information about parameters of transmitting video

(TABLE II.).

TABLE II. PARAMETERS OF VIDEO TRAFFIC IN CCSDS 766.1-B-1

Traffic Resolution
*Frame

size, Kbyte

*Line size,

Kbyte

Playback

frequency,

Hz

Personal video

conferencing
320х240..1280x720 150..1800 0,625..2,5 10 – 60

Medical
conferencing

320х240..1280x720

Standard resolution

640x480

150..1800
600

0,625..2,5
1,25

10 – 60

Situational

awareness
640x480..1280x720 600..1800 1,25..2,5

25 – 60

Public affairs 24, 25, 60

High

Resolution

Digital
Imaging

1920x1080..4096х21

60
4050..17280 3,75..8 24 – 120

* - results are for 16 bit color depth.

IV. REQUIREMENTS FOR ONBOARD STREAMING DATA

DELIVERY PROTOCOL

Basing on the analysis of definitions and features of the

streaming traffic, industrial standards ARINC-818-2 and

CCSDS 766.1-B-1, streaming video characteristics and

requirements of aerospace industry to compactness and

simplicity of onboard systems implementation, following

requirements for the onboard streaming protocol were

formulated:

‒ Stable intensity of packet issue: It is supported by fixed

packet size (excluding some cases, such as compressed

video) during the communication session and fixed

period of packet issue. It follows from the streaming

definition [9];

‒ Small delays of the real-time streaming data

transmission:

a) a connection oriented protocol allows to reduce the

header size for data packets with the payload;

b) simple data delivery mechanism implemented at the

hardware level:

o No buffering on the sender and receiver sides;

o No acknowledgements and retries;

‒ Data delivery control on the receiver side:

a) Check packet header for correctness;

b) Packet filtering – dropping the packets with error

header;

c) Packet loss and out-of-order detection;

‒ Compatibility with SpaceFibre/SpaceWire.

V. STREAMING ORIENTED PROTOCOLS OVERVIEW

Detailed overview of existing streaming protocols was

done. It is based on researches [2, 10, 11, 12, 13]. Following

protocols were considered:

 Internet, multimedia and real-time Transport layer

protocols: TCP, UDP, RTP, RTCP, SCTP, SSTP,

RSVP, DCCP;

 Onboard and aerospace Transport layer protocols:

Saratoga, ECSS-E-50, CFDP, SCPS-TP, JRDDP, STP,

STP-ISS rev.2;

 Protocol stacks that can be used for streaming: SOIS,

RapidIO, ARINC-818-2, SpaceWire, SpaceFibre.

Also streaming protocols of Application layer (such as

Apple HLS, Adobe RTMP and others) were reviewed as

general purpose mainstream streaming protocols. Short

description for each considered protocols are given in [14].

Streaming features of each reviewed onboard and aerospace

transport protocols are presented in TABLE III. – TABLE VI.

TABLE III. COMPARISON OF INTERNET PROTOCOLS AND REAL-TIME

TRANSPORT LAYER PROTOCOLS

Mechanisms

and features T
C

P

U
D

P

R
T

P

R
T

C
P

S
C

T
P

S
S

T
P

R
S

V
P

D
C

C
P

Header
length, bytes

20-60 8 16 Transmits

data

transfer
reports

12 16 8
12-
16

Max payload,

bytes
64K 64K

Depends
on the

profile

64K 1G 64K 1020

Compatibility IP networks UDP IP networks

Fixed packet

size
- - - + - - - -

Periodical

data transfer
- - - + - - - -

Best-effort

delivery
- + + + - + + +

Data

correctness
check

+ - + - + + - +

Data sequence
check

+ - + - + + - -

152

Mechanisms

and features T
C

P

U
D

P

R
T

P

R
T

C
P

S
C

T
P

S
S

T
P

R
S

V
P

D
C

C
P

Only without
packet

retransmission

- + - + - - + +

Time stamp in

packet
- - + + +- - - -

TABLE IV. COMPARISON OF ONBOARD AEROSPACE TRANSPORT LAYER

PROTOCOLS

Mechanisms

and features

S
A

R
A

T
O

G
A

E
C

S
S

-

E
-5

0
-1

3

C
F

D
P

S
C

P
S

-T
P

J
R

D
D

P

S
T

P

S
T

P
-I

S
S

r
e
v
.2

Header length,

bytes
12 2 4 15 10 8 9

Max payload,

bytes
256·109 4K 64K 64K 64K 4G

2K or

64K

Compatibility

UDP/

UDP-
lite

MILST

D-
1553B

SCPS-SP,

IPSec,
IPv4/v6

SpaceWire or

SpaceFibre

Fixed packet

size
+ - + - - + -

Periodical

data transfer
- - - - - + -

Best-effort

delivery
+ + + + + + +

Data

correctness

check

+ + + + + + +

Data sequence
check

+ - + + + - -

Only without
packet

retransmission

- - - - - + +-

Time stamp in

packet
+ - - - - - -

TABLE V. COMPARISON OF INTERNET AND MULTIMEDIA APPLICATION

LAYER PROTOCOLS USED FOR STREAMING

Mechanisms

and features R
T

S
P

A
d

o
b

e

R
T

M
P

M
P

E
G

-T
S

A
p

p
le

 H
L

S

A
d

o
b

e
 H

D
S

M
ic

ro
so

ft
 S

S

Header length,

bytes
Transmits
control

commands

to video
server

18 4
4

(MPEG-TS)
16·109

 (max.

size

MP4)
Max payload,
bytes 16M 184

184

(MPEG-TS)

Compatibility
RTP,

UDP, TCP
TCP

any

transport
networks

HTTP

Fixed packet
size

- + - + + +

Periodical data
transfer

- - - - - -

Mechanisms

and features R
T

S
P

A
d

o
b

e

R
T

M
P

M
P

E
G

-T
S

A
p

p
le

 H
L

S

A
d

o
b

e
 H

D
S

M
ic

ro
so

ft
 S

S

Best-effort
delivery

- + + + + +

Data
correctness

check

- - - - - -

Data sequence

check
- + + + + +

Only without

packet
retransmission

+ + + + + +

Time stamp in
packet

- + + + + +

TABLE VI. COMPARISON OF HIGH-PERFORMANCE PROTOCOL STACKS

Mechanisms

and features

S
p

a
c
ec

ra
ft

O
n

b
o

a
r
d

In
te

r
fa

ce

S
e
r
v
ic

e
s

R
a

p
id

IO

A
R

IN
C

-8
1

8

(r
e
v
.
2

)

S
p

a
c
eW

ir
e

S
p

a
c
eF

ib
re

Protocol Data
Unit (PDU) Depends on the

transport and
data link layer

protocols

Data

Streaming

packet

Fiber

Channel

frame

Packet

PDU header

length, bytes
4-8 24-28

Unlimited
Max PDU

payload, bytes
64K 2112

Function Spacecraft Avionics Spacecraft

PDU fixed

size
+- - - - -

Periodical data

transfer
+- - - - -

Best-effort

delivery
+ + + + -

Data
correctness

check

+ + + + +

Data sequence

check
Depends on the

transport and
data link layer

protocols

+ - - +

Only without

packet

retransmission

- + + -

Time stamp in
PDU

+ - - +

According to the conducted analysis, nowadays there is no

streaming protocol which provides all required mechanisms for

onboard streaming data delivery. Existing protocols were

designed for specific tasks in general purpose applications.

Only the STP protocol [15] most closely meets onboard

streaming protocol requirements: periodical packet issue and

fixed packet size; packets are delivered without

acknowledgments (best-effort delivery) and without lost packet

retransmission; data correctness check is provided; it is

connection oriented protocol; it has compatibility with

SpaceFibre/SpaceWire. Thereby it was decided to modify

existing STP protocol for solving essential problem of

153

streaming data delivery in onboard spacecraft SpaceFibre

networks. Modified protocol was called STP-2. Description of

main mechanisms of this protocol is provided in this paper.

VI. STP-2 – STREAMING TRANSPORT PROTOCOL EDITION2

A. General description

The STP-2 protocol is a transport layer protocol over

SpaceFibre. It provides transmission of streaming data between

nodes of a SpaceFibre network with stable intensity and fixed

packet size (or fixed maximal packet size for application such

as transmission of compressed video).

Data packets are used for streaming data delivery in STP-2.

Data packets are delivered without acknowledgments and

retransmissions. It may have a fixed size or a variable size.

This allows using STP-2 for streaming traffic transmition with

PDUs of the same size (for example, data from sensors, video

frames, or lines of uncompressed video) or PDUs of the

variable size (compressed video).

STP-2 protocol is a connection-oriented protocol. It

supports up to 4096 transport connections for one device.

Connection parameters are set in the transport connection

establishment phase. Therefore STP-2 provides an ability to

transmit large sized data with minimum overheads. Transport

connection is established under the control of a master node.

There are two main operating schemes:

1. Data exchange between two devices, one of which is the

master and the second – slave. It supports data transfer from

slave to master and from master to slave (Fig. 2. .

2. Data exchange directly between two slave devices

(transmitter and receiver) under control of the third device –

the master node (Fig. 3. .

STP-2 was developed for compact implementation in

spacecraft onboard systems. There is no full packet buffering at

the receiver and transmitter side. Implementation of STP-2

may be either completely hardware or hardware/software. To

improve performance it is recommended to implement data

send/receive STP-2 mechanisms in hardware; the transport

connections control could be done in software.

STP-2 protocol has failure detection and indication

mechanisms. The protocol detects errors in header and in

payload of packets; packet loss (for data packets and servise

command/packets). It is also monitored the failure of a

master/slave device (as a result of the device crash or the

communication link disconnection between them).

B. STP-2 Interfaces

There are two STP-2 interfaces with the Application layer:

the streaming data interface and the configuration interface

(Fig. 1.). The Streaming interface is used to transfer streaming

data from applications. It is recommended to implement this

interface in hardware for high performance. The Configuration

interface provides means for the STP-2 configuration

parameters change, for transmission of status information, reset

commands.

The SpaceFibre packet interface is used for transmission of

STP-2 packets over SpaceFibre virtual channels.

STP-2

SpaceFibre

Streaming
interface

SpaceFibre
packet
interface

link

Applications

Configuration
interface

Transport layer
interface

Network layer
interface

Physical

Data Link

Session

Network

Transport

Application

Presentation

Fig. 1. The STP-2 protocol and OSI model

C. Basic principles of data exchange in STP-2

The Exchange data should be carried out in three phases:

1. Connection establishment.

2. Data transmission.

3. Connection closure.

Connection establishment and connection closure are

performed under the master control in both STP-2 operating

schemes.

There are two packet types in STP-2 protocol: service

packets and data packets. Data packets are used to deliver

streaming data. A Data packet can transfer up to 32M bytes.

Service packets are used to establish and close connection, for

flow control. There are several kinds of service packets:

 Transport connection control packets (Open

Connection Request, Open Connection Confirm,

Close Connection Request, ets.);

 Heart Beat – notify that a node is valid;

 Status Request – request to get statistic report for

STP-2 transport connections;

 Status – transport connection statistics report:

number of received/discarded packets, etc.

 Start – request to start data transfer from

transmitter;

 Stop – request to stop data transfer from

transmitter.

Receiver can control of data flow with using of Start and

Stop commands.

The data exchange between a master and a slave is shown

in Fig. 2. The master has initiated the connection

establishment. The master is the data receiver in this example.

The slave is data transmitter.

SpaceFibre
Network

Master
Data receiver

Slave
Data transmitter

Open Сonnection
Request

Open Connection
Confirm

DATA packets

HeartBeats

HeartBeats,
 Stop, Start

Close Connection
Request

Close Connection
Confirm

C
o

n
n

ec
ti

o
n

es

ta
b

lis
h

m
en

t
p

h
as

e

D
at

a
tr

an
sm

is
si

o
n

p

h
as

e

C
o

n
n

ec
ti

o
n

cl

o
su

re

p
h

as
e

Fig. 2. The Data exchange between master and slave

154

The second STP-2 operating scheme is presented in Fig. 3.

First of all the master configures transport connection for the

slave receiver via the Open Connection Request (OCR) packet.

Then the slave transmitter is configured by the master (see Fig.

3.).

Slave
Data receiverSlave

Data transmitter

Open Connection
Request for
Transmitter

Open Connection
Confirm

Data packets

HeartBeats, Status

Close Connection
Confirm

Master

Open Connection
Request for
RecieverClose

Connection
Request

Close
Connection
Request

Heart
Beats

Open Connection
Confirm

Heart
Beats

HeartBeats, Status

Close Connection
Confirm

2

SpaceFibre
Network

C
o

n
n

e
ct

io
n

e

st
ab

lis
h

m
e

n
t

p
h

as
e

D
at

a
tr

an
sm

is
si

o
n

p

h
as

e

C
o

n
n

e
ct

io
n

cl

o
su

re

p
h

as
e

1

Start, Stop

Fig. 3. The Data exchange between two slaves and remote master

D. Transport Connection Establishment and Flow control

STP-2 provides connection-oriented data transmission.

There is a master device on one side of the connection and a

slave device – on the other. Only master can be an initiator of

the connection establishment. The transport connection

establishment is performed by means of two-phase handshake

(see Fig. 2). Initiator sends the OCR packet. This packet

includes transmission parameters for the slave: connection ID

(to identify connection in the master device and in the slave

device), period of packet issue, max payload size, data transfer

direction, etc. (Fig. 4.).

The slave responds with confirmation – Open Connection

Confirm (OCC) packet. Then the tcnf timer should be started.

Timer expiration means that data transmission from the slave

should be started.

REQUEST Connection request

Connection confirm

CONFIRM
Connection

established

tcon

STP-2 STP-2

tcnf

Connection
established

DATA

DATA PACKET
DATA

Master Slave

Fig. 4. Two-way handshake connection establishment phase in STP-2

The SpacerFibre protocol supports guaranteed data delivery

at the Data link layer. But the OCC packet could be not deliver

due a physical connection lose, routers failure or a failure in the

slave device. For detection of this problem a connection timer

(tcon) is used in the master. It startes when the OCR packet is

sent.

If during tcon timer the OCC packet from the remote device

has not been received, then the master device should resend the

OCR packet. (The master can perform muliple retries of a

connection establishment, since data transmission via the

network can be restored, for example, due using of spare

connection lanes and routers.) The slave could receive the

repeated OCR packet from same master (in case the OCC

packet from this slave is lost in the network). In such case the

slave should recend the OCC packet.STP-2 should write

information about this error to status register.

Flow control.

The OCR packet has the «Ready to receive» field. This field

indicates that the master is ready to receive data from the

remote device as soon as possible.

Then the transmitter sends packet after packet in the preset

periods without waiting for any credits or confirmation from

the receiver.

To limit streaming flows in the Data transmission phase

STP-2 implements Stop and Start service packets. The Stop

packet will stop data transmission (without connection

closure). The Start packet will start (restart) data transfer from

the transmitter.

E. Transport Connection Closure

Transport connection could be closed on request only from

the master (Fig. 5.). The Master sends Close Connection

Request (CCR) packet. Slave responds it – Close Connection

Confirm (CCC) packet. tcls and tend timers are used in similar

way like tcon and tcnf timers during connection establishment

phase.

REQUEST
CCR

CCC

CONFIRM
Connection

closed

tcls

STP-2 STP-2

tend

Connection
closed

Master SlaveConnection
established

Fig. 5. The transport connection closure on request from master device

The CCR or the CCC packet can be lost in the network (as the

OCR or the OCC can be lost in the Connection closure phase).

But the CCR packet should not be repeated in this case. When

the master goes to the Connection Closure phase, it stops

transmission of the HeartBeat packets. If the CCR packet will

be lost in the network, non-availability of HeartBeats would

cause connection closure by the slave. If the CCC packet is lost

in the network, the slave received CCR command and close

connection.

Connection should be also closed by slave when there are

no data packets or Heart Beat packets from the sender for a

long period of time. Standby timer tsb is used in this situation.

155

The timer counts the time of waiting for the next data packet or

Heart Beat packet transmitted over the connection. On the

timer expiration the transport connection should be closed (Fig.

7.).

DATA 1

Master SlaveSTP-2 STP-2

ConnectionClosed.indСоединение закрыто

tsb

CONFIRM

Connection

closed

DATA 1

HEART BEAT

Reciever Transmitter

thbDATA 1

HEART BEAT
thb

thb

Connection
established

thb

Fig. 6. The transport connection closure on standby timer expiration on

the receiver side

Similar situation occurs on the transmitter side. If Heart

Beat packets are not received after the timer expiration then

transmitter should close connection (Fig. 7.).

DATA PACKET 1

STP-2 STP-2

DATA 1

DATA 2
DATA PACKET 2

Connection
closed

Master Slave

tsb

DATA 1

DATA 2

HEART BEAT

DATA 3
DATA PACKET 3

thb

Connection
established

thb

Receiver Transmitter

Fig. 7. The Transport connection closure on standby timer expiration on the

transmitter side

F. Data transmission phase

STP-2 provides data transmission in two directions for the

first operating scheme: from the master and from the slave

device. Data are transmitted between two slaves in the second

operating scheme. Transmission direction is specified in the

OCR packet. Data packets are sent only after transport

connection establishment (see Fig. 8. , Fig. 9.).

STP-2 STP-2

DATA PACKET 1

DATA PACKET 2

DATA PACKET N

V
id

e
o

 fram
e #1

DATA 1

DATA 2

DATA N

...

V
id

eo
 fram

e
 #

1

Connection
established

DATA 1

DATA 2

DATA N

Master Slave

Transmit direction

...

...

Fig. 8. Data transmission from the slave device

МониторSTP-2 STP-2

DATA PACKET 1

DATA PACKET 2

DATA PACKET N

V
id

e
o

 fram
e #

1

DATA 1

DATA 2

DATA N

...

...

V
id

e
o

 fram
e #

1
Connection
established

DATA 1

DATA 2

DATA N

Master Slave

...

Transmit direction

Fig. 9. Data transmission from the master device

In STP-2 data from the application (for example, an

onboard spacecraft camera) should be sent N-Char-by-N-Char.

(The bit width of interface with application can vary in

different implementations).

Data flow is divided into PDUs; Every PDU together with

the data packet header and tailer is sent through the SpaceFibre

network.

When the first operating scheme is used (Fig. 2) if the

transmitter has no data to send, then STP-2 should issue Heart

beat service packets. The HeartBeat is addressed to the second

device (master or slave). The packet notifies remote device that

implementation of STP-2 protocol on the transmitter side is in

the state of operability, but there is no data from application to

send. Also the receiver should send Heart Beat packet to

indicate that it is serviceable.

When the second operating scheme is used (Fig. 3) the

master sends the Heartbeats to the both slaves and every slave

sends HeartBeats to the master.

If the slave does not reseive a HeartBeat due long time it

should close connection. (If the master is fail, other (spare)

master can open connection with this slave due this

mechanizm.)

G. Data Size Control on the Transmitter Device

STP-2 guarantees that the size of transmitted data of every

data packets over established connection will not exceed the

parameter of max accepted data size. The parameter is

specified during the connection establishment. For this purpose

transmitter should count the number of sent bytes. If the

counter has reached the value of parameter, then the packet

transmission should be terminated with EEP; the STP-2

controller should write information about this error to status

register.

H. Control of Packet Sending Frequency at the Transmitter

Device

STP-2 provides control of data packet sending frequency in

order to maintain constant transmission rate. There is the

packet send timer on the sender side. Timer duration is

configured via an OCR packet. Only one data packet is allowed

to be sent during the timer period. If the timer expired and End-

of-Message symbol was not received from the application, then

STP-2 should complete packet transmission by inserting cut-

156

error indication into “Sending flag” field of data packet. The

field is the last byte of data packet before EOP. STP-2 should

write information about this error in a status register.

I. Data Size Control at the Receiver Device

STP-2 guarantees that the size of received data of every

data packets packet over established connection will not exceed

the parameter of max accepted data size. The parameter is

specified during the connection establishment. Receiver (like

transmitter) should count the number of received bytes.

Counter should be incremented only to amount of data passed

to applications (for example, monitor). If the counter has

reached the parameter value, reception of packets should be

terminated. The rest of packet bytes should be discarded till

reception EOP or EEP. STP-2 should notify application about

it when last payload bytes will be transferred to Application

layer. Information of the occurred error should be written to

STP-2 status register.

J. Packet Filtering on the Receiver Device

STP-2 detects errors in the packet header and payload at the

receiver side. Received packets with a CRC header error

should be discarded as incorrect. If a CRC error of the payload

is detected then this packet should be passed to the applications

with indication of the error. STP-2 should write information

about this error to status register.

K. Out-of-order Data Packet Detection

STP-2 supports out-of-order data packet detection. For this

purpose data packets are numbered by time stamp on the

transmitter side (Fig. 10.). Time stamps are independent from

Reset actions. It is monotonically increased.

1
ms

time

Packet period

packet packet packet packet

B
e
g
i
n

E
n
d

17
ms

33
ms ...

945
ms

packet

49
ms

Time stamp
Camera

B
e
g
i
n

E
n
d

B
e
g
i
n

E
n
d

B
e
g
i
n

E
n
d

B
e
g
i
n

E
n
d

Fig. 10. Data Packets numbering by time stamps

L. Statistics report

STP-2 allows monitoring of streaming data delivery. It

provides feedback on the quality of service in streaming data

distribution by periodically (or by request) sending statistics

information to master device in a transport connection. For this

purpose Status service packets are issued by the receiver or/and

the transmitter. The Packet includes the following information:

 error code (packet loss, incorrect packet size, packet

delay variation, etc.);

 numbers of such errors (errors of such type);

 occurrence time (first and last time).

 An application, that has received such information, may

control quality of service parameters, perhaps by limiting flow.

VII. CONCLUSSION

The paper gave an overview of actual problem to deliver

streaming video over onboard spacecraft SpaceFibre networks.

Streaming traffic features and streaming video characteristics

were considered. Industrial standards for streaming video

transmission ARINC-818-2 and CCSDS Digital Motion

Imagery were analyzed. Main requirements for streaming

protocols were presented. The overview of existing streaming

protocols was done.

In this article a new STP-2 protocol for streaming data over

onboard SpaceFibre networks was proposed. This protocol is

based on STP protocol. STP is adapted for streaming data

transfer. STP-2 has some important modifications which allow

to improve delivery of streaming data flows over high-rate

SpaceFibre networks. They are: two operating schemes are

suitable for onboard spacecraft systems (master-slave and

master-two-slaves), quick transport connection establishment

and closure, data size control on the transmitter and receiver

devices, stable intensity of streaming data delivery, packet

filtering, out-of-order packets detection, monitoring of

streaming data delivery and state of device’s operability.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the Ministry of Education and Science of the Russian

Federation under the contract 1810 in 2016.

REFERENCES

[1] E. Mikrin, Design concept of Spacecraft Onboard Control

System. Moscow: Bauman MSTU Publ., 2003, 336 p. (In

Russian)

[2] I. Korobkov, “Adaptive Data Streaming Service for Onboard

Spacecraft Networks” Proceedings of SUAI Scientific session,

Saint-Petersburg State University of Aerospace Instrumentation

(SUAI), Saint-Petersburg, SUAI, 2015, pp. 73-82. (In Russian).

[3] Y. Sheynin, E. Suvorova, I. Korobkov, J. Petrichkovich, T.

Solokhina, A. Glushkov, A. Sakharov, “Intelligent Networking

for Distributed High-Rate Streaming Sensor Fields,” in

Proceedings of 16th edition of Sophia Antipolis

MicroElectronics (SAME) Forum 2013. Sophia Antipolis, 2013.

[4] S. Parkes, A. Ferrer, A. Gonzalez, C. McClements, SpaceFibre

Specification, Draft F3, September 2013, 161 p.

[5] ARINC Inc., ARINC Specification 818-2 (ARINC 818

Supplement 2), 2013. 131 p.

[6] CCSDS Digital Motion Imagery Standard 766.1-B-1, 2015. 41

p.

[7] Order No. 113 dated 27.09.2007 "On approval of Requirements

to organizational and technical ensuring of sustainable

functioning of the communication network", the Ministry of

communications, 2007, 5 p. (In Russian)

[8] GOST R ISO/TR 16056-1-2009. Health informatics.

Interoperability of telehealth systems and networks. Part 1.

Introduction and definition. Moscow, Standartinform Publ.,

2011, 10 p. (In Russian).

[9] N. Olifer, V. Olifer, Computer networks: Principles,

Technologies and Protocols for Network Design. Wiley, 2012.

[10] Ali C. Begen, T. Stockhammer, HTTP Adaptive Streaming:

Principles, Ongoing Research and Standards, Cisco, 2013

[11] F. L. Schiavoni, Possibilities in Network Transport Protocols to

Audio Stream Application Context, Institute of Mathematics and

Statistics, University of Sao Paulo, 2011.

[12] RGB Networks, Comparing Adaptive HTTP Streaming

Technologies, 2011, 20 p.

157

[13] Mosleh M. Abu-Alhaj, Ahmed Manasrah, Mahmoud Baklizi,

Nibras Abdullah, Lingeswari V. Chandra, Transport layer

protocols taxonomy from Voice over IP perspective. Advanced

Computing: An International Journal, Vol.2, No.4, July 2011.

[14] I. Korobkov, “Adaptive Data Streaming Service for Onboard

Spacecraft Networks,” in Proceedings of 17th Conference of

Open Innovations Association Finnish-Russian University

Cooperation in Telecommunications (FRUCT) Program. P.G.

Demidov Yaroslavl State University, Yaroslavl, Russia, 2015,

pp. 291-298

[15] Y. Sheynin, E. Suvorova, F. Schutenko, V. Goussev, “Streaming

Transport Protocols for SpaceWire Networks,” International

SpaceWire Conference 2010, Saint Petersburg, 2010.

158

Deterministic Services for SpaceWire Networks
SpaceWire networks and protocols, Long Paper

Valentin Olenev, Elena Podgornova, Irina Lavrovskaya, Yuriy Sheynin
Saint-Petersburg State University of Aerospace Instrumentation

Saint Petersburg, Russia
{valentin.olenev, alena.podgornova, irina.lavrovskaya}@guap.ru, sheynin@aanet.ru

Abstract—Deterministic behavior is an important paradigm
for verification and validation of real-time systems such as those
on crewed space vehicles and robotic spacecrafts. Providing
deterministic characteristics of the data transfer for the spacecraft
that uses the SpaceWire technology is an essential problem,
especially for autonomous vehicles like satellites. Deterministic
data delivery guarantees that transmission of data from one node
of the onboard network to the target node would not take longer
than the specified time period. Such task is solved by using specific
communication protocols that include a scheduling service.

Modern space industry demands a protocol running over
SpaceWire, which can provide deterministic data transmission
characteristics. The scheduling problem becomes more
complicated, when we consider a number of communication
protocols simultaneously operating in every node of the network,
e.g. RMAP, STP-ISS, CCSDS PTP. Traffic from different
transport protocols can interfere especially while getting access to
the SpaceWire link in a node.

The paper presents Multiprotocol Scheduling Service - a new
scheduling protocol for SpaceWire networks which provides
deterministic data delivery in a network and performs arbitration
of data coming from several transport protocols. Firstly, we give
an overview of TDMA-based network protocols that have been
developed for the ground-based and onboard networks. Then, we
present Multiprotocol Scheduling Service which is based on the
STP-ISS scheduling mechanism and extended with additional
features.

Index Terms— Scheduling, Determinism, SpaceWire, STP-ISS,
On-board Network, Quality of Service.

I. INTRODUCTION

Determinism is a philosophical doctrine stating that all
events are caused by things that happened before them and that
people have no real ability to make choices or control what
happens. The same is for the behavior of the complex systems
and networks. Deterministic systems have predictable behavior,
which is necessary to perform analysis to ensure requirements
are met. Deterministic data delivery guarantees that data from
one node of the onboard network would be delivered to the target
node in a fixed time. The developer can schedule all the onboard
traffic and prevent the potential deadlock and data delivery

delays. Such task is solved by using a specific communication
protocol that includes a scheduling service.

If we have a number of different entities that transfer data to
the network, we need a single scheduling instance that would be
able to control all the data transfer from the particular node.
Deterministic characteristics are obtained by using time-division
multiplexing (TDMA). Time-division multiplexing (or
scheduling) is used in network technologies to obtain guaranteed
latency and throughput for user data, and to avoid conflicts with
simultaneous network resources usage.

Current paper provides an overview of existing
communication protocols that use scheduling quality of service
and compares them. Also we propose a solution for scheduling
of traffic from several transport protocols and applications
operating on top of SpaceWire. It is a new Multiprotocol
Scheduling Service (MSS) which gives different options to
guarantee that data in the SpaceWire network would be
delivered to the target in time.

II. EXAMPLES OF TDMA-BASED DETERMINISTIC DATA

DELIVERY PROTOCOLS

Time-division multiplexing problem is an important issue for
communication protocols where deterministic data delivery is
required. Time multiplexing is actively used in 2G and 3G
mobile networks, as well as in some wireless personal networks,
such as Bluetooth, ZigBee, Ubiquiti.

SpaceWire on-board networks also require time-division
multiplexing solutions as the technology that is used in
spacecraft and avionics. We reviewed a number of ground-based
and on-board network protocols. Current section provides an
overview of these protocols with scheduling quality of service
[1], [2], [3]. This will help to understand, which mechanisms and
algorithms are used to provide deterministic data delivery for
different tasks.

Time multiplexing requires periodic synchronization
between nodes. For this purpose, the protocol can use specific
messages from the time-master to synchronize local clock. For
example, there are reference messages in TTCAN [4], [5] which
are transmitted in every basic cycle. Profinet IO IRT [6]
implements Precision Transparent Clock Protocol (PTCP) [7].
PTCP synchronizes the clock of the network nodes by periodical

159

broadcasting of the synchronization frames, which are sent in
every communication cycle. SpaceWire-D [8] and STP-ISS [9],
[10] use time-codes, which are sent in every time-slot and epoch
respectively. TTEthernet [11], [12] defines Protocol Control
Frames (PCF) which contains accumulated time information
regarding its passing from sender to a receiver. PCF should be
sent once in the cluster cycle.

There are some interesting mechanisms used by other
protocols. In TTP/C [13], for example, a node can calculate the
difference between the clock of the sending node and its own
clock by noting the time when messages are received from other
nodes with the known schedule (TTP/C is a broadcast protocol,
so all nodes receive all messages). Flexray [14, 15], uses similar
approach: every node in each channel shall measure and store
the time differences between the expected and the observed
arrival times of all sync frames received during the static
segment, calculate and apply clock correction term during the
network idle time. Byteflight [16] nodes synchronize on cyclical
synchronization pulses generated by SYNC master in every time
interval. In SpaceFibre [17] the time value shall be taken from
the local time register, which is regularly updated by the time-
distribution broadcast channels. TSN [18] uses physical layer
timestamps to compute network delays and define
synchronization events.

Some protocols achieve determinism by using scheduling
not only in nodes but in switches also. For example TSN uses
concept known as the “time-aware shaper” (TAS), which
deterministically schedules traffic in queues through switched

networks. With the time-aware shaper concept it is possible to
control the flow of queued traffic from a TSN enabled switch.
Ethernet frames are identified and assigned to queues based on
the priority field of the virtual local area network (VLAN) tag.
Each queue is defined within a schedule, and the transmission of
messages in these queues is then executed at the egress ports
during the scheduled time windows. Other queues will typically
be blocked from transmission during these time windows,
therefore removing the chance of scheduled traffic being
impeded by non-scheduled traffic.

In addition to a schedule for the network a protocol can use
priorities. In SpaceFibre several virtual channels can be
scheduled to send data in the same time-slot. In this situation
medium access controller sends data from the virtual channel
with the highest precedence.

Protocol can allocate only a part of the epoch for the
scheduled traffic. For example, in Profinet IO the IRT part of the
communication cycle is reserved for real-time communications,
in which the deterministic message frames are sent.

Among all of the overviewed protocols only two are able to
operate in SpaceWire networks: SpaceWire-D and STP-ISS.
However, SpaceWire-D uses another transport protocol, RMAP,
for transmitting data over the network, so it complicates the
protocol hierarchy. Building any transport protocol over another
transport protocol – the RMAP transport protocol, tangles the
protocol stack and introduces unnecessary overheads.

Comparative analysis of different TDMA-based protocols
features is given in Table I.

TABLE I. COMPARATIVE ANALYSIS OF DIFFERENT TDMA-BASED PROTOCOLS

 Feature

Protocol

Topology Synchronization Static
scheduling

Dynamic
scheduling

Operation on
top of
SpaceWire

Synchronization
period

TTCAN bus yes yes no no Once an epoch

Byteflight bus yes yes no no Once a time-slot

Flexray bus no yes yes no Once an epoch

TTP/C bus no yes no no Once a time-slot

TTEthernet distributed yes yes yes no Once an epoch

SpaceFibre distributed separate channel yes no no Undefined

SpaceWire-D distributed yes yes no with RMAP Once a time-slot
TSN distributed yes yes no no Implem. dependent

Profinet IO IRT distributed yes yes yes no Once an epoch

STP-ISS distributed yes yes no yes Once an epoch

III. MULTIPROTOCOL SCHEDULING SERVICE

Modern space industry demands a protocol running over
SpaceWire, which can provide deterministic data transmission
characteristics [2]. The basic SpaceWire standard covers three
bottom layers of the OSI model and does not provide transport
services [19]. Nowadays, there is a number of transport protocols
intended to operate over SpaceWire. They are: RMAP, CCSDS
PTP, STP-ISS, STUP, JRDDP, SpaceWire-R, STP and
SpaceWire-D. Each of them is intended to solve its particular
tasks and, in many cases, there are two or more transport
protocols operating simultaneously in one network. Moreover, a

single node can implement several transport protocols running
over SpaceWire (for example, RMAP, CCSDS PTP, STP-ISS).
Traffic from different transport protocols can interfere especially
while getting access to the SpaceWire link in a node. It is rather
difficult to avoid conflicts with simultaneous network resource
usage, thus we cannot provide deterministic delivery of data in
the network.

Consequently, there is not only an issue of schedule creation
and synchronization between the nodes but also an issue of
arbitration of different transport protocols’ data flows. For
SpaceWire networks only SpaceWire-D protocol deals with an

160

issue of scheduling in SpaceWire networks. However,
SpaceWire-D was not designed for scheduling traffic from
several transport protocols as it gets data directly from the
Application Layer. Moreover, SpaceWire-D utilizes RMAP to
communicate over the network, which imposes restrictions and
effects on its flexibility in use.

Therefore, it was decided to take the STP-ISS scheduling
mechanism as a basis and develop a new scheduling protocol,
which solves abovementioned problems. Also we extended
functionality of this mechanism by some abilities and features of
other scheduling protocols. The new scheduling protocol is
called Multiprotocol Scheduling Service (MSS). Fig. 1 shows
the place of the MSS in the protocol stack and its comparison
with the OSI reference model [20].

Fig. 1. Comparison of the MSS with OSI

The STP-ISS scheduling mechanism is based on SpaceWire
time-codes distribution provided by the SpaceWire standard.

A. SpaceWire Time Synchronization

The local time ticks in each node must be periodically
resynchronized within the global time base [9]. The STP-ISS
rev.2 scheduling mechanism is based on the SpaceWire time-
codes broadcasting mechanism. These time-codes contain a six-
bit value of system time. Each node and switch has its internal
six-bit time counter. There should be a single node or switch in
a network, which is set as the time-master. It is responsible for
time distribution over a network. When the time master receives
a tick from a host-system, it should increment its time counter
and send new time value in a time-code. When a node or a switch

receives a time-code, it should update its internal time counter
with the received time value. This new value should be one more
than the time-counter’s previous time value.. When a switch
receives a time-code with time value, which is one more than the
internal counter’s value it increments the counter value and emits
a tick signal. This tick signal propagates to all the output ports of
the switch so that they emit the time-code. When switch receives
a time-code with a time-code value that is equal to the internal
counter value, then it is ignored. It helps to prevent circular time-
codes propagation. This is the way the time-codes are used to
synchronize all the network nodes with the time master’s
clock [19].

B. The STP-ISS Scheduling Mechanism

According to the STP-ISS scheduling mechanism, there is a
single schedule for the whole SpaceWire network. It gives an
opportunity for the node to send data only during particular time-
slots. The schedule and time-slot duration are set during the
configuration phase and are stored in each end-node of the
network. The time-slot timer (TTS) counts duration of the current
time-slot for a particular node. Synchronization according to a
scheduling mechanism is performed once in an epoch. An epoch
has a constant number of time-slots. For example, an epoch can
consist of 10, 20, 64 or more time-slots, but it should contain at
least 2 time-slots. The scheduling table describes one epoch.

The number of time-slots in one epoch should be defined
during the configuration phase and should be set to the time-slots
counter CTS value. The time-slot duration DTS should be set to
the time-slot timer TTS.

The epoch duration DE is calculated in the following way:

 (1)

If the time-slot duration DTS value changes, the epoch
duration value DE should be calculated and updated.

Each node is permitted to send packets at a particular time-
slot in accordance with the schedule. At the end of its time-slot,
the node should stop the data transmission. However, the
transmission actually stops only after the current packet is
transmitted to the network (the STP-ISS protocol has limited
PDU length). If any other node has data for transmission, but it
is not scheduled for transmission at the current time-slot, then
this node should wait for its time-slot.

Fig. 2. Time-code relevancy window

161

STP-ISS protocol defines the time-code relevancy window
that shows if the received time-code is relevant or not. This
parameter defines a number of time-slots in the end of the epoch
and in the beginning of the next epoch. During these time-slots
a received time-code is considered as relevant (K is time-code
relevancy window size). The time-code relevancy window is
shown in Fig. 2. Time-code relevancy window is a configuration
parameter and should be set during configuration phase. It could
be defined individually for each node in accordance with the
accuracy of local clocks.

The time-slot timer expiration in the last time-slot of an
epoch and reception of a relevant time-code indicate beginning
of the new epoch, in which the time-slot counter CTS will count
time-slots starting from zero. When the node gets the time-code,
it does not analyze the time-code number. The beginning of a
new epoch is associated with the fact of the time-code reception.

There are two possible synchronization cases, which can
occur:

• the next time-code is received during first K/2 time-slots
of the epoch;

• the next time-code is received during last K/2 time-slots
of the epoch.

Considering the node functionality, the abovementioned
cases mean that the internal time-slot timer and the time master
are not synchronized. This means that the node should start the
synchronization process.

Fig. 3 shows the case, when a node started a new epoch and
the expected time-code is received during first K/2 time-slots of
the new epoch. In this case, the node should terminate time-slot
timer TTS and calculate new value for the time-slot duration. The
DTS_new value is calculated according to the equation (2):

TS
TSnewTS C

t
DD

Δ+=_

,
(2)

where ∆t is the current value counted since the beginning of the
epoch.

Fig. 3. Time-slot timer value correction (the time-code received during the first time-slot of the epoch

Subsequently, the node updates the epoch duration value
according to the equation (3).

TSnewTSE CDD ⋅= _ (3)

The newly calculated value will be applied to the TTS timer
for the next time-slot.

Let us consider the second case when the time-code is
received during the last K/2 time-slots of the epoch (see Fig. 4).
In this case, the node should terminate the current epoch and
calculate new values for the time-slot timer. For this purpose, the
node takes the current ∆t value counted since the beginning of
the epoch and calculates the new time-slot duration according to
the equation (4):

TS
newTS C

t
D

Δ=_

(4)

The next time-slot starts with the new TTS timer value DTS_new.
If the epoch timer expires simultaneously with the time-code

reception, then there is no need to correct the epoch timer value.
The moment of the epoch timer expiration and the time-code
reception is determined depending on the implementation. These
events are not strictly simultaneous in the hardware. So there is
some gap between these events that could be considered as
satisfactory or not. Also this gap can be useful to take into
consideration the accuracy or jitter of the time-code reception.

162

Fig. 4. Time-slot timer value correction (the time-code received the last time-slot of the epoch)

The STP-ISS protocol should count the number of received
irrelevant time-codes. Reception of three irrelevant time-codes
means that the internal time-slot timer and the time master are
significantly asynchronous. In this case, it is necessary to
synchronize with the time master. Reception of the third
irrelevant time-code should determine the beginning of the new
epoch. The node should terminate the time-slot timer and wait
for reception of the next time-code. In this new epoch the node
should not send data until reception of the next time-code. After
reception of a time-code the node should update the time-slot
duration value and then continue data transmission according to
the schedule. New time-slot duration value should be calculated
according to the equation (5):

TS
newTS C

t
D

Δ=_

,
(5)

where ∆t is the time value, that is counted starting from the
moment of third irrelevant time-code reception and finishing
with the next time-code reception.

C. Multiprotocol Scheduling Service

The described above STP-ISS scheduling mechanism, has
been extended with additional features for operation with several
transport protocols simultaneously and results in a new
scheduling protocol for SpaceWire networks - Multiprotocol
Scheduling Service. It should be implemented not only in the
end-nodes (as it is designed in STP-ISS) but also in switches
which are directly connected to the nodes. Let us now consider
MSS mechanisms and features in details.

1) Scheduling table: Generally, there is a schedule for the
whole SpaceWire network defining in which time-slots a
particular node can send data. An example of such scheduling
table is given in Table II. Time synchronization mechanism was
taken from the STP-ISS without any modifications. Scheduling
table should be stored in each node and should be designed in
such a way that an access to shared resources (e.g. output switch
ports, links, etc.) is multiplexed in time.

According to the MSS a node can only send data in the
specified time-slots. However, if there are several transport
protocols operating in one node it is necessary to somehow share
this time-slot between them. For this purpose we proposed to
allocate full time-slot for a particular transport protocol, and if
there is more than one transport protocol in a node scheduled to

send data at one time – these protocols should be arbitrated by
priorities.

TABLE II. SCHEDULING TABLE FOR THE NETWORK

Node
Time-slots

0 1 2 3 4 5 6 7 8 9 10 11 12 13 141516 17 1819 20

0

1

2

...

25

According to the proposed approach, an entire time-slot is
assigned for transmission of data of a particular transport
protocol. It gives an opportunity for the certain transport
protocol on the certain node to send data only during a particular
time-slot. In such case all other protocols, which operate in the
node, should wait for their time-slots. An example of the
scheduling table for this approach is shown in the Table III.

TABLE III. SCHEDULING TABLE FOR NODES AND TRANSPORT
PROTOCOLS

Node Protocol
Time-slot

0 1 2 3 4 5 6 7 8 9 10 11 121314151617181920

0
STP-ISS

RMAP

PTP

1
STP-ISS

RMAP

PTP

2
STP-ISS

RMAP

PTP

...

25
STP-ISS

RMAP

PTP

If several transport protocols are scheduled to send data at
one time and have data for sending in the allowed time-slot, then
the protocol with the higher priority will send data first. This
gives an opportunity to effectively utilize the network capacity.
Using of priorities is optional, so this mechanism could be
switched off (or even not implemented in a node). In this case
transport protocols scheduled for the same time-slot should send

163

data in the same order as they were prepared for the
transmission.

The Multiprotocol Scheduling Service does not require any
data buffers: it passes transport protocol data directly to
SpaceWire without keeping it inside the scheduler. In the
allowed time-slot the scheduler arbiter analyses whether
transport protocols have data to send or not and makes a decision
which transport protocol may transmit data. Then, the particular
transport protocol can pass its data packet to the Multiprotocol
Scheduling Service for sending over the network.

If the packet length is too big for the duration of the time-slot
and we do not have enough time to send the packet, than we have
two options:

• let the MSS finish the packet transmission, exceeding
the time-slot boundaries;

• cut the packet and insert EEP in the end.
It is the configuration parameter of the scheduling protocol.
2) Transport protocols identification: Although each

transport protocol has its own protocol identifier, it is difficult to
identify what protocol or application sends the data to the
network. This is due to using SpaceWire path addressing in the
packets as it is not limited in length. Moreover, there could be
applications, which do not have any protocol identifier but may
send data directly to the SpaceWire without using any transport
protocol.

Therefore, for the purpose of identification, each entity
sending or receiving data passing through the MSS has its own
SpaceWire logical address. In addition, the Multiprotocol
Scheduling Service has a separate SAP for each protocol or
application that is trying to send data by its means. Each SAP is
associated with the logical address of the SAP service user.

Fig. 5. Multiprotocol Scheduling Service SAPs with upper entities

If a transport protocol works with a number of applications
on top, and each application has its own logical address, then
SAP could be associated with a range of logical addresses.
Applications also could send data directly to the scheduling
protocol; so they also have separate logical addresses. An
example of protocol and application identification by the MSS
is shown in Fig.6.

If the Multiprotocol Scheduling Service gets a time-code or
interrupt, it sends it to all the SAPs. It means that all transport
protocols and applications have a possibility to get a control

code, and if they need it – receive and process it. Also if a node
with Multiprotocol Scheduling Service is a Time Master, then
MSS should have an ability to transmit time-codes to the
network and to all the SAPs of the protocol simultaneously. It is
done to give ability to other applications or transport protocols
in a node to get the correct time information.

RMAP
(data)

RMAP
(conf) STP-ISS

SAP4
LA: 45-46

SAP3
LA: 35

SAP2
LA: 124

Multiprotocol
Scheduling

Service

Operating System

App#4
LA 45

App#5
LA 46

App#3
LA 35

App#2
LA 124

SAP0
LA: 55

SAP1
LA: 56

App#0
LA 55

App#1
LA 56

SpaceWire

Arbitration

Fig. 6. Example of protocol and application identification

3) Switches: SpaceWire-D protocol is intended to be
implemented in the SpaceWire nodes only, but the Multiprotocol
Scheduling Service would be implemented in SpaceWire
switches also to get guaranteed deterministic network behavior
in any network configuration. In MSS we propose to use the port
guardian mechanism, which is described in [1]. The following
mechanism should be implemented in switches, which are
directly connected to the nodes. This mechanism is optional and
it can be switched off for a particular switch.

Most of described above network technologies suppose port
guardian mechanism in order to protect the network from nodes
that try to transmit data at inappropriate time-slots. Often such a
"watch dog" is implemented as a separate device or chip in order
to increase fault tolerance. The Port guardian guarantees that the
node would not transmit data during wrong time-slots and
eliminates «babbling idiot» problem.

SpaceWire switches store the scheduling table (see Table II),
but it is simpler than for the nodes (Table III). Switch does not
know which protocol sends the packet, but it should be able to
block the packet transmission, if the node is not scheduled for
data transmission in the current time-slot. The switch’s
scheduling table identifies, which port is allowed to send data
during a specific time-slot. Thus, according to this schedule, the
switch can determine whether the packet should be discarded or
it can be routed to the outgoing port. If the leading byte of the
SpaceWire packet has been received in the time-slot, in which
the node is allowed to send data, then this packet can pass
through the router. Otherwise, this packet should be discarded.

The Fig. 7 shows a SpaceWire network with network
switches, marked as «Net guard», which store a scheduling table
and permit data transmission. The switch, which is not
connected to nodes, could be a standard SpaceWire routing
switch, which is not able to analyze the scheduling.

164

Fig. 7. Network with network guardians

2) Out-of-schedule nodes: If in a network there is a number
of nodes that work out-of-schedule and are not included into a
scheduling table, then it is better to isolate these nodes in a
separate network region. The Switch that would connect this
region to another, scheduled part of network should contain a
scheduling table that will regulate data transmission from this
region. An example of out-of-schedule region is shown in Fig. 8.

Fig. 8. Example of out-of-schedule region

IV. CONCLUSION

In the current paper we proposed new scheduling service that
will provide determinism to SpaceWire networks, where
multiple transport protocols and applications are operating. For
this purpose we overviewed communication protocols, which
use Time-Division Multiplexing (scheduling) concept to provide
the deterministic data delivery. We analyzed the scheduling
mechanisms and decided to take the STP-ISS scheduling
mechanism as the basis for a new service. Also we proposed
some improvements and additions to this mechanism that
increase the quality of deterministic data delivery. This
mechanism can prevent network resources usage conflicts and
increase the network bandwidth.

The proposed Multiprotocol Scheduling Service (MSS) will
solve the serious problem of deterministic data delivery that
currently is one of most important tasks for space industry.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the Ministry of Education and Science of the Russian
Federation under the contract RFMEFI57814X0022.

REFERENCES

[1] I. Korobkov, E. Podgornova, D. Raszhivin, V. Olenev, I.
Lavrovskaya “Scheduling Mechanisms for SpaceWire
Networks”, Proceedings of 16th Conference of Open
Innovations Association Finnish-Russian University
Cooperation in Telecommunications (FRUCT) Program;
Russia, Yaroslavl, 2015. pp. 82-88.

[2] V. Olenev, I. Lavrovskaya, I. Korobkov, D. Dymov, “Analysis
of the Transport Protocol Requirements for the SpaceWire On-
board Networks of Spacecrafts”, Proceedings of 15th Seminar
of Finnish-Russian University Cooperation in
Telecommunications (FRUCT) Program; Saint-Petersburg:
Saint-Petersburg University of Aerospace Instrumentation,
2014. pp. 65-71.

[3] S. Balandin, A. Heiner, “Dynamic Localized Load Balancing”,
SPIE Volume 5244: Performance and Control of Next-
Generation Communications Networks (ITCom2003), USA,
September 2003, pp. 164-175.

[4] Fuehrer, T., Mueller, B., Hartwich, F., and Hugel, R., "Time
Triggered Communication on CAN (Time Triggered CAN-
TTCAN)," SAE Technical Paper 2001-01-0073, 2001.

[5] F. Hartwich, T. Führer, R. Hugel, B. Müller, Robert Bosch
GmbH, “Timing in the TTCAN Network”; in Proc. of the
International CAN Conference; 2002.

[6] S. Parkes and A. Ferrer-Florit, SpaceWire-D – Deterministic
Control and Data Delivery Over SpaceWire Networks,
Draft B. April 2010.

[7] D. Fontanelli, D. Macii, S. Rinaldi, P. Ferrari, and A.
Flammini, "Performance analysis of a clock state estimator for
Profinet IO IRT synchronization,", Instrumentation and
Measurement Technology Conference (I2MTC), 2013 IEEE
International, May 2013, pp. 1828-1833.

[8] S. Parkes, A. Ferrer-Florit, A. Gonzalez. and C. McClements -
SpaceFibre Draft H1: Space Technology Centre, University of
Dundee, 2013.

[9] Z. Hanzalek, P. Burget; P. Sucha, “Profinet IO IRT Message
Scheduling With Temporal Constraints”, IEEE Transactions
on Industrial Informatics, 2010, pp. 369-380

[10] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer,
“The Time-Triggered Ethernet (TTE) Design,” in Proc. 8th
IEEE International Symposium on Object-oriented Realtime
distributed Computing (ISORC), Seattle, 2005.

[11] TTTech Computertechnik AG, IEEE TSN (Time-Sensitive
Networking): A Deterministic Ethernet Standard, Web:
https://www.tttech.com/download/technologies/deterministic-
ethernet/time-sensitive-
networking/file/1c49796102083798d7f3968fa4c3c2ae3b59a4
71/.

[12] Y. Sheynin, V. Olenev, I. Lavrovskaya, I. Korobkov, D.
Dymov “STP-ISS Transport Protocol for Spacecraft On-board
Networks”, Proceedings of 6th International SpaceWire
Conference 2014 Program; Greece, Athens, 2014. pp. 26-31.

[13] J. Berwanger, M. Peller, R. Griessbach, "Byteflight – A New
Protocol for Safety Critical Applications" in Proc. of the
FISITA world Automotive Congress, 2000.

[14] Flexray. FlexRay Communications System Protocol
Specification Version 3.0.1. Specification, FlexRay
Consortium, 2005.

[15] Y. Sheynin, V. Olenev, I. Lavrovskaya, I. Korobkov, S.
Kochura, S. Openko, D. Dymov “STP-ISS Тrаnsроrt Protocol
Overview апd Моdеling”, in Proc. of 16th Conference of Open
Innovations Association Finnish-Russian University
Cooperation in Telecommunications (FRUCT) Program;
Oulu: University of Oulu, 2014. pp. 185-191.

165

[16] A. Hanzlik, “A Case Study of Clock Synchronization in
FlexRay”, Research Report 31/2006 Technische Universitat
Wien, Institut fur Technische Informatik, 2006.

[17] H. Kopetz, “Real-Time Systems. Design Principles for
Distributed Embedded Applications”, Kluwer Academic
Publishers, Boston, 1997.

[18] A. Ademaj, H. Kopetz, P. Grillinger, et al.,“Fault-Tolerant
Time-Triggered Ethernet Configuration with Star Topology”

in Proc. 19th International Conference on Architecture of
Computing Systems, 2006.

[19] ESA (European Space Agency). Standard ECSS-E-50-12C,
Space engineering. SpaceWire – Links, nodes, routers and
networks. European cooperation for space standardization.
Noordwijk: ESA Publications Division ESTEC, 2008.

[20] A.S. Tanenbaum, Computer Networks, Fifth Edition; Prentice
Hall, 2011.

166

 Placement of Plug-and-Play Network Managers in

SpaceWire Networks
SpaceWire networks and protocols, Long Paper

Ksenia Rozhdestvenskaya, Nadezhda Matveeva, Lev Kurbanov, Aleksey Evdokimov, Elena Suvorova,

Yuriy Sheynin, Aleksey Rabin

Saint-Petersburg State University of Aerospace Instrumentation

Saint-Petersburg, Russia

{ksenia.khramenkova, nadezhda.matveeva, lev.kurbanov, alexey.evdokimov}@guap.ru, {suvorova, sheynin}@aanet.ru,

alexey.rabin@guap.ru

Abstract—Satellite onboard control systems have changed

significantly towards of complexity of control algorithms.

Network operation must be flexible and adapt easily to

configuration and composition changes of the onboard network.

Plug-and-Play should solve this problem. Plug-and-Play

technology is aimed for network monitoring, should promptly

detect changes in it and correctly handle any network situation.

Due to size increase of onboard networks, one center (Plug-and-

Play Manager), which would quickly react to changes in the

entire network, is not enough, one must have several such

centers. Thereby there is the problem of Plug-and-Play

manager’s placement in the network, to provide rapid response

and efficient management of other devices in the network.

Depending on the SpaceWire network functions and

requirements, it must be taken into account in its design, in

determining position for the Plug-and-Play managers. In the

paper, we consider some reference variants of

SpaceWire/GigaSpaceWire networks:

 Network designer chooses the number of Plug-and-Play

managers according to the network size and others

parameters. The network is not clustered, not divided into

subnetworks.

 Network designer chooses the number of Plug-and-Play

managers according to the network size and others

parameters. However, the network that is initially

undivided into subnets, in the search for of the network

managers location is divided into subnets.

 Network designer clusters the network, divides it into

subnets. For each subnet, the manager's placement

problem is solved separately in accordance with the

requirements to particular subnet.

In this paper, we will consider in details two approaches to

determining location of Plug-and-Play centers in

SpaceWire/GigaSpaceWire networks.

The first approach is based on a method of graph partitioning

into subgraphs. The second approach is based on a P-median

graph search algorithm. Both approaches are described in

details. Advantages and disadvantages of these methods will be

presented; their computational complexity will be evaluated.

In network managers placement it is important, what will be

characteristics of data transfer from Plug-and-Play managers to

nodes. These characteristics include data transmission time, data

transmission delay, etc. It is important how the network nodes

are distributed among the Plug-and-Play managers for control.

The network managers loading should be as uniform as possible.

All these parameters directly affect the quality of the Plug-and-

Play technology.

We assess transmission characteristics between the Plug-and-

Play manager and network nodes for each of these approaches,

give recommendations of using these approaches for Plug-and-

Play managers placement, taking into account various features of

the construction and administration of

SpaceWire/GigaSpaceWire networks.

Index Terms— onboard networks, network management,

SpaceWire, GigaSpaceWire, Plug-and-Play.

I. INTRODUCTION

Creation of modern onboard networks requires innovative

approaches for its administration and management, among

them - automation of all possible processes, configuration

flexibility. PnP technology means network management

without human configuring the onboard network. In the PnP

technology, devices use a special algorithm, to research and

configure each other. For this technology, one must have a

network of some "smart" devices that will execute PnP

algorithms.

Depending on the goals and tasks, a number of the required

PnP managers is set, which must be present and be in operation

in the network. In case of centralized PnP, there is only one
manager in the network. This manager performs configuration

and full network administration. However, for large networks

with a large number of subscribers one manager may be not

enough, because it cannot enough quickly manage the network.

Therefore, a decentralized mode can be used, in which there

are several managers. In the first and in the second case it is

necessary to choose a place(s) of managers in the network

structure.

For centralized mode, it is reasonable to locate manager in

a center of the network.

Before choosing a place of managers’ connection in a

decentralized mode, the network should be divided into several

regions.

167

In some projects, splitting onboard computing network of

the satellite is done in the design phase, in creation of a

network in accordance with its logical and physical structure.

For example, the nodes and routers, which are located in one

instrument area, may be defined as a separate region. In each

such region a separate manager is used. It can be placed in the
center of the subnet (just as a manager of the entire network is

placed in a centralized mode).
However, in many other projects, developers do not carry

out the network division into regions. In this case, a

decentralized mode PnP technology is used; the network can be

splitted into several regions. Then you need to select position

of the manager connection for each region separately.

To solve the problem of network splitting into regions it is

convenient to represent the network as a graph: the vertices of

the graph correspond to the network devices, edges correspond

to physical communication channels between devices. For easy

way, we present non-oriented graph, as the data transfer can be

in both directions for SpaceWire duplex communication

channels. Weight of an edge between two vertices connected

by this edge is a distance equal to one.

In another approach, the network originally isn’t divided

into separate regions - managers are placed in the network by

using algorithm, which finds a P-median in the network (where

P - is the number of placed managers).

To check the results of network’s partition we use imitation

modeling.

II. DIVISIONS OF A NETWORK INTO REGIONS APPROACH

A. Partition of a graph on subgraphs

The task of partitioning of a graph into subgraphs is deeply

explored and there are different algorithms for its solution.

Different algorithms are suitable for different requirements.

The following requirements are relevant for our task:

subgraphs that contained one node shan't be created; ability to

control of subgraphs quantity; taking into account graph

connectivity and closeness of a result to optimum (that is a

result, which on these or those signs is more preferable than

others).

To divide a graph into the required quantity of subgraphs,
the following input data are necessary:

1) A specification of the graph structure.

2) Number of managers of the Plug and Play and their

characteristic.
 The manager of the Plug and Play is capable to support

different number of devices (nodes of a graph) correspondingly

to its technical characteristics, such as: memory size;

performance; throughput and other. In some cases (the

centralized Plug and Play) one manager of the Plug and Play is

capable to service all given network entirely. The search

algorithm of a median line of a graph is used for finding a

network connection point for the manager position in the

graph.

In case of the decentralized Plug and Play mode, before

using the search algorithm of median line in a graph, it is

necessary to divide the graph into subgraphs. The quantity of

subgraphs depends on capabilities and resources of the selected

Plug and Play managers.

The algorithm, which is capable to divide a graph into a

given quantity of subgraphs taking into account connectivity,

without formation of single subgraphs - multi-level algorithm

of Kernighan-Lin [1]. It consists of three stages (Fig. 1):

1. The Stage of coarsening

2. The Separation stage

3. The Recovery stage

Fig. 1. Stage multilevel algorithm.

At the stage of coarsening a sequence of smaller graphs,

each with fewer nodes, is constructed. Coarser graph can be
obtained by tightening adjacent nodes. The edge between two

nodes is deleted and the multinode is created, which consists of

these two nodes. The algorithm "Random matching" was

chosen to implement this stage. The random matching basic

idea is that the nodes are visited in a random order. If the node

 wasn't included in matching, then the algorithm randomly

selects one of its adjacent nodes, which is also not included in

matching. If such a node exists, then the algorithm includes

an edge (,) in matching; it also marks nodes and as

visited. If there is no unmarked adjacent node , then the node

 remains free and passes into the following graph. This stage

of coarsening is needed by the fact that an initial network can

have big size. Adding this stage in the multi-level algorithm

allows to reduce considerably an operating time of the

separation algorithm for networks with large number of nodes.

The second stage of a multilevel algorithm – the separation

stage. The Kernighan-Lin algorithm is selected for bisection of

the graph. It begins with the initial division of the graph in half.

At each iteration it searches for a subset of nodes from each

part of the graph, such that the exchange of these subsets leads

to separation of smaller cross-section. If such subsets exist,

then the exchange is made, and this becomes the partition for
the next iteration. The algorithm continues by repeating the

entire process. If it can't find two such subsets, then the

algorithm comes to an end because for this division the local

minimum is reached, and any further improvement can't be

made by the Kernighan-Lin algorithm. The Kernighan-Lin

algorithm finds a local minimum for the separation, when it

starts with a good initial separation. The requirement of

repetitive calculations can be quite cumbersome, especially if

168

the graph is large. However, since the input of the separation

algorithm receives a much smaller coarse graph, performing

multiple requires very little time.

The last stage of the multilevel bisection – the recovery

stage. During the recovery stage separation obtained for the

coarser graph is projected back to the original graph. A more

accurate graph has greater number of degrees of freedom that

can be used to improve the separation and reduce the weight of

the separator. For this reason, after division, the algorithm of
division refinement is used. As the algorithm of refinement the

described above Kernighan-Lin's algorithm is selected. The

main idea of its application is in using the found solution for a

coarse graph as an initial division for the Kernighan-Lin

algorithm described at this stage. The reason is that this

projected split is already good; therefore, Kernighan-Lin will

converge within a few iterations to the best separation.

Thus, having passed the initial graph through all three

stages, the output of the multilevel algorithm will be the two

subgraphs that are most connected inside. To get more

subgraphs one could put one of the resulting subgraphs to the

input of the algorithm and repeat it.

After division of the graph into desired number of

subgraphs, each of them, using a search algorithm median

graph's is searched for a node, some centre to which a Plug-

and-Play manager is connected. As mentioned above, this is a

graph's median search algorithm [2].

In a number of tasks about placement of service stations it

is required to locate a service station in the graph so that the

amount of the shortest distances from this point to peaks of the
graph was minimal. The optimum location of point in the

specified sense is called the median line of a graph. Proceeding

from the nature of target function, such tasks call minisummny

tasks of placement [3]. The matrix of the lengths of the shortest

paths between all nodes in the graph is calculated using the

algorithm of Floyd–Warshell and used to determine the median

graph, which is determined by the smallest value of the total

distance from one node to all others [4].

After performing the graph partitioning and the center

search in each subgraph the output data will be formed that

contain:

1) A description of the network structure, with the

distribution of devices across the regions.

2) A List of nodes to which Plug-and-Play managers are

connected.

The presented algorithm is a heuristic, it is able to issue

an acceptable solution in most practically important cases.

However, in contrast to the exact algorithm for finding P-

medians, it has the following features:

 doesn't guarantee finding of the best solution;

 doesn't guarantee finding of the solution even if it

exists;

 can issue the incorrect solution in certain cases.

To identify the effectiveness of this algorithm in practice,

we conducted a series of tests on the networks of different size
and different topologies. a serial execution of the algorithm on

networks was produced:

 Mesh 4х4 (16 nodes).

 Mesh 6х6 (36 nodes).

 Mesh 8х8 (64 nodes).

 Arbitrary topology (61 nodes).

For each network, the division into three regions was

done 10 times. Among all the obtained solutions the best was

found according to two criteria. The first is the minimum

distance (in number of switches on the path) between the

Manager and the most remote from it node in the subgraph.

The second is the difference (in number of nodes) between the

resulting subgraphs’ sizes.

Fig. 2. The ratio of best and worst solutions in different topologies for a

heuristic algorithm

The diagram in Fig. 2 illustrates a ratio between the

number of the received partitions. The blue column shows

how many solutions for a network with this topology are the

best, and orange – the number of opposite solutions.

Apparently from the diagram, the amount of the best results

prevails on all networks, except a Mesh topology 8х8. As the
reason for that serves the network size: as more nodes and

edges are in the network, there are more options for graph

division. Thus, the algorithm will issue more various

solutions, thereby the number of the best solutions will make a

smaller share of all possible. In case of arbitrary topology

though the quantity of nodes is comparable with a Mesh

topology 8х8, number of communications are less; the

structure of a network too considerably influences the number

of different solutions also.

The diagrams below (Fig. 3 and Fig. 4) provides a

comparison of algorithm graph partitioning to subgraphs with

the second, the exact algorithm considered in this article
according to the selected criteria.

0

2

4

6

8

10

4x4 6x6 8x8 Arbitrary
topology

N
u

m
b

er
 o

f
so

lu
ti

o
n

s
Topologies

Best
solution

Worst
solution

169

Fig. 3. The maximum distances in regions of the worst, best and exact

solutions

Provided in Fig. 3 diagram allows to see a difference
between the best solution (an orange column), the worst (red)

and exact (blue) by the first criterion – the maximum distance

between the manager and the most remote node in all regions.

From the diagram it is visible that the algorithm is capable to

issue a solution, comparable by this criterion with exact. The

fact that for a Mesh 6х6 the exact solution turned out on 1 hop

better says only that there was not enough number of the

carried-out tests for receiving partition, comparable with

exact.

Fig. 4. Loads of managers of the worst, best and exact solutions

From the diagram in Fig. 4 one can see the difference

between the best (orange column), worst (red) and exact

solution (blue) according to the second criterion: the

difference between the sizes of the obtained regions. As from

the previous graph, it is clear that this algorithm allows to
obtain a solution comparable with the exact by the second

criterion. However, unlike the previous chart, the difference

between the best and worst value for the second criterion is

large.

A comparison of the solutions, obtained by the heuristic

algorithm, with the exact, according to the selected criteria,

but separately for every criteria, was above. If we compare the

results under both criteria, it turns out that only for a network

with arbitrary topology solutions are comparable to exact.

Thus, we can conclude that the algorithm gives best

results for networks with arbitrary topology. It does not mean
that for networks with a regular topology (Mesh) it is

impossible to obtain a solution comparable to accurate. But for

this solution it will be necessary to conduct a greater number

of runs of the algorithm.

III. P-MEDIAN APPROACH

P-median problem can be often found in logistics [5,6].

This problem is from graph theory. In its classical form, it

looks like: to place p services on the graph thereby the sum of
the shortest distances from each services to the other graph

vertices is the minimum possible. We have changed the

classical form for solving the problem of placement managers

in the network. In our case it is necessary to place p managers

(p-median) in the network thereby the distance of each

manager to the nearest nodes is as low as possible. The main

condition for the solution existence is a full coverage of the

vertex set V of the graph G (V, U) by union the median subset

VP (includes managers) and attachment subset VA (includes

nodes in the obtained regions) (1).

 (1)

This approach finds managers location in the network, and

then the network divides into regions. The region is defined by

a set of nearest nodes from its manager. The distance between

two nodes is the sum of edges weights in the path. Each edge

has distance equal one.

P-medians algorithm is exact, and important feature of this

algorithm is that any solution is the best of all possible

solutions to the given criteria. There may be several such

solutions.

The optimal solution criteria:

 The minimum distance from the manager to other
nodes in the region. The minimum distance is

necessary to reduce transmission delays between the

manager and the nodes of the region.

 The maximum uniform region. The uniform number of

nodes in the region is necessary to protect against

overloads or outages of individual managers in the

network.

Since we use several criteria for solving this problem, you

need to identify the main criteria on which the solution will be

evaluated. In this algorithm, the main criterion is the distance.

At first, algorithm looks for the best solutions by the distance,

and then as far as possible uniform attaches nodes to the
median and forms the regions. In this approach, the losses can

be in the uniform number of nodes in the regions.

As input data it has:

1) Graph of the network.

2) The number of managers, (p).
As an output a designer receives the following information:

1) nodes ID to which to connect managers.

2) nodes ID, which are part of every manager's region.

3) Route of data transfer between the manager and the

nodes of the region.
To describe p-median algorithm, we use a simplified

example of a network with Mesh topology and size of 3x3,

shown in Fig. 5. For example, take p = 2, i.e., you must place 2

manager.

0

2

4

6

8

4x4 6x6 8x8 Arbitrary
topology

D
is

ta
n

ce

Topologies

Worst
solution

Best
solution

Exact
solution

0

1

2

3

4

5

6

4x4 6x6 8x8 Arbitrary
topology

N
u

m
b

er
 o

f
n

o
d

es

Topologies

Worst
solution

Best
solution

Exact
solution

170

A

D

G

B

E

H

C

F

I

Manager 1

Manager 2

?

?

Fig. 5. An example network with Mesh topology and size of 3x3 for solving p-
median problem, where p=2.

1) Create a matrix of shortest distances MSD.
 A B C D E F G H I

A 0 1 2 1 2 3 2 3 4

B 1 0 1 2 1 2 3 2 3

C 2 1 0 3 2 1 4 3 2

D 1 2 3 0 1 2 1 2 3

E 2 1 2 1 0 1 2 1 2

F 3 2 1 2 1 0 3 2 1

G 2 3 4 1 2 3 0 1 2

H 3 2 3 2 1 2 1 0 1

I 4 3 2 3 2 1 2 1 0

Fig. 6. Matrix of shortest distances MSD

2) Sort the rows by ascending distance.
The index shows the distance from median to nodes in the

row (Fig. 7).

3) Choose two rows (since p=2) and remove from this rows

median nodes. At this step, median nodes are H and B.
In Fig. 7 nodes in the left part of the table are potential

medians, and all that is in the right side of the table -

attachable nodes. We removed median nodes in the right table

side of the selected rows, as we do not consider the interaction

between managers. In Fig. 7 the selected rows are in green,

and median nodes in the right table side are in red.

A A0 B1 D1 C2 E2 G2 F3 H3 I4

B B0 A1 C1 E1 D2 F2 H2 G3 I3

C C0 B1 F1 A2 E2 I2 D3 H3 G4

D D0 A1 E1 G1 B2 F2 H2 C3 I3

E E0 B1 D1 F1 H1 A2 C2 G2 I2

F F0 C1 E1 I1 B2 D2 H2 A3 G3

G G0 D1 H1 A2 E2 I2 B3 F3 C4

H H0 E1 G1 I1 B2 D2 F2 A3 C3

I I0 F1 H1 C2 E2 G2 B3 D3 A4

Fig. 7. Sorted distance matrix

4) Derive a new table AMD that contains attachable nodes,

medians, to which they are attached, and the distance to them

in ascending order (Fig. 8).

5) Remove attachable nodes, to which the distance is not

minimal. In Fig. 8 removed nodes are in red.

6) From the resulting table one can uniquely identify nodes

that can be attached to only one median. In Fig. 8 uniquely

attachable nodes are in green, removed nodes are in red.
Attachable

nodes
A C E G I D F A C G I

Medians B B B,H H H B,H B,H H H B B

Distance 1 1 1 1 1 2 2 3 3 3 3

Fig. 8. Matrix AMD

7) Distribute remaining nodes on the medians with the

maximum uniformly attachment.
Nodes E, D, F can be attached to the both medians - B and

H. These three nodes cannot be uniformly divided between the

two medians, so one median gets two nodes, a second median

gets one node.

8) Check solution’s set coverage.
In this example, the set of vertices is V = {A, B, C, D, E, F,

G, H, I}, a median subset is VP = {B, H}, the subset of

attached vertices is VA = {A, C, D, E, F, G, I}. Since VP∪VA

= V, then the solution is correct.
The obtained solution is shown in Figure 2. Nodes A, C, D,

E are in region for the manager at the node B. Manager at the

node H attaches nodes F,G,I [7].

A

D

G

E

C

F

I
H

Manager 2

B
Manager 1

Fig. 9. Solution for p-median problem for network with Mesh topology and

size of 3x3, where p=2

The P-median problem is NP-complete, and the time to

solve it depends exponentially on the input data size. However,

in view of the fact that currently the network has a small

number of units (not more than 224 SpaceWire standard) [8],

The P-median problem still can be solved using exact

algorithm. In this paper, is used the exact algorithm for solving

the P-median problem. We have done several tests to measure

the operating time of the algorithm on different topologies with

different number of regions. The Fig. 10 shows a plot of the

dependence of time consumption and input data.

Fig. 10. Dependence of time consumption and input data for exact algorithm.

As can be seen from the graph the longest it searches a

solution for the network 8x8 with five regions and network

10x10 with four regions. Solutions for these configurations

have been received in about an hour.

0

1000

2000

3000

4000

5000

Ti
m

e
co

n
su

m
p

ti
o

n
,

se
c

Topologies

P=2

P=3

P=4

P=5

171

IV. COMPARISON OF THE RESULTS, OBTAINED BY THESE

APPROACHES

In an experiment to compare two approaches of finding the

points of connection managers in network, we have chosen

networks with different topologies and different number of

nodes. In the presented topologies in rectangles and squares

represent switches, and circles – labeled terminal nodes; nodes

highlighted with a solid color – connected managers. Nodes in

the region are circled by the color of the appropriate manager.

1) Arbitrary topology.

Contains 61 node 22 of the switch 39 and terminal nodes).

In this topology three centres of the connection managers of

the PnP were searched.

Fig. 11 shows the solution obtained using the heuristic

algorithm of graph partitioning into subgraphs. Regions

highlighted in red (25 nodes), blue (node 29) and brown (7

nodes). The maximum distance from the Manager to the nodes
in the region is 4-hop (number of switches on the path between

the manager and the most remote from it node in the

subgraph).

Fig. 11. An example of the worst solutions of the heuristic algorithm for an

arbitrary topology

Fig. 12 shows the solution obtained by using algorithm p-

median. Regions highlighted in red (20 nodes), blue (21 nodes)

and brown (20 nodes). The maximum distance from the

manager to a node in the region is 3 hops.

Fig. 12. Example of the solution of exact algorithm for arbitrary topology

2) Mesh 8x8.
This regular topology contains 128 nodes, 64 switch and 64

terminal node). On this topology, were searched five

managers. It is important to note that to each switch is
connected one terminal node. For simplicity of illustration, we

do not represent terminal nodes in the network.

Fig. 13 shows the solution obtained by the heuristic

algorithm of partitioning a graph into subgraphs. Regions

highlighted in red (28 nodes), green (26 nodes), blue (28

nodes), pink (28 nodes), and yellow (18 nodes). The

maximum distance from the manager to a node in the region is

3 hops.

Fig. 13. Example of the best solution of a heuristic algorithm for Mesh

topology with size 8x8

Fig. 14 shows the solution obtained by using algorithm p-

median. Regions highlighted in red (26 nodes), green (26

nodes), blue (26 nodes), pink (26 nodes), and yellow (24

nodes).The maximum distance from the manager to a node in

the region is 3 hops.

172

Fig. 14. Example of the solution of exact algorithm for Mesh topology with

size 8x8

V. SIMULATION RESULTS

The data below were obtained using simulation software

NetSim focused on SpaceWire networks simulation [4]. The

network was simulated by simultaneous operation of a

manager PnP with three devices in the region. The SpaceWire

packets do not go beyond the region, that is, the majority of

traffic was exclusively within each region and had no effect on

downloading of the neighboring regions.

To perform the configuration of all devices within each

region the RMAP protocol is used; the packet size is 23 bytes

to 28 bytes.

A. Mesh 8x8.

According to the obtained results of simulation were plotted

diagram for channel load for five managers. For each manager

defined input (the columns ‘In’) and output (columns ‘Out’)

channel download.

In the Fig. 15 highlighted in red are the simulation results of

the worst, in orange are the best solutions obtained by the

approach of partitioning the graph into subgraphs, in blue the
results of the exact algorithm. BA-14 – a manager of the red

region, BA_28 is the manager of the green region, BA_41 is

the manager of the yellow region, BA_55 is the manager of

the blue region, BA_69 manager of the pink region.

Fig. 15. Loading of channels for all managers in Mesh topology with size 8x8

From Fig. 15 it is seen that the heuristic method may

produce a result about 1,5 times worse from optimum. The

load on input and output ports will sharply increase. However,

the best distribution results will not differ much from the

optimal.

An important feature of the division into regions is the
uniformity of the number of nodes in the regions. The figure

shows the distribution of nodes in the regions.

Fig. 16. The uniformity of the regions worst, best and exact solutions

From the diagram, it is possible to note, that even the best

solution of a heuristic algorithm can strongly lose by criterion

of uniformity of regions, while the exact algorithm always

outputs a solution with evenly loaded regions.

B. Arbitrary topology.

The results of simulation of solutions to partition the
arbitrary topology using heuristic and exact methods showed

that when splitting the graph into subgraphs, it is important to

consider not only the number of nodes in the region, but also

their degree- the number of edges leaving the given vertex. In

other words, in case of a network should consider how many

active ports are involved in nodes that are distributed in the

region. We did not consider this option and the figure shows

simulation results in which the exact algorithm gives the load

on the input and output ports bigger than the best solution of

the heuristic approach.

At every switch within the region sent the total number of
packets equal to the sum of the number of active ports (used in

this network topology) and the number of adjustable rows of

0

10

20

30

40

50

60

70

80

BA_14 BA_28 BA_41 BA_55 BA_69

C
h

an
n

el
s

lo
ad

,
%

Managers

Worst
solution

Best
solution

Exact
solution

0

5

10

15

20

25

30

BA_14 BA_28 BA_41 BA_55 BA_69

N
u

m
b

er
 o

f
n

o
d

e
s

Regions

Worst
solution

Best
solution

Exact
solution

In Out Out Out Out Out In In In In

173

the routing table. The routing table mentioned the same for all

switches, but due to different numbers of active connections

on each switch there was a difference in the traffic for each of

them. For each terminal node has sent a fixed number of

packets. But it could also have an impact on the loading of

channels, because a different number of terminal nodes

present in solutions of the heuristic and the exact algorithms.

On Fig. 17 BA-40 is a manager of the red region, BA_41 is

a manager of the blue region, BA_42 is a manager of the

brown region.

Fig. 17. Loading of channels for all managers in arbitrary topology

Also it presents a paradox due to the fact that the best

solution of the heuristic algorithm, the regions formed so that

each region was nodes and with big and with fewer active

ports. While the algorithm based on algorithm P-median was
placed in the same region nodes with large number of ports,

and in another region – with less, although the number of

nodes in regions of exact and heuristic algorithms is the same.

VI. CONCLUSION

This article presented two approaches to determine the PnP

managers of locations in networks and their regions. The first

approach is based on a heuristic algorithm, the second – on an

algorithm that gives guaranteed exact solution. The selected

topology is represented as an undirected graph, divided into

regions. Then we carried out simulation with traffic shaping

entirely inside each formed network region.

The results of the network partition in case of the heuristic

algorithm may be 1.5 times worse than the optimal result

obtained by exact method. However, the best solution heuristic

algorithm is close to optimal, but to obtain it you need multiple
iterative runs of the algorithm. Heuristic approach is cheaper to

apply on large networks with a large number of managers,

however, if there are limited number of PnP managers (up to

5), it is better to use the exact algorithm, which gives optimal

solution according to the criteria of distance and load.

ACKNOWLEDGEMENT

The research leading to these results has received financial

support from the Ministry of Education and Science of the

Russian Federation under grant agreement no.

RFMEFI57814X0022.

REFERENCES

[1] D.P. Buvailo, V.A. Tolok, Fast high-performance algorithm for
irregular graphs partitioning, Zaporizhzhya state university,
Ukraine № 2, 2002.

[2] E. Mineka, Optimization Algorithms for Networks and Graphs.
М.: Mir, 1981.

[3] V. V. Bereznitsky, N. V. Lukyanova, “Research and
development of an algorithm for finding the shortest path in the
graph”. Electronic Journal Youth Science and Technology
herald, 2012.

[4] A. Eganyan, L.Koblyakova, E. Suvorova, “SpaceWire Network
Simulator”, Proceedings of the 3rd International SpaceWire
Conference, 2010, pp.421-425.

[5] N.Cristofides, Graph Theory. An Algorithm Approach. New
York: Academic Press, 1975.

[6] P. Hansen, B. Jaumard, Cluster Analysis and Mathematical
Programming. Mathematical Programming 79, 1997, pp. 191-

215.

[7] E. Suvorova, L. Kurbanov, N. Matveeva, “Using P-median
Algorithm for 3D Network-on-Chip Design”, Proceedings of the
18th FRUCT & ISPIT Conference, 2016, pp. 553-557.

[8] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire, Links,
Nodes, Routers and Networks”, Issue 2, European Cooperation
for Space Data Standardization, July 2008.

0

20

40

60

80

100

BA_40 BA_41 BA_42

C
h

an
n

el
s

lo
ad

,
%

Managers

Worst
solution

Best
solution

Exact
solution

In Out Out Out In In

174

A New SpaceWire Protocol for Reconfigurable
Distributed On-Board Computers

SpaceWire Networks and Protocols, Long Paper

Ting Peng, Benjamin Weps, Kilian Höflinger
Simulation and Software Technology

German Aerospace Center
Lilienthalplatz 7

38108 Braunschweig, Germany
ting.peng@dlr.de, benjamin.weps@dlr.de,

kilian.hoeflinger@dlr.de

Kai Borchers
Institute of Space Systems

German Aerospace Center
Robert-Hooke-Str. 7

28359 Bremen, Germany
kai.borchers@dlr.de

Daniel Lüdtke, Andreas Gerndt
Simulation and Software Technology

German Aerospace Center
Lilienthalplatz 7

38108 Braunschweig, Germany
daniel.luedtke@dlr.de, andreas.gerndt@dlr.de

Abstract—There are several standardized protocols based on
SpaceWire which provide data exchange between several nodes.
SpaceWire is also suitable for interprocess communication (IPC),
by the help of higher level protocols. However, currently there is
no standardized protocol which is targeting IPC on SpaceWire
networks. This paper proposes a protocol, which uses the
capabilities of SpaceWire to build up networks for distributed
computing on a spacecraft. The core of this protocol is the IPC
mechanism for communication between the nodes and methods
to support a reconfiguration of the network. A key feature of this
protocol is an interface for a reconfiguration mechanism, which
can be implemented on application level. This enables the
utilization of unreliable commercial off the shelf (COTS) nodes,
allowing system recovery from erroneous state. Additionally, the
reconfiguration can be used to adapt the distributed computer to
different mission phases. The protocol has the potential to build
the foundation of a distributed on-board computer consisting of
COTS components. Such distributed computer could be capable
of fulfilling high performance demands as well as high reliability
needs. Though, the protocol itself is not restricted to be used
solely in fully-featured reconfigurable distributed systems. The
IPC methods can be applied stand-alone as well, to establish a
lightweight communication between nodes on a SpaceWire
network by excluding the reconfiguration parts of the protocol.

Index Terms— SpaceWire, Network, Protocol, Reconfigurable,
Interprocess Communication, COTS, High Reliability.

I. INTRODUCTION
Distributed systems with COTS components use multiple

computing nodes to share the workload and offer significantly
higher computing performance than currently used space-
qualified on-board computers. It is necessary to offer complex

IPC services and satisfy strict requirements for satellite
missions, such as real time and reliable transmission as well as
high transmission speed. Reliability of COTS can be realized
via redundancy by the execution of equivalent tasks on
different nodes and by the reconfiguration of nodes and tasks,
i.e., migration of tasks to other available nodes after some
nodes fail. The distributed system should support upgrade,
maintenance and failure detection, isolation as well as
recovery.

SpaceWire is suitable for IPC with further protocols.
However, currently there is no standardized protocol that is
explicitly targeting IPC on SpaceWire networks and to be
utilized in reconfigurable distributed on-board computers.
Therefore, a new protocol, based on SpaceWire, is necessary to
support the reconfigurable distributed on-board computers.

We will introduce a new protocol called SpaceWire-IPC,
which is beneficial for reliable and fault tolerant distributed on-
board computers

The paper is organized as follows. Section II presents the
related work, which was taken into account during
development of our proposed SpaceWire-IPC protocol. Section
III describes the requirements for the protocol, derived from
our project. Structure and properties of the new protocol
SpaceWire-IPC are introduced in section IV. Finally, section V
provides the comparison between SpaceWire-IPC and already
existing protocols, followed by a conclusion in section VI.

II. RELATED WORK
This section provides an overview of existing SpaceWire

compatible protocol specifications. With the exception of

175

SpaceWire-R, all protocols are referenced and officially
adopted by an according ECSS standard [1]. Additionally, the
trends of IPC and reconfiguration in space systems are
presented.

A. Overview of Existing SpaceWire Protocols
The subsequent paragraphs list SpaceWire protocols, which

were considered for the development of the distributed on-
board system.

1) Remote Memory Access Protocol (RMAP)
The Remote Memory Access Protocol (RMAP) protocol,

defined by standard [2], is commonly used in space
applications for reading from and writing to memory in remote
SpaceWire nodes. The protocol provides the ability to address
destinations by the use of path or logical addressing over the
Target SpW Address fields as defined in [3]. However, in case
only logical addressing is required it is also possible to skip the
Target SpW Address. The protocol can be directly integrated
into a standard SpaceWire protocol by using the Protocol
Identifier. By use of an Instruction byte, the following
modes/message types are possible:

• Read command/ write command
• Verify / no verify of data before write
• Acknowledge / no acknowledge of write command
• Read-Modify-Write
If data shall be read or an acknowledgment is required, a

set of Reply Address fields are available, which are usable for
path and/or logical addressing. The source of the received
command is stored inside the Initiator Logical Address. To
prevent a lock-step limitation during communication two
Transaction Identifier bytes are available, which allow the user
to apply out of order transfers. To define the target location for
read or write commands, a set of four Address fields, plus an
additional Extended Address field is used.

Written and read data is secured by Cyclic Redundancy
Checks (CRCs) for Header and Payload data independently.

2) CCSDS Packet Transfer Protocol (CCSDS PTP)
The CCSDS protocol is intended to encapsulate a user

defined protocol that needs to be transferred through a
SpaceWire network [4]. Similar to the RMAP, an arbitrary
amount of Target SpW Address fields can be used for routing.
Alternatively, the Target Logical Address is used to define the
destination. The Protocol Identifier distinguishes between
different SpaceWire packet types. The interpretation of data of
the CCSDS Packet fields is user specific and defined inside the
User Application field.

3) GOES-R Reliable Data Delivery Protocol (GRDDP)
The main purpose of GRDDP is to transfer data of sensors,

telemetry and commands among peripheral instruments and the
on-board computer [5]. The Destination SLA serves as a logical
address, related to the targeted destination. To provide
information about the source of the packet Source SLA is used.
Four different packet types can be used by defining the Packet
Type field:

• Application Data
• Acknowledge
• Reset Command

• Urgent Message Data
To detect packet loss or to order out-of-order packets, a

Sequence Number is provided. The whole packet, except End-
Of-Packet (EOP), is covered and checked by a CRC.

4) Serial Transfer Universal Protocol (STUP)
The STUP protocol, defined in [6], serves as a light

weighted protocol with the intention to implement a more
complex protocol, inside the data field. To define the source of
the packet the Source Logical Address is used. Different kinds
of data structures can be defined by the Data fields. The
standard defines an example where the first data byte defines a
kind of message type, which is used to interpret the left data
bytes. Only write, read and read reply commands are offered in
this example.

5) SpaceWire-R
SpaceWire-R is used for reliable data transmission within

SpaceWire networks [7]. It is based on the GRDDP and the
Joint Architecture Standard Reliable Data Delivery Protocol
(JAS RDDP). SpaceWire-R provides features like
multiplexing, message segmentation, reliable transfer, network
traffic flow control (optional) and heartbeat signaling
(optional) [7].

B. Trends in Space Systems
Several space projects use distributed on-board computers

to meet the increasing demands of on-board processing ability.
The On-Board Computer - System Architecture (OBC-SA)
consists of two on-board computers, one of which is COTS
from Freescale’s PowerPC multicore CPU [8]. The High-
Performance Reconfigurable Computing Space Processor
(CSP)’s hardware structure is based on both COTS and
radiation-hardened technologies. ISS SpaceCube Experiment
Mini (ISEM)’s hardware has two CSP boards which are
interconnected by SpaceWire and UART [9]. CSP aims to
offer space image processing, distributed parallel computation
and fault tolerance [9]. The Fault-Tolerant Distributed On-
Board Computer (FTD-OBC) gains higher reliability and
higher processing performance by multiple processing nodes
connected by CAN buses of 1 Mbps [10].

III. PROTOCOL REQUIREMENTS
Inspired by the rise of distributed computing techniques

and advantages of SpaceWire, the project Scalable On-board
computing for Space Avionics (ScOSA) and its predecessor
project On-board Computer - Next Generation (OBC-NG) at
German Aerospace Center (DLR) use COTS hardware besides
radiation-hardened components to establish a distributed on-
board computing network, based on SpaceWire. Their goal is
to leverage performance of a distributed architecture and still
maintain the required reliability.

In ScOSA, three types of nodes, High-Performance Nodes
(HPNs), Reliable Computing Nodes (RCNs) and Interface
Nodes (IFNs) are used (see Fig. 1). HPNs are based on a Xilinx
Zynq XC7Z020 architecture (CPU + FPGA) while RCNs have
a LEON3 as FPGA soft-core implementation. The SpaceWire
router is integrated in the FPGAs of the RCNs, the HPNs and
the IFNs.

176

Fig. 1. ScOSA system overview

The middleware offers monitoring, task management,
checkpointing and reconfiguration services for the system.
These services are coordinated by three types of roles among
the RCNs and HPNs: Master, Observer and Worker. A global
configuration for all nodes means the deployment of the
Master, Observers and Workers on RCNs and HPNs, settings
of monitoring behavior, and channels availability and
subscriber lists of IFNs, etc. The Master is responsible to
initiate the configuration for all nodes in the network, by
broadcasting the configuration command. The Master also
monitors the distributed system via a periodical heartbeat
mechanism and a plausibility check of some control values of
application tasks. Some internal states of the application tasks
are periodically sent to the mass memory storage for
checkpointing. If a node fails, the Master will trigger a system
reconfiguration and redistribute the tasks to other nodes. After
the reconfiguration finishes, the checkpoints will be retrieved
from storage back to the nodes, which are running the
corresponding tasks. Two or more Observers are assigned to
monitor the Master. In case the Master fails, a decision will be
made to choose one Observer to take over the failed Master’s
tasks.

This reconfigurable distributed system intensively relies on
IPC. For the consideration of scalability and throughput, a bus
topology can’t be used [11]. Nodes are interconnected with
point-to-point links. An irregular network topology structure is
used to avoid a single-point failure and to maintain flexibility
[11].

To summarize the analysis of requirements for the ScOSA
distributed system, the network should

• be scalable and flexible,
• be able to transfer arbitrary large messages,
• have high reliability supported by redundant routes

among nodes in case of failed nodes,
• guarantee the reliability of messages delivery,
• deal with message losses,
• support monitoring, error notification and

reconfiguration.

IV. PROTOCOL DESCRIPTION
The ScOSA project mainly uses the SpaceWire-IPC for the

communication among the distributed computing nodes. The
SpaceWire-IPC is located at the transport layer of ISO-OSI
model [12]. SpaceWire acts as the underlying protocol (see
Fig. 2).

On-board Applications

Physical
Data Link
Network
Transport

Session
Presentation
Application

OSI Model

SpaceWire

SpaceWire-IPC

Fig. 2. Protocols and OSI model

A. Features
SpaceWire-IPC offers communication for:
• IPC among nodes
• Management services from and to Master
SpaceWire-IPC supports:
• Multiple logical nodes on one physical device
• Reliable transmissions of data as well as unreliable

transmissions
• Recognition of failed connections and failover

mechanisms
• Transmission of messages with arbitrary size
• Transmission of large-size messages
• Transparent use for different underlying protocols
• Multiple APIs rather than only read and write

commands
The protocol is message-based, meaning that instead of

streams, single messages are sent from one node to another.
These messages can be reliable or unreliable.

SpaceWire offers no regulation regarding the maximum
packet sizes. SpaceWire-IPC implements a sequencing
technique, which allows splitting large messages into smaller
packets, with their size being user-defined. The message is
subdivided in packets on the sender and reassembled at its
destination node. In case of reliable message, it is a
bidirectional packet transfer with acknowledgments. Each
packet has a checksum to verify the integrity.

B. Design Decisions
This section lists and explains the message structures used

in SpaceWire-IPC (see Fig. 3).

Target SpW Address
(1 byte)

Target SpW Address
(1 byte)…...

Target Logical Address
(1 byte)

Potocol Identifier
(1 byte)

Sender Node ID
(2 bytes)

Receiver Node ID
(2 bytes)

Timestamp
(8 bytes)

Payload Data
(0 to n bytes)

EOP
(1 byte)

Message Type
(1 byte)

Checksum
(4 bytes)

Fig. 3. Structure of a SpaceWire-IPC Packet

177

1) Message Header
The message header shown in Fig. 3 is identical for all

types of messages. The header contains source and destination
of the packet, the timestamp it has been created and the size of
the payload. While the header stays the same, the message type
determines the structure of the payload data.

a) Sender Node ID and Receiver Node ID
Sender Node ID and Receiver Node ID are the logical

addresses of the nodes that participate in this transmission. An
ID determines exactly one entity in the network capable of
sending and receiving messages. This does not necessarily
mean, that it has to be unique for each physical node (regarding
to SpaceWire Addressing), which is connected to the network.
A physical node can have multiple software components
running, which are able to send and receive messages.

b) Timestamp
This marks the time the packet has been created. The

timestamp, together with the sender and receiver node ID, is
the unique identifier for a packet.

c) Message Type
This field determines the structure of the payload data. It

also indicates how the receiving node should handle this
message. The possible values are listed in TABLE I.

One exception in this scheme is the Large Message
Transfer. The bits 0-6 define the encapsulated message type as
usual. The most significant bit determines if this message is
part of a Large Message Transmission.

TABLE I. SUMMARY OF MESSAGE TYPES

Integer Value Message Type

0 Unreliable Data Transmission

1 Reliable Data Transmission

2 Data Request

3 Data Response

4 Reconfiguration Request

5 Message Acknowledge

6 Heartbeat

7 Error Notification

128+ Large Message Transfer

d) Payload Data

To stay as versatile as possible, the payload data is just an
arbitrary-sized byte array. The structure can be derived from
the message type. For some message types, the array has a
fixed size, other message types have a variable-sized array of
data. The exact structure for each data type is described later in
this paper.

e) Checksum
The checksum provides a way to check the integrity of the

transmission. As it is not guaranteed that the underling protocol
has a mechanism to detect erroneous messages, the integrity

check will be implemented in this protocol. The protocol does
not dictate a specific algorithm for the checksum. The only
restriction is, that it must not exceed the size of the 32-bit value
provided by this field. The value of this checksum should
consider all of the previous fields of the transmission to
guarantee the integrity of the whole packet.

The checksum algorithm can be selected by considering the
mission requirements and available resources of the nodes in
the network. An example for checksums is the CRC32
algorithm as described in the IEEE802.3 (Ethernet) Standard.

2) Data Transmissions
The Data Transmission types are the central message type

for transmitting data inside the distributed system. The data is
handled by the protocol as an arbitrary byte array. Hence, it has
no influence on the handling of the message. The structure and
handling of the data is not part of the protocol and has to be
conducted at the application level.

The payload structure of Data Transmissions is the same
for both, reliable and unreliable transmissions and its layout is
shown in Fig. 4. The Data Size contains the number of
elements of the following byte array. The data byte array
contains the actual data.

Message Acknowledgement

Data RequestData Transmissions Data Response

Error Notification

Large Message Transmission

Reconfiguration Request

Data Size Data
X bytes

Data Size
4 bytes

Data
X bytes4 bytes

Data Size
4 bytes

Data
X bytes

Request Time
8 bytes

Affected Node ID
2 bytes

Error Reason
1 byte

Segment Number
(with Last-Segment-Flag)

2 bytes

Segment
Size

X bytes

Transmission
ID

1 byte

Segment
Data

4 bytes

Requested Configuration
4 bytes

Original Message Timestamp
8 bytes

Acknowledgment Type
1 byte

Fig. 4. Summary of payload structures

Data can be transmitted in a reliable or in an unreliable
manner. Therefore, two message types are available for this
purpose: reliable and unreliable Data Transmission. The only
difference between these two types is that the receiver, when
received successfully, will acknowledge the reliable Data
Transmission. Though, the sender can resend a packet if it was
lost or falsely transmitted. Unreliable messages will be dropped
when received erroneous.

3) Data Request
For transmitting data with the request-response method, a

Data Request message can be sent. This message triggers the
receiver to execute an action and send data to the sender of this
request.

To assign the response to the according request, the
responding data will be transmitted with a Data Response
message instead of a normal Data Transmission. The Data
Response message, which is following the request, will be sent
asynchronously. In that way, the action, which has been
requested, can take longer time than the normal
acknowledgment.

The payload of a Data Request has the same structure as in
Fig. 4. The Data Size contains the number of elements of the

178

following Data Byte Array. This array contains the data that
will be sent to the remote node. The structure of this array is
not specified in this protocol. The data has to be parsed at the
application layer.

To ensure the request will trigger an action and a data
response, Data Requests are reliable messages, which have to
be acknowledged.

4) Data Response
The Data Response is used to send data back to a node that

has sent a Data Request message. This message will be sent
asynchronously after the action that was triggered by the
request has been executed.

The payload of a Data Response has also the structure
shown in Fig. 4. The Request Time field contains the
timestamp of the original Data Request that triggered this
response. The Data Size contains the number of elements of the
following byte array. The Data byte array contains the data that
will be sent to the remote node. The structure of this array is
not specified in this protocol.

To ensure the request will trigger an action and a data
response, Data Responses are reliable messages that will be
acknowledged.

5) Reconfiguration Request
The Reconfiguration Request notifies all nodes in the

network to switch to a certain configuration. Only the Master
node is capable of sending these requests, as it is the only
instance authorized to define the global state of the system.
Every other node than the Master node shall only be able to
receive this message, but not sending it.

Reconfiguration Requests are always transmitted reliable.
Nodes that are not responding to a Reconfiguration Request
have to be disabled by a new reconfiguration.

6) Message Acknowledgment
The Message Acknowledgment is the central element in the

reliability mechanism of this protocol. Reliably sent messages
will be acknowledged with this message type. The
acknowledgment can be either a positive acknowledgment,
notifying that the message has been received successfully, or a
negative acknowledgment to inform the sender of the original
message, that it arrived erroneous.

Acknowledgments are not transmitted reliable. When an
acknowledgment packet is lost, the original message will be
sent again.

7) Heartbeat
The Heartbeat is a message type, used to check if a certain

node is responsive. The Heartbeat itself is a request for an
acknowledgment message. This mechanism allows a
verification of the bidirectional communication link. The
management instance sends out these Heartbeat messages
periodically.

8) Error Notification
The Error Notification is used to inform the Master of the

distributed system about an error that occurred. As soon as a
reliable connection is not acknowledged, after a certain amount
of attempts, this notification will be sent to the Master node.
This message can also be used to notify other nodes that an
error has occurred.

Error Notifications will be sent reliable. This enables the
possibility to detect whether the sending node has lost the
connection to the network, or the erroneous node is the source
of the failure. If this error message cannot be delivered to a
management node it can been assumed that the node itself has
lost its connection to the rest of the distributed system.

9) Large Message Transmission Packet
SpaceWire itself does not limit the packet size. But to avoid

long blocking of paths in the network, a restriction on packet
size is defined in this protocol. Here, the Large Message
Transfer mechanism offers a way to split a message into
smaller packets, which then can be sent sequentially to the
destination node. The receiver collects all parts of the messages
and assembles them to the original message.

The capability to send and receive Large Message
Transmissions is optional, if a node sends a Large Message
Transmission to a node not capable of this feature the receiver
shall reply with an Error Notification Message.

The Large Message Transmission is a special message
inside the protocol. To keep the transmission size as small as
possible, the complete header of the original message provided
by the sending application will be integrated into the header of
the Large Message Transfer with the modifications that the
most significant bit of the message type field is set and the
timestamp of each packet is independent from the timestamp of
the original message.

Large Message Transmissions are always reliable
transmissions. Every segment of this transmission will be
acknowledged individually (either positively or negatively)
according to the timestamp of the segment.

C. Behavior Description
1) Reliability

Central paradigms of the protocol are reliable messages and
error detection and handling. The protocol provides guaranteed
delivery services and timeout mechanism for reliable message
transmission. The messages transmitted follow the reliability
mechanisms that are described as follows.

a) Single Packet Messages
As every message is sent independently, the reliability

mechanisms are also applied to every single message.
Therefore, each message that is received and has a reliable
message type has to be acknowledged. The reliability
mechanism is divided into three phases: acknowledgment,
resending and error notification phase.

Acknowledgment Phase:
Three different cases for a sent message have to be

considered:
When the message was received successfully, a positive

acknowledgment will be returned to the sender and the
transmission is complete.

The second case is that the message has been received
erroneous. With help of the checksum appended to every
message, the receiver can check the integrity of the message. If
it was received with errors, a negative acknowledgment will be
sent, which triggers the sender node to switch to the resend
phase.

179

The last possibility is the loss of the message on its way
through the network. In this case, the receiver will not send any
acknowledgment either positive or negative. Therefore, the
sender waits a defined time for the acknowledgment to arrive
and if this time passes, it will switch to the resending phase.

Resending Phase:
When a message was not transmitted successfully on the

first try the sender will attempt to resend it. The number of
attempts is configurable. The sender again expects a message
acknowledgment. If, at a certain try, the message will be
acknowledged the transmission is completed. If the limit of
resending is reached the system will assume that the link to the
receiver is faulty and switches to the error notification phase.

Error Notification Phase:
In this phase of a transmission, it is very likely that the

receiving node has lost the connection to the network, as it
does not respond, although the sender has repeatedly tried to
communicate with it. Another error could be that the sender
itself has lost the connection to the network and could not
communicate to other nodes.

To check which node lost the connection and to inform the
Master in the network about the error an error notification
message will be sent to the Master node.

This error notification message is also a reliable message
but it is handled differently. This message will only follow the
process up to the resending phase. If that phase fails, most
likely the sending node has lost its connection to the network
and cannot even reach the Master node. At this point, the node
should shut itself down, to save energy and not to interfere with
the rest of the system.

b) Large Messages
Messages which are too large to fit into one packet should

be treated as Large Message. For single messages transmitting
segments of the Large Message Transmission, the reliability
mechanisms work as they do for normal single messages.
Additional to the reliability mechanisms for single segments,
there are some extensions for the Large Message Transmission.
When receiving the last segment of such transmission, the
application has to check that no segment is missing. A Large
Message Transmission is only successful when all segments of
this transmission have been received. If segments are missing,
a negative acknowledgment is sent to initiate retransmission.

2) Push Transmissions
Push Transmission are following the publish/subscribe

pattern. A producer of data can have many consumers, which
subscribe to it. Whenever new data is available, the producer
will send the new data to all of its consumers.

The central points of this transmission are the two Data
Transmission messages. Whenever a producer of information
has new datasets, it will create a Data Transmission message
for each subscribed node and send it.

Depending on the requirements to the delivery of the data,
the application can send either a reliable or unreliable data
messages.

3) Pull Transmissions

The Pull Transmission follows a request-response behavior.
It can be used to either trigger an action on a remote node of
the network or requesting specific data from it.

To start a request the initiating node has to send a Data
Request message to the destination node. The request will
always be acknowledged, which tells the requesting node that
the request will be handled.

The response to these requests will be transmitted with a
Data Response message. Additional to the normal Data
Transmission, which is used by the push transmission, it carries
the timestamp of the requesting message with it to assign the
response to its requesting message.

Data Requests will be sent asynchronously to enable long
responding times for the requested action and data.

4) Reconfigurations
The ScOSA system is designed to have one global

configuration for all nodes. Therefore, the protocol has to
provide means to distribute reconfiguration information to all
nodes, to maintain a concise system state.

Reconfiguration can have several reasons. One reason is the
change to a new mission phase of the system so that the nodes
of the network can be assigned different tasks. Another reason
can be the failing of a node so that another node has to take
over the tasks of the failed node. Despite the reason, all
changes of the configuration have to be initiated by the Master
by sending a Reconfiguration Request Message. The other
nodes in the network are not allowed to send this request
message.

On reception of this message the receiving node will
change into the so-called “reconfiguration state”. When it
reaches this state, it will send all pending messages but does
not accept sending new messages. Messages received in this
state will be handled as usual. With this method, it can be
assured that most of the messages will not get lost during
reconfiguration.

After a certain timeout, which has to be configured
mission-specifically, the node will delete all of its pending
messages, switch into the new state and go back into running
state.

The reconfiguration only affects the endpoint nodes in the
network. For other network components (e.g. routers and
switches), a proper protocol for configuring those components
has to be chosen. In a SpaceWire network one can choose the
RMAP Protocol [2] to configure the Routing tables. Therefore,
the SpaceWire-IPC is implemented in that way that it does not
interfere with other protocols for reconfiguring other network
components (e.g. using different protocol identifiers at the
underlying protocol).

5) Large Message Transmission
The Large Message Transmission is a special mode for

transmitting messages in the distributed system. This mode of
transmission provides a way to send encapsulated messages
that would otherwise exceed this size restriction. Every other
message used in this system can be encapsulated into a Large
Message Transmission.

Sending of an oversized message is completely transparent
to the application whatever transmission (normal or large

180

message transmission) is needed. The protocol implementation
automatically determines if it is needed to send the message as
Large Message Transmission depending on its size.

The size of one single packet must be defined between all
nodes in the network uniformly. The data itself will be handled
as an array of bytes.

The sender first assigns a unique transmission ID to this
data and then separates the array into segments. These
segments will then transmitted with the same Transaction ID
and the corresponding sequence number. The sequence number
is used to calculate the offset of this segment in the array.

On the other end of the connection, the receiver will
provide a special handling of incoming Large Message
Transmissions. Instead of notifying the application for every
received packet, the handler will collect all the parts belonging
to this Large Message Transmission according to the same
transmission ID and the same Sender ID.

After receiving all parts of a transmission, the handler will
reconstruct the encapsulated message and then send it to the
normal handler where the original message will be handled
transparently.

D. Integration with SpaceWire
The SpaceWire Specification allows custom protocols to be

transported as payload. Therefore, a field in the header is
reserved to specify the used protocol [1].

The SpaceWire Protocol supports two addressing modes,
logical addressing and path addressing [3]. Both methods are
possible with SpaceWire-IPC, but for simplicity, only logical
addressing is supported by now.

The Node ID will be mapped to a SpaceWire logical
address with the following pattern. The least significant byte
will be directly mapped to the SpaceWire Address. The most
significant byte will then determine the service running on this
node. This mapping limits the maximum addressable services
to 256 services per physical node and 256 physical nodes
connected to the SpaceWire Network.

V. PROTOCOLS ASSESSMENT FOR RECONFIGURABLE
DISTRIBUTED ENVIRONMENT

In this section, SpaceWire-IPC and other SpaceWire based
protocols mentioned in Section II are assessed focusing on IPC
in distributed on-board computers.

Although reliable communication in RMAP can be
established by requesting acknowledgments, the protocol does
not fit completely into the requirements for our distributed
system. In detail the lack of distributing timestamps and
especially heartbeats is a problem. Additionally, fragmentation
of large data is not supported by RMAP. Besides this, a
specific reconfiguration message type is required to modify the
state of the distributed system.

The CCSDS PTP only serves as a frame for more complex
protocols without providing properties like data validity checks
or reliable data transfers, which are required for our distributed
system.

Packet types of GRDDP are defined. However they are
insufficient to cover all requirements given by ScOSA, such as
the lack of error notification or reconfiguration handling.

For STUP, data retransmission, segmentation of large
messages and flow control need to be implemented explicitly
by application users. Therefore this protocol does not cover any
of our requirements related to IPC communication.

Although SpaceWire-R supports reliable data transmission
and heartbeat, it does not include any message types for error
notification and reconfiguration. The pull request is not
implemented within this protocol. SpaceWire-R can only send
reliable data and lacks the unreliable data transmission. This is
necessary for high-frequency transmissions, where new data
will arrive quickly, and losing some packets is considered
uncritical. Although, it shares some concept with the
SpaceWire-IPC protocol, it is still not fully suitable for the
ScOSA use case.

TABLE II summarizes these SpaceWire based protocols
and SpaceWire-IPC in terms of features of IPC. As it can be
seen from TABLE II, RMAP, CCSDS PTP, GRDDP, STUP
and SpaceWire-R are not targeting IPC services in SpaceWire
networks. However, the IPC services are necessary for a pure
COTS or hybrid reconfigurable distributed on-board
computers. SpaceWire-IPC offers features for IPC, supporting
monitoring, management and reconfiguration, which then can
be implemented on higher level.

TABLE II. COMPARISON OF SPACEWIRE BASED PROTOCOLS

Features

R
M

A
P

C
C

SD
S

PT
P

G
R

D
D

P

ST
U

P

Sp
ac

eW
ir

e-
R

Sp
ac

eW
ir

e-
IP

C

Data Correctness Check × × × × ×

Data Retransmission × × ×

Multiplexing × × ×
Segmentation / Large Message
Transmission × ×

Flow Control ×
Keep Alive / Heartbeat / Monitoring
Support × ×

Reconfiguration Support ×

Error Notification to Manager ×

Publish /Subscribe ×

Request-Response × × ×

With SpaceWire-IPC, Data Request, Data Response or

Data Transmissions can be used for application data exchange
and to request or to publish state values for plausibility checks.
Applications can set the timestamp for data transmission and
let SpaceWire-IPC take care of the sending timestamp.
Heartbeats can be used by the Master to monitor the whole
distributed network and by Observers to monitor the Master or
Observers of higher priorities. Message Acknowledgment is

181

for reliable data transmission and detecting failures of a link or
no response of a node. Reconfiguration Request can be used
for initial configuration, reconfiguration due to failures and
reconfiguration for new-phase missions. Error Notification is to
inform Master the error reason for FDIR. Large Message
Transmission can meet the increasing demands of image
processing on-board for earth observation activities by
transferring raw large images to several nodes for parallel
processing.

VI. CONCLUSIONS
In this paper we presented the SpaceWire-IPC for

reconfigurable distributed on-board computers. With this
protocol, SpaceWire networks can support IPC for distributed
computing on a spacecraft. We highlighted the reconfiguration
feature supported by the SpaceWire-IPC, which enables COTS
hardware to be used on-board with reliability and fault
tolerance. With COTS nodes, high performance demands can
be enhanced for future applications.

Because the SpaceWire network is not fully integrated yet,
it will be part of the ScOSA project to address this issue and to
embed the introduced SpaceWire-IPC. Besides the physical
implementation of a SpaceWire network and the proposed IPC
protocol, it is also required to provide software driver support
for all peripheries depending on the selected operating system.

After implementation, the measurement and performance
analysis will be carried out.

REFERENCES
[1] "Space engineering. SpaceWire protocol identification," ECSS-

E-ST-50-51C, ESA-ESTEC Requirements & Standards
Division, Noordwijk, 2010.

[2] "Space engineering. SpaceWire - Remote memory access
protocol," ECSS-E-ST-50-52C, ESA-ESTEC Requirements &
Standards Division, Noordwijk, 2010.

[3] "Space engineering. SpaceWire - Links, nodes, routers and
networks," ECSS-E-ST-50-12C, ESA-ESTEC Requirements &
Standards Division, Noordwijk, 2008.

[4] "Space engineering. SpaceWire - CCSDS packet transfer
protocol," ECSS-E-ST-50-53C, ESA-ESTEC Requirements &
Standards Division, Noordwijk, 2010.

[5] "GOES-R Reliable Data Delivery Protocol (GRDDP)," 417-R-
RTP-0050, NASA Goddard Space Flight Center GOES-R
Project, Greenbelt, 2008.

[6] P. Rastetter, U. Liebstückel and S. Fischer, "STUP SpaceWire
Protocol," SMCS-ASTD-PS-001, 2009.

[7] "SpaceWire-R," SCDHA 151-0.4, Japan Aerospace Exploration
Agency (JAXA), Institute of Space and Astronautical Science
(ISAS), 2015.

[8] "Project information OBC-SA," [Online]. Available:
https://scrivito-public-cdn.s3-eu-west-
1.amazonaws.com/fokus/public/57b85e4561eb7de5/1683f2d1b4
4c512887644ed0eac105fd/Projektblatt_OBCSA_EN.pdf.
[Accessed 15 August 2016].

[9] C. Wilson, J. Stewart, P. Gauvin, J. MacKinnon, J. Coole, J.
Urriste, A. George, G. Crum, E. Timmons, J. Beck, T. Flatley,
M. Wirthlin, A. Wison and A. Stoddard, "CSP Hybrid Space
Computing for STP-H5/ISEM on ISS," in Small Satellite
Conference, Logan, 2015.

[10] M. Fayyaz and T. Vladimirova, "Fault-Tolerant Distributed
approach to satellite On-Board Computer design," in 2014 IEEE
Aerospace Conference, Big Sky, 2014.

[11] D. Lüdtke, K. Westerdorff, K. Stohlmann, A. Börner, O.
Maibaum, T. Peng, B. Weps, G. Fey and A. Gerndt, "OBC-NG:
towards a reconfigurable on-board computing architecture for
spacecraft," in Proceedings of IEEE Aerospace Conference, Big
Sky, Montana, 2014.

[12] I. T. Union, "X.200: Information technology - Open Systems
Interconnection - Basic Reference Model: The basic model," 11
June 1994. [Online]. Available: http://www.itu.int/rec/T-REC-
X.200-199407-I. [Accessed 08 August 2016].

182

 Poster Presentations

183

Design and Analysis of SpaceWire Hot Backup

Redundant Network
Session Networks and protocols, Short Paper

XiaoSu YI

School of Instrumentation Science and Opto-electrionics

Engineering

Beijing University of Aeronautics and Astronautics

Beijing, China

yixiaosu@buaa.edu.cn

CongLing TAO，HuaSong ZENG

School of Instrumentation Science and Opto-electrionics

Engineering

Beijing University of Aeronautics and Astronautics

Beijing, China

taocongling@163.com

Abstract—SpaceWire is a new bussing technology

provided by European Space Agency. SpaceWire enhances

the functions of error detection and error recovery
[1]

.

Considering the application background, the reliability of

SpaceWire network must be guaranteed. The paper

develops a new hot back-up method for improving the

reliability of SpaceWire network. The method uses the one

of the reserved bits of time-code in SpaceWire to shift

working mode of the SpaceWire router to realize the hot

backup function and enhance the reliability of the

SpaceWire network.

Index Terms—SpaceWire, SpaceWire router; reserved

bits of time-code；reliability; hot backup;

I. INTRODUCTION

SpaceWire (referred as SpW) bussing technique has high

speed (2MB/s-400MB/s), full-duplex and point-to-point serial

data communication link and well EMC characteristics. It was

applied to the project of Rosetta spacecraft and the project of

Mars fast train. SpW router is an indispensable part of SpW

network, every SpW node can communicate with another

node through router
[2]

. In a SpW network, SpW time-codes

provide a means of distributing time information across a

SpW system. Time can be distributed across a large network

with relatively low jitter. According to SpW standard, not all

time-codes are used, there are two bits reserved for the future

applications if the standard needs further development.

Due to the special application background of aerospace,

the requirement for reliability of the link communication is

very high. Hot backup redundant network is a direct and

effective way
[3] [4] [5]

to guarantee reliability of network. In this

paper, a method of hot backup function of SpW network

redundancy with SpW router IP core is proposed by studying

SpW standard and protocols. Based on one reserved time bit,

the method can switch the SpW router working mode in the

case of link failure. By doing so, the network can still ensure

the normal communication function when the link failure

occurs.

II SPACEWIRE OPERATION MECHANISM

A. Time-Code

In the SpW standard, the time-code is defined and the

transmission priority of time-code is the highest, which is used

to guarantee the whole network time synchronization. The

time code is used to distribute system time over a SpW

network, which comprises ESC followed by a single data

character holding six bits of the system and two reserved bits
[6]

, as shown in Figure 1:

Fig 1 time-code structure

B. The relation between time-code and time-slot

The time interval between the two valid time codes in the

SpW standard is defined as a time-slot.

The relation between time-code and time-slot is shown in

Figure 2
[7]

:

Fig 2 the relation between time-code and time-slot

When the network is running, the main control node

sends the time-code across the SpW network. SpW router

receives an effective time-code, updates the internal time-code

counter and sends to all the nodes connected to it. The node

receives the time-code sent by the SpW router, which means

the beginning of a time-slot. If the SpW schedule is assigned

184

to a node time-slot, and the value of the time-slot is the same

as the value of the time-code, the device can send data
[8]

.

III RESEARCH AND IMPLEMENTATION OF

REDUNDANT HOT BACKUP

Due to the strict load requirements, the space mission is

more suitable for the high utilization of hardware resources of

the hot backup.

In the paper, the SpW network hot backup method is

used to realize the redundancy, which makes the reliability of

SpW network improved. The structure of the redundant

scheme is shown in Figure 3
[9]

.

 Fig 3 SpW redundancy hot backup network

In Figure 3, SpW network contains two routers that are

router 1 and router 2. Each node in the network has two SpW

interfaces, A and B. Through the link between interface A and

router 1, a sub network A is formed. Likewise, a sub network

B is formed. When the network is operated, the two interfaces

of each node and the two routers all are turned on the full

function.

The SpW router has link status register and time-code

enable register
[10]

. The link status register can record and store

a real-time SpW link state. Time-code enable register in the

router controls where the received time-code goes, so that the

router can forward the specified time-code to the appointed

node. At work, the SpW link state can be read by the router

link status register. For example, when a port link of router is

disconnected, the information will be recorded by the port link

status register in real-time.

A. Method for realizing SpaceWire network redundancy hot

backup

Based on the research of SpW router and SpW standard,

a platform of System on Chip (referred as SoC) system is

developed in order to realize the SpW network redundancy hot

backup. The structure of SoC system is shown in Figure 4,

including the AXI-Lite bus, MicroBlaze processor and chip

RAM, etc. The SpW router link register and time code enable

register are connected with the SoC system through the SpW

interface controller. When they are connected to the SoC

system, they can pass data information into the MicroBlaze

processor through the AXI-Lite bus. By reading the link state

recorded on the link register, the processor judges the link

failure in real time. When the link failure is judged, the

processor will find a way to solve the problem based on the

pre-designed algorithm to eliminate the fault, thus to ensure

the normal operation of the SpW network system.

Spacewire
Link State
Register

Spacewire
Interface
Controller

AXI-Lite
MicroBlaze
Processor

LMB

On Chip
RAM

MDM

JTAG

Spacewire
Time-Code
Enable Register

SoC
system

 Fig 4 the structure of SoC system

B. SpaceWire network redundancy hot backup operation

mode

In SpW standard, SpW time-code reserved bits T6 and T7

are not used. The proposed method uses one of the reserved

bits which could be T6 or T7. For discussion convenience, T6 is

used.

The operation mechanism is described as follows:

The nodes on the SpW network are divided into two

groups. Every node in each group only communicates with the

node in the same group. As shown in Figure 3: node 1, node 2,

node 3, node 4 are assigned to the sub network A, which

receives the T6 for 1 of the time-code as valid; node 5, node 6,

node 7 are assigned to the sub network B, which receives the

T6 for 0 of the time-code as valid; There is no communication

between the sub network B and the sub network A.

When network is operated, the main control node

broadcasts time-code to all nodes on the network through both

A and B interface. When there comes a new time-slot, each

interface sends a couple of time-code, which has same system

time value (T0~ T5), but T6 are 1 and 0 respectively. While,

router 1 forwards the time-code which T6 is 1, driving sub

network A; router 2 forwards the time-code which T6 is 0,

driving sub network B. The nodes in sub network A exchange

data through router 1, and the nodes in sub network B

exchange data through router 2. So far, network identification

and the partition function can be achieved through the

difference of time-code reserved bit T6. Two routers drive sub

network A and B according to the mode setting, two sub

networks work independently according to the pre-designed

schedule.

C. Failure diagnosis and solution

To illustrate how the link failure is diagnosed and solved,

the paper discusses three typical link failure cases.

Case A: one or multiple effective link failures in the same

sub-network occur, as shown in figure 5. The effective link

here refers to a link with the same label as the network

identified in the normal operation, such as the link A in the

network A.

Node
2

Node
1

Node
3

Node
4

Main Control
Node

Node
5

Node
6

Node
7

Router
1

Router
2

Interface A

Interface B

Sub Network A

Sub Network B

185

Case B: one of routers is broken or all link failures

existing in the same sub network, or the link between the main

control node and the router is broken, as shown in figure 6.

Case C: there are both the effective link failures and the

redundant link failures, but the failure doesn’t occur in the two

links which are connected with the same node, as shown in

figure 7.

Node
2

Node
1

Node
3

Node
4

Main Control
Node

Node
5

Node
6

Node
7

Router
1

Router
2

Interface A

InterfaceB

Sub Network A

Sub Network B

Fig 5 link failure-case A

For case A, assuming the link between the node 1 and the

router 1 is broken. When such fault happens, the connection of

node 1 with router 1 through interface A is broken, but the

link between node 1 and router 2 through interface B is still

normal. Under such a condition, to keeping the data

transmission operates normally, the operation mode of each

router is switched.

The detailed operation mechanism is described as follows:

the SoC system judge the fault through the link state register

that is in the router 1, then it will change time code enable

register, making router 1 send the time code in which T6 is 0,

and at the same time, router 2 send the time code which T6 is 1.

By doing so, the operation mode of router is switched and the

data flow can bypass the fault link, which will not affect the

two sub networks.

For case B, assuming the router 1 is broken.

Node
2

Node
1

Node
3

Node
4

Main Control
Node

Node
5

Node
6

Node
7

Router
1

Router
2

Interface A

Interface B

Sub Network A

Sub Network B

Fig 6 link failure-case B

When the fault status B appears, router 1 fault causes sub

network A to be paralyzed, so any sub network could not

continue to transmit data through router 1. To keep data

transmission, router 2 must take the work of the router 1. Two

sub networks integrate as one network. Under such a case,

SoC system could not read the link state through the router 1,

thus judge router 1 has something wrong. SoC system will

change Router 2 operation mode, enabling router 2 can

forward for 0 of the time-code and for 1 of the time-code.

All nodes are in the sub network B and data exchange is

carried out through the router 2. In this way, there are two sets

of scheduling tables at the same time in sub network B. If two

or more nodes need to send data in the same time slot,

competition for the link bandwidth is required. This will result

in router load increment, reducing the efficiency of the entire

network.

Node
2

Node
1

Node
3

Node
4

Main Control
Node

Node
5

Node
6

Node
7

Router
1

Router
2

Interface A

Interface B

Sub Network A

Sub Network B

Fig 7 link failure-case C

For case C, assuming that link A between node 1 and

router 1 is broken, and link B between node 4 and router 2 is

broken. When such a fault occurs, the solutions for case A and

case B could not be used to restore the data transmission

between node1 and node 4. The method against this kind of

fault is that SoC system reads link state through the related

link status register of router 1 and router 2, diagnoses the fault,

enables both router 1 and router 2 to forward time code with

T6 is 1 or 0. With this approach, nodes in sub network A can

again receive the time code with T6 is 1, and so do nodes in

sub network B again receive the time code with T6 is 0.

IV SPACEWIRE ROUTER TRANSMIT TIME-CODE

SIMULATION

In order to verify if SpW router can transmit

corresponding time-code according to link state register and

time-code enable register state, some simulations were done.

Considering the situation of two nodes connected with a

router, a simulation is carried out. Where node a as the main

control node that is responsible for sending the time-code to

SpW router, node b as the slave node that is responsible for

receiving the time-code, transmitted by SpW router.

The simulation results are shown in figure 8, figure 9 and

figure 10.

Fig 8 Simulation result for transmitting T6 is 0

Fig 9 Simulation result for transmitting T6 is 1

186

Fig 10 Simulation result for transmitting T6 is 0 or 1

In figure 8, figure 9 and figure 10, control_flag_in_a are

the reserved bits T7, T6, sending by the main control node.

time_in_a is the time-code effective value T0-T5 sending by

the main control node. time_in_b is the time-code effective

value T0-T5 received by the slave node b through SpW router.

control_flags_in_b is the reserved bits T7, T6 received by the

slave node b. sum is SpW router time-code enable register.

When sum is ‘00’, T6 is 0 can be transmitted through the SpW

router, T6 is 1 could not be transmitted through the SpW router.

When sum is ‘01’, T6 is 1 can be transmitted through the SpW

router, T6 is 0 could not be transmitted through the SpW router.

When sum is ‘10’, no matter T6 is 0 or 1 can be transmitted

through the SpW router.

As shown in figure 8, sum is always ‘00’, time-code can

only be transmitted when control_flags_in_a is ‘00’. When

control_flags_in_a is ‘01’, time-code did not be transmitted.

As shown in figure 9, sum is always ‘01’, time-code can

only be transmitted when control_flags_in_a is ‘01’.When

control_flags_in_a is ‘00’, time-code did not be transmitted.

As shown in figure 10, sum is always ‘10’, time-code can

be transmitted when control_flags_in_a is ‘00’ or ‘01’.

From this, it is proved that the method in this paper is

feasible.

V RELIABILITY ANALYSIS

The combination of SpW redundancy hot backup

network concept and the idea of application of a reserved

time-code bit improve reliability of SpW network system. To

prove this, some reliability comparisons are made among three

operation modes: a SpW network without a hot backup, a

SpW network with a cold backup, a SpW network with a hot

back up. The result is shown in table 1.

In order to facilitate the reliability analysis, it is assumed

there is only the link failure in a SpW network. Suppose that

there are 6 nodes in this network. Suppose a single link failure

rate is P in the system, and the probability of all link having

failure is 0.

TABLE 1 RELIABILITY ANALYSIS

 The number
of Links

One Link
Failure

Two Link
Failure

Three Link
Failure

No Backup

Network
6 Work

un-properly

Work

un-properly
work

un-properly
Cold Backup

Network
12 Still work

properly

Check

Note 1

Check

Note 3

Hot Backup
Network

12 Still work
properly

Check
Note 2

Check
Note 4

Note 1: there are two cases of link failure in cold backup

network. (1) Failures occur on the working link or backup link.

(2) Failures occur on the working link and backup link

respectively. For the former, the system is not affected .For

the latter, the system does not work properly. The network

failure rate is calculated based on the above assumptions is

 =
（

 ）

 （ ）

=

 （ ）

(1)

Note 2: there are two cases of link failure in hot backup

network. (1) Failures occur on the working link or backup link.

(2) Failures occur on the working link and backup link

respectively. For the former, the system is not affected. The

network can work normally and can work under the dual

network mode without damaging the performance. For the

latter, two situations might happen: 1. Faults occur on

different links of different devices. The network can work

normally, but with sacrifice of the dual network performance.

2. Fault occurs on the two links of the same nodes. The

network could not work properly. The network failure rate is

calculated based on the above assumptions is

 =

 （ ）

=

 （ ）

 (2)

Comparing the formula (1) and formula (2), a conclusion

can be drawn that reliability of a SpW network with a hot back

up is 6 times higher than the reliability of a SpW network with

a cold backup. Figure 11 also shows the comparison result of

reliability of the above operation modes.

Fig 11 the comparison between P1, P2

Note 3: There are three link failures but analysis is as

same as note 1’s. When a fault occurs on a working link or a

backup link, the network can work properly. Otherwise, it will

not work properly. The network failure rate is calculated based

on the above assumptions is

 =
（

 ）

 （ ）

=

 （ ）

 (3)

Note 4: Similar to the note 2. When the fault occurs on

the two links of the same device, the network could not work

properly. Otherwise, they are able to work properly. The

network failure rate is calculated based on the above

assumptions is

 =
（

 ）

 （ ）

=

 （ ）

 (4)

Comparing the formula (3) and formula (4), it is obvious

that reliability of a SpW network with a hot back up is 3 times

higher than the reliability of a SpW network with a cold

backup. Figure 12 also shows the comparison result of

reliability of the above operation modes.

187

Fig 12 the comparison between P3, P4

In conclusion, the hot backup network through the

network switch has the better reliability than other two

operation modes.

VI COMPARING WITH OTHER SCHEMES

Besides the method introduced in the paper, there is

another one for realizing the SpW hot backup redundancy
[11]

.

That paper proposed that the main control node detects link

fault in each sub network by sending RMAP package to read

the link state of router, combined with the control of time-

code reserved bit, achieving SpW hot backup redundant

network. There are some deficiencies in that approach: (1)

there is an additional work for the main control node, reducing

the efficiency of data link and it is easier to cause link

congestion. (2) Network monitoring and network switching

function is not achieve by the router. It will make the network

more complex, which is not good for the implementation of

improving reliability of network.

The approach in this paper greatly reduce the workload

of main control node since it does not require the main control

node sending the RAMP packet to read the link state of router

and determine the sending time-code. The removal of RMAP

packets transmission also mitigates the burden of the main

control node, improving the link utilization for network

application.

VII CONCLUSION

The paper introduces a method to realize a hot back up

redundant SpW network. It also improves the reliability of

SpW network by combining the characteristics of SpW time

code concept and SpW-D technology. Research and analysis

show that the method is useful and effective and achieves the

higher network usage efficiency in working state. When a fault

occurs in the network, the system can respond to a variety of

fault conditions through the corresponding measures, and

recover the data transmission in the network, ensuring the

accurate and reliable work of SpW network.

REFERENCES

[1] ECSS-E-ST-50-12C SpaceWire-Links, nodes, routers and

networks[S]. Noordwijk, The Netherlands: European

Cooperation for Space Standardization, 2008: 13- 14

[2] Steve Parkes Allison Bertrand Martin Suess Glenn Rakow

SpaceWire-2011 Proceeding of the 4th International SpaceWire

Conference[R], November 2011.

[3] Mao NingYuan. Research Of Key Techniques In SpaceWire

Redundant Network [D]. Harbin, Harbin Institute of

Technology ,2012

[4] Niu Yue Hua, Zhao Wen Yan. Design and analysis of a strong

fault-tolerant on-board SpW bus network [J], Journal of

computer applications 2014,34(9):2497-2500,2504

[5] Chen J, YangS, MeiH. Study and Implementation of SpaceWire

Network Redundancy Technology Based on FPGA[C]

Proceedings ofthe 6thInternational SpaceWire Conference.

Dundee, UK: Space Technology Centre, University of Dundee,

2014:202-206.

[6] SpaceWire Time-Codes[S] ISWS, 2003.

[7] International SpaceWire Conference[R] Nara,November, 2008.

[8] SpaceWire-D Deterministic Control and Data Delivery Over

SpaceWire Networks[R], April, 2010.

[9] Zhang Hao, Wu Jun, Zhang Chunxi. Design Of Backup Fault

Tolerant Protocol For SpaceWire On-Board Network [J].

Computer Measurement & Control, 2015, 23(2):633-636.

[10] Chris McClements, Steve Parkes, Gerald Kempf, Pierre

Fabry.SpW-10X SpaceWire Router User Manual[S],July,2008

[11] Zhuang Hong Yi, Implementation and analysis of backup router

based on SpaceWire Time-Code[J], Computer Measurement &

Control, 2016,1(39):510-5030

188

JUICE Time Distribution Protocol
SpaceWire Networks and Protocols, Short paper

Felice Torelli, Jørgen Ilstad, Giorgio Magistrati
European Space Agency - ESTEC

Noordwijk, The Netherlands
{felice.torelli, jorgen.ilstad} @esa.int

Abstract— JUpiter ICy moons Explorer (JUICE) is the first ESA
large-class mission aiming at the exploration of Jupiter and three of
its largest moons, Ganymede, Callisto and Europa. The JUICE
payload suite counts 10 instruments, 9 of which are interfaced with
the On-Board Computer (OBC) and Solid State Mass Memory
(SSMM) using a SpaceWire (SpW) network both for science data
and command & control traffic. JUICE requirements favor the
adoption of SpaceWire ECSS protocol standards in a layered
architecture fashion. With regards to the time synchronization and
distribution, the “High Accuracy Time Synchronization over
SpaceWire Networks” draft protocol specification (developed within
the SpaceWire Working Group) has been analyzed and tailored to
meet JUICE needs. The paper presents the rationale behind the use
of the SpW TDP, it’s tailoring and concludes with lessons learned
and recommendations towards an ECSS standard document.

Index Terms—SpaceWire, Networking, Time Distribution
Protocol,

I. INTRODUCTION

Jupiter ICy moons Explorer (JUICE) is the first L-class
mission in ESA’s Cosmic Vision Programme foreseen in 2022.
The objective of the JUICE mission is the investigation of
Jupiter and its icy moons, Callisto, Ganymede and Europa. It
will address the question of whether possible habitats of life are
provided underneath the surfaces of the icy satellites and also
probes Jupiter’s atmosphere and magnetosphere.

Figure 1: Artist impression of the JUICE spacecraft (courtesy of Airbus

Defence and Space)

Ten instruments have been selected by ESA for the science
JUICE mission. They can be gathered in three main categories:
remote sensing instruments, geophysics instruments and in-situ
instruments. Firstly the remote sensing instruments are focused
on observation of Jupiter and its icy moons, their surfaces and
the composition of their atmospheres. Then the geophysics
instruments are dedicated to the restitution of the surface relief,
the sub-surface composition and the gravity fields restitution.
Finally in-situ instruments objective is to provide data on the
Jovian environment mainly on the plasma and the fields
surrounding the moons.

This paper focuses on the data handling subsystem between
onboard computer (OBC), mass memory (MM) and payload
instruments (P/L). Reliable and accurate time distribution and
synchronization is important not only for spacecraft command
and control but also to time tag samples of the payload
instruments in a consistent and accurate manner. In this paper
we discuss how the time synchronization is carried out between
OBC and instruments over the SpaceWire network and how the
SpaceWire Time Distribution Protocol (TDP), in line with ECSS
SpaceWire protocol stack, has been applied as opposed to
traditional approaches based on packet utilization standard
(PUS) [05] private services.

Figure 2 – SpaceWire protocol layers

The paper presents in section II how the time distribution and

synchronization services are applied for the JUICE data
handling system and in section III presents the detailed tailoring
of the SpW TDP. In section IV a brief comparison is given
between the traditional implementation based on the Packet
Utilization Standard (PUS) custom made service 9 and the SpW
TDP. Section V presents lessons learned and feedback from the

ECSS-E-ST-50-12C (Links, nodes, routers and networks)

ECSS-E-ST-50-51C (protocol identification)

ECSS-E-ST-50-53C (CPTP)ECSS-E-ST-50-52C (RMAP)

Time distribution protocol

SpW Time-Codes

Instrument application

ECSS-E-71-40A (PUS services)

189

instrument developers on suggest improvements of the draft
standard. Section VI presents the conclusions.

II. TIME DISTRIBUTION AND SYNCHRONIZATION

Time distribution (and synchronisation) is a function required
by any intelligent instrument or unit and it is a task independent
of the application-specific functions implemented by the
instrument SW [08].

Figure 3: Time distribution context

The Command and Data Management Unit (CDMU)
distributes periodically the On-Board Reference Time (OBRT)
over the communication network, the instrument acquires the
time and adjusts (i.e. resets) the local time to be in-synch with
the on-board reference time of the CDMU.
The on-board time distribution is managed by the CDMU, which
is also the master of the OBRT and is in charge of :

1. distributing to the instruments (users) on the SpW
network the value of the On-Board Reference Time
(OBRT) being applied at the next synchronization
pulse;

2. distributing to the instruments on the SpW network the
synchronization pulse used to latch the OBRT,
previously distributed, into the local timers of the
instrument.

As a worst case, the period between two time synchronisation
events is determined by the stability of the local timer part of the
instrument. The accuracy of the distributed time is determined
by the jitter and latency of the synchronisation pulse (e.g. SpW
time-code).

In JUICE the draft standard “High Accuracy Time
Synchronization over SpaceWire Networks” [10] has been
adopted and tailored.

III. PROTOCOL TAILORING

The SpW TDP provides means to increase the accuracy of the
system time by providing latency and time-stamp services that
in principle achieves an accuracy of less than 100ns [14].

The accuracy for the telemetry timestamp of JUICE
instruments, however, is not demanding. The requirements for
JUICE in terms of jitter and latency is 0.5us and 5us

respectively, henceforth there is no need to provide network
latency compensation.

These values are by far higher than what the SpW network
in JUICE can provide only in its basic form i.e. without adding
compensation services provided by the protocol. Henceforth the
protocol implementation can be “lighter” based only on this fact.
It should nevertheless be stated that to utilise the high accuracy
features of the SpW TDP protocol the SpW CoDec’s themselves
has to be able to accept and respond to distributed interrupts, a
feature that will be introduced in the revision 1 of the SpW
Standard.

One important consideration to take in to account as well, is
that not all instruments support SpW RMAP hardware (HW)
implementation. This requires the SpW TDP protocol services
to be implemented in software. Thus, it puts limitations on what
protocol features are possible to implement.

Many available LEON3 ASICs (GR712RC, EPICA-NEXT)
include HW implementations of RMAP but don’t support SpW
TDP. HW support of RMAP is beneficial as it avoids complex
protocol functions related to the RMAP to be implemented in
SW.

Another consideration to take in to account when tailoring
the protocol is that some platform units are FPGA-based i.e. not
PUS terminals which allows the SpW TDP to be fully
implemented in HW or SW.

The above considerations gave the incentive to tailor the

SpW TDP as follows:

Mandatory services:
• Time Command Service (clause 5.2.4, [10])
• Initialization/Synchronization Service (clause 5.2.6,

[10])

Figure 4: Time Command sequence

Figure 5: Time Synchronization sequence

Optional services:

CDMU
Time Distribution

Initiator

OBRT SpW

Instrument 1
Time Distribution

Target

Local
Timer SpW

Instrument N
Time Distribution

Target

Local
Timer SpW

SpW Network

190

• Status Service (clause 5.2.3, [10])
• Datation Service (clause 5.2.5 [10])

Hardcoded functions of the timing service:
• SpW time-codes are mapped on the LSB of CCSDS

Unsegmented Code - Coarse Time
• SpW time-code distributed every second from OBC

Figure 6: Format of the CCSDS CUC code.

In relation to the RMAP protocol, which the SpW TDP uses

as foundation, the following minimal RMAP services are
required:

• Write non-acknowledged, non-verified to target
(clause 5.3, [03]).

• Read command to target (clause 5.4, [03]).

IV. SPW TDP AND PUS 9

Prior to JUICE, some ESA missions customised ECSS-E-
ST-70-41a [05] (PUS) service 9 for the implementation of a
SpW time distribution protocol. This choice was also dictated by
the lack of a dedicated sub-network protocol [08] that defined
time distribution over the SpW network.

The current section provides a comparison between the
custom PUS 9 “protocol” used in previous missions and the
SpW TDP tailored for JUICE.

Flight heritage: At present only reference implementations

of SpW TDP[13] exists, but no SpW TDP implementation has
yet been applied in any space mission so far. Different flavors of
PUS 9 have been used in previous science missions. Thus, from
the perspective of flight heritage the adapted PUS service 9
could be considered to have more of an advantage.

Communication architecture: SpW TDP is in-line with
recommended practices in terms of onboard data
communication [11], [12], [13] and also provides adequate
communication layering. While time distribution using PUS 9
mixes application layer (TC execution) and SpW protocol layer
(time-code). From the perspective of communication
architecture the SpW TDP is more advantageous.

Implementation complexity: SpW TDP requires one
periodic RMAP write command (Time Command) and one
periodic SpW time-code (initialization / synchronization). PUS
9 requires one periodic PUS TC (9, 132) and one periodic SpW
time-code. From the perspective of implementation complexity
they are considered equivalent.

Robustness: SpW TDP control field identifies which SpW
time-code qualifies the distributed onboard reference time value
(OBRT). With PUS 9, there are limited mechanisms to ensure
that the OBRT received is not latched on the wrong time-code.

This means the OBRT value in a particular time slot is latched
anyway at the next received SpW time-code. From the
perspective of robustness the SpW TDP is more advantageous.

Timing constrains: SpW TDP Time Command and SpW
time-code can be processed immediately, typically right above
the SpW SW driver. The PUS 9 TC has to be processed within
the TC queue, which means its execution time depends on the
instrument Application SW architecture. In relation to timing
constraints the SpW TDP has a clear advantage.

HW implementation: SpW TDP is compatible with non-
PUS terminals as it can both be fully implemented in HW and
SW or a mix between the two, while PUS 9 can only be
implemented in SW. From the perspective of HW
implementation the SpW TDP is more advantageous.

Validation effort: SpW TDP requires “new” test procedures
and validation tests to be developed, however there are less error
conditions to verify as opposed using PUS 9. PUS 9 can rely on
legacy test procedures and validation tests, but there are more
error conditions to verify. From the perspective of validation the
effort required is perceived as being equivalent.

The two protocols can be considered equivalent with regards

to implementation complexity and validation effort. The custom
PUS 9 has advantages in terms of heritage, however SpW TDP
is more robust, it poses less time constrains for its execution, and
it reflects an adequate layering of the instrument SW
architecture. SpW TDP can also be adopted by both PUS and
non-PUS unit on-board.

To summarise, the SpW TDP is advantageous if compared

to the custom PUS 9 implementation and it should be the
preferred choice in future missions where platform and payload
units are connected by a SpW network.

V. LESSONS LEARNED & RECOMMENDATIONS

In this section we present the lessons learned that have been
collected so far as part of the JUICE development, aiming at
providing suggestions for the improvement of the protocol
document in anticipation of an ECSS standardisation.

1. The current draft protocol specification [10] lacks of a
non-normative introduction that clarifies various use
cases as well as provides architectural information about
the protocol. Due to the missing non-normative part it is
challenging to put the normative section in the right
context

2. Only the essential bit fields are described in the draft
protocol specification [10] and a number of TBD is still
present. This fosters scepticism about the maturity of the
protocol by the new adopters (e.g. instrument teams).

3. Mandatory and optional services are not identified in the
draft protocol specification [10]. Because the full
implementation of the protocol with all its features is
unnecessary complex for missions where time
requirements are not demanding, it is recommended to

191

better clarify which services and features that can be
considered optional.

4. The protocol relies on SpW RMAP for the transport of
commands and replies, without restrictions. Thus,
although unlikely, the instrument memory integrity
could potential be at risk in case an event causes an
erroneous RMAP write command (used for Time
Command) is sent and accepted by the instrument while
in Science Mode.

Henceforth, the following recommendations should be

considered included in the writing of the future ECSS standard
document:

a. A non-normative section should present the context for
the protocol to be used, use cases and a description of
the services.

b. The bit fields and registers defining the protocol target
memory should be fully specified.

c. A set of mandatory core services covering Time
Command and Synchronization services should be
clearly identified, leaving the latency compensation as
optional.

d. While keeping the RMAP structure for the
commands/replies, it is essential to limit the required
commands to the bare minimum and to assign to the
SpW time distribution protocol a dedicated Protocol Id,
in order to confine the targets accessible
memory/register area to the Time Distribution Protocol
registers only.

VI. CONCLUSIONS

This paper has given an overview on how the SpW TDP has
been adopted for the JUICE mission and also given the rationale
behind the tailoring of the draft protocol description to fit the
needs of the mission and the constraints the instrument
developers are faced with. The simplification/tailoring allows a
mixed HW/SW implementation.

The current draft protocol specification specifies no

restrictions on the use of SpW RMAP for commands/replies and
it has been strongly criticized by the users community
(instrument teams). It is recommended that during the ECSS
standardization process, this point is given particular attention,
by e.g. constraining the use of RMAP for the SpW TDP protocol
by assigning a dedicated PID.

VII. REFERENCES

[01] ECSS-E-ST-50-12C, Space Engineering - SpaceWire – Links,
nodes, routers and networks, July 2008
[02] ECSS-E-ST-50-51C, Space Engineering – SpaceWire protocol
identification, February 2010
[03] ECSS-E-ST-50-52C, Space Engineering – SpaceWire - Remote
memory access protocol, February 2010
[04] ECSS-E-ST-50-53C, Space Engineering – CCSDS packet
transfer protocol, February 2010
[05] ECSS-E-70-41A, Space engineering, Ground systems and
operations — Telemetry and telecommand packet utilization, January
2003
[06] CCSDS 851.0-M-1.0, Magenta Book, SOIS - Subnetwork
Packet Service - Recommended Practice, December 2009
[07] CCSDS 852.0-M-1.0, Magenta Book, SOIS - Subnetwork
Memory Access Service - Recommended Practice, December 2009
[08] CCSDS 853.0-M-1.0, Magenta Book, SOIS - Subnetwork
Synchronisation Service - Recommended Practice, December 2009
[09] CCSDS 301.0-B-3, Blue Bool, Time Code Formats –
Recommended Standard, January 2002
[10] SPWCUC-REP-0003, High Accuracy Time Synchronization
over SpaceWire Networks, September 2012
[11] GR712RC User’s Manual http://www.gaisler.com/doc/gr712rc-
usermanual.pdf, April 2015
[12] SpW-18X SpaceWire Router GR718 Final Presentation 2014,
June 2014
[13] SPWCUC-REP-0005 - SpaceWire Time Distribution Protocol -
VHDL IP Core User’s Manual, December 2013
[14] Spacewire time distribution protocol implementation and results,
ISBN 978-0-9557196-5-3, ISPW 2014.

192

Distributed Storage System for Satellite Platform

Based on SpaceWire Network
SpaceWire Missions and Applications, Short Paper

Niu Yuehua, Liu Weiwei, Wang Luyuan, Mu Qiang, Li Xin, Yu Junhui

Institute of Spacecraft System Engineering

China Academy of Space Technology (CAST)

Beijing, China

newjohn@126.com

Abstract—To satisfy more and more complicated requirements

on information recording, processing, exchange etc. in newly

developed intelligent satellites, a distributed storage system is

designed based on SpaceWire network in satellite platform. In

this distributed storage system, a SpaceWire router unit serving

as the core device of star network connects several nodes,

including onboard computers, namely, satellite management unit

(SMU), data interface units (DIU) and other nodes like attitude

and orbit sensors, space environment monitor instruments and

payload controllers, etc. A certain number of standard flash

memory modules are separately incorporated into SMU and

DIUs to provide comprehensive data recording and exchange

service for all nodes in the network. All memory modules are

centrally controlled by SMU software to store authorized data in

specific type files and retrieve data according to policies set by

remote memory access protocol commands. Memory modules

that can run in parallel in the distributed storage system produce

very high data throughput, which boosts satellite platform

capability to a great extent. Backup mechanism among memory

modules is deployed and any module can be replaced by others

when it meets failure, this makes the storage system robust and

reliable. Testing and verification work performed on the

distributed storage system shows that the system works quite well

and also reveals its attractive effect on improving satellite

platform efficiency.

Index Terms—SpaceWire, network, distributed storage,

satellite platform, memory module, throughput.

I. INTRODUCTION

SpaceWire constitutes switched fabric with wormhole

routing routers, and is widely used in spacecraft programs [1-2].

With flexible topology and simple interface, it offers network

expansion and devices integration lots of conveniences. SpW

data rate in range of 2Mbit/s-400Mbit/s as well as bidirectional

full-duplex technology covers most transmission needs

onboard except for some very high speed sensors. Thus

SpaceWire is of notable advantage on satellite platform

speedup and strengthening. As processing ability of onboard

electronics grows quickly in the past few years, newly designed

intelligent satellites deploy more complicated functions such as

autonomous health management, mission planning and system

reconfiguration [3-4], which demand satellite platform to

support concurrent and deterministic data record and retrieval

service for mass and miscellaneous onboard data. Conventional

mass memory unit specializing mainly in high speed payload

data recording and downlink data transmission with dedicated

interface and protocol, can hardly adapt to the complex satellite

platform applications. Nowadays modular avionics technology

has been applied in spacecraft platform and flash memory

modules are incorporated in onboard computers e.g. satellite

management unit (SMU) and data interface units (DIU). Since

the rate and capacity of single memory module is limited, a

distributed storage system is designed based on SpaceWire

network in this paper. In this newly-designed system, SMU,

DIUs and other nodes such as attitude and orbit sensors, space

environment monitor instruments and payload controllers, etc.

are connected to the central router unit of star shape SpaceWire

network, which provides real-time data transmission paths for

all nodes in the network. A certain number of standard flash

memory modules are separately incorporated in SMU and

DIUs to provide comprehensive data record and exchange

service for all nodes in the network. SMU software configures

routing tables of SpaceWire network and controls work mode

of all memory modules by remote memory access protocol

RMAP commands [5], in this manner the network data flows

are appropriately routed to and from memory modules based

on balance and deterministic principle. Multiple memory

modules in the storage system working together provide large

capacity and high data throughput performance, and that is

configurable in wide range by incorporating certain number of

memory modules and setting flash chip number on single

memory module. The backup and replacement strategy among

memory modules make the distributed storage system robust

and reliable, suitable for harsh space environment application.

II. ONBOARD DISTRIBUTED STORAGE SYSTEM

A. Drawbacks of Conventional Mass Memory

In satellites platform single solid state mass memory

(SSMM) equipment is ubiquitously deployed. It connects to

scientific payloads and onboard computer with dedicated input

and output ports, through which high rate scientific data and

low rate housekeeping data are collected. All recorded data is

193

SpaceWire

Network

User Node

1

User Node

2

User Node

k

Onboard Computer n

Mass Memory Module

CPU Module

Other Module

Onboard Computer 2

Mass Memory Module

CPU Module

Other Module

Onboard Computer 1

Mass Memory Module

CPU Module

Other Module

Fig. 1. Distributed storage system architecture

only sent to formatter and encoder unit for downloading to

ground station. The architecture and interfaces are designed to

work in fixed mode without openness, which makes the system

hardly accommodate different mission requirements with

simple configuration, but often a large amount of redesign

work. And because all recorded data can only be sent to ground

for processing, onboard data indexing, retrieval and utilization

cannot be supported, thus advanced onboard data processing

and analysis tasks in new satellites are constrained.

As onboard processing ability has been enhanced in new

satellites, the platform is required to provide more efficient and

flexible data record services to support new tasks. In mass

memory device aspect, standard interfaces and comprehensive

functions are mainly concerned. And high speed bidirectional

communication network that connects mass memory and user

nodes together is expected at system level.

B. Distributed Storage System Architecture

SpaceWire has been widely adopted in satellite data

management system to provide universal communication

standard among onboard computer, solid state mass memory,

payload instrument, etc. Many SpaceWire data system includes

one SSMM equipment to fulfill all data record functions which

indeed achieves high integration level, but on the other hand

increases the equipment complexity. Multiple users’ accessing

to the common mass memory device also produces low

efficiency problem. Furthermore, with one SSMM will take

high single point failure risks such as power module

breakdown, which may greatly affect the whole satellite

mission.

The distributed data storage system is constructed based on

SpaceWire network as shown in Fig. 1. Several onboard

computers and other data processing nodes are all connected

onto SpaceWire network and SpaceWire routers provide

dynamic data transfer channels for all nodes. General mass

memory modules are integrated in each onboard computer, and

all memory modules on SpaceWire network form distributed

storage architecture. This architecture achieves a number of

advantages: 1) since onboard computer is designed in avionics

modular manner, memory modules can be easily added into

computer and communication between processor and Flash

mass memory is simply accomplished on backplane bus. 2)

Multiple memory modules in the system can work in parallel

mode, this provide higher data throughput than single mass

memory equipment. 3) Total memory capacity in the

distributed system can be well customized by changing

memory module number and memory capacity on each module

without influence on other parts. 4) Single point failure is

eliminated by distributing memory modules in different

computers, making the system more robust.

C. Integrated Data Services

Storage system in satellite platform works as an

infrastructure, providing interactive data service, downlink data

service and uplink data service to satisfy diverse data recording

and utilization needs onboard. Interactive data is recorded in

mass memory modules after generation and transferred to

onboard processing nodes on demand through SpaceWire

network. Downlink data includes experiment data, engineering

telemetry, event report, etc. These data are written into

different mass memory modules with high resolution and

downloaded to ground station for further analysis and health

diagnosis. Uplink data including application images and

patches, algorithm datasets, model library, etc., are sent to

satellite from ground station through high speed upward

channel. These data are firstly recorded in mass memory

module installed in SMU and then forwarded to target user

nodes in packet format through SpaceWire network. Due to the

general interface of storage system, other data application

mode can also be supported, e.g., downlink data being

transmitted to onboard processor for preprocessing, uplink data

being transferred on to 1553B bus for remoter terminal

updating. When data is transmitted to low speed node, mass

memory module in distributed system can tune packet interval

to adapt, avoiding blockage in routers.

D. Data Transfer Protocol

Data transferred in the distributed storage system is

categorized into two types. The main type is user application

data that user nodes write into or read from mass memory

modules. The other type is management data used for mass

memory modules work mode control and state management,

including commands of file operation like creation, deletion,

close etc., or file write pointer, read pointer and other file

information.

i) User Data Transfer Protocol

User data transfer protocol is designed by taking into

account various factors: 1) Onboard data is primarily recorded,

transferred and processed according to frame format defined by

CCSDS standard. 2) Data write and read operation is based on

flash page size in mass memory modules for high efficiency

and low complexity. 3) Data flow in SpaceWire network is

encapsulated into packets. Short packets reduce transfer

efficiency, while very long packets increase network latency.

Taking all these issues into account, the simple serial transfer

universal protocol (STUP) is used to transfer user data in

194

Source node

logical

address

Cargo
End

character

Identifier of

data receiver
User data EOP

1Byte 1022Byte 4bits

Protocol

identifier

Target node

logical

address

STUP

protocol:

0xEF

Identifer of

data

transmmiter

1Byte 1Byte

MSB: data category

LSB: data subtype

Data type

identifier

AOS Transfer Frame

2Byte 1020Byte

Category(MSB) Subtype(LSB)Data Type

0x00

0x00～0xFF

User defined

according to

application

scientific data

0x11software image

TBDother data

0xFF telemetry data

Fig. 2. User data transfer protocol packet format

SpW1 AT7910E
Mass Memory

Module1

2 SpW2

SpW3

SpW4

SpW5

SpW6

TimeCode

Ext_10 HOST

FPGA

SpW7

SpW8

Ext_9

CPCI

I/F

CPU
Glue

Logic

CPCI

I/F

CPU Module

CPCI

Bus

STATUS

FLASH

FLASH

FLASH

FLASH

Other Module

I/F

I/F

Fig. 3. Modular onboard computer hardware architecture

distributed storage system [6]. Protocol packet format is shown

in Fig. 2.

The three bytes length packet header consists of target node

logical address, STUP protocol identifier and source node

address, each occupies one byte. Packet cargo is composed of

two bytes length data type identifier and a complete AOS

transfer frame defined in CCSDS advanced orbiting system

standard [7]. The fixed AOS transfer frame length is restricted

below 1020 bytes and should be shorten when error correction

encode is applied. Data type identifier is a tag for data cargo

and is always recorded and transferred with AOS transfer

frame. First byte of data type identifier is used to distinguish

data according to main attribute, including scientific data,

telemetry data, software image data, etc. Second byte is used as

subtype identifier for each class of data. It is defined by data

source node according to application needs. When a packet is

received at a node, node application chooses data processing

method according to data type identifier in the packet. In mass

memory module data can be recorded in different files based

on type identifier. At the end of protocol packet is an EOP

character.

ii) Management Data Transfer Protocol

Management and configuration of mass memory modules

and SpaceWire network is of significance in distributed storage

system. Configuration and polling of SpaceWire router

registers is implemented with general remote memory access

protocol (RMAP), providing CRC verification and reply

acknowledgement to assure reliable communication.

Considering data reliability and commonality of application

software design, the interface of mass memory module

controller is similarly designed according to RMAP protocol.

Data files management and access control are realized with

RMAP command. File management commands include open,

read, write, append, seek and close, etc. File access service

support indexing data based on time or type, replaying data to

SpaceWire node with specified logical address, inquiry of file

information, etc. When mass memory module receives a

RMAP command from SpaceWire network, command is

verified and execution state is returned to source node, the

result is also included in module telemetry.

III. MODULAR ONBOARD COMPUTERS

A. Hardware Architecture

Onboard computers are designed based on avionics

modular architecture and a whole computer is assembled with

standardized modules, such as processor module, mass

memory module, telemetry module, pulse command module,

etc. SMU and DIU are generated by integrating different group

of modules according to functional demand. Modules in a

computer communicate with each other through CPCI bus on

backplane. Processor module acts as master node and is in

charge of bus communication management, mode control and

heath care of other modules. Processor module and mass

memory module in a computer are regarded as independent

smart node because both of them need to communicate with

other SpaceWire nodes in the distributed system. Relying on

the high speed backplane bus the two modules are designed to

share one SpaceWire interface controller (AT7910), as shown

in Fig. 3. SpaceWire controller is placed on mass memory

module and directly connected to the FPGA with two extern

195

DIU 1

(N)

DIU 1

(R)

SMU

(N)

SMU

(R)

FEU

(N)

FEU

(R)

DIU 2

(N)

DIU 2

(R)

Payload 1

(N)

Payload 1

(R)

PDPU

(N)

PDPU

(R)

Payload 2

(N)

Payload 2

(R)

SpaceWire

Router Unit

(N)

SpaceWire

Router Unit

(R)

Transmitter Downlink

Channel
ReceiverUplink

Channel

Fig. 4. Distributed storage system prototype for test

port EXT_9 and EXT_10. The FPGA interfaces with

backplane CPCI bus and provide a bridge for processor

application to access SpaceWire network. As CPCI runs at a

rate of 32bit by 33MHz, it completely covers the demand from

processor to SpaceWire network. This architecture enhances

hardware efficiency and assures commonality of processor

module, giving convenience to computer upgrade.

B. Communication Protocol

Processor module and mass memory module are

independent nodes in SpaceWire network and each of them is

assigned a unique logical address for packet addressing.

Packets transferred between processor module and other nodes

far in the network have to be forwarded by mass memory

module FPGA controller. FPGA also deal with packets that

processor applications write into or read out from FLASH

memory on the module. To manage the four direction data

flows, a simple small router is implemented in FPGA base on

logical addressing principle, complying with SpaceWire

standard. When FPGA receives packet from SpaceWire port it

analyses the first byte logical address and direct packet to

processor module through backplane bus interface or to

internal control logic base on address matching result. If logical

address is invalid, then the packet is discarded. The packets

FPGA received from CPCI backplane bus are compatibly

designed in SpaceWire packet format. When the first byte

address points to mass memory module self, then packet is

move to FPGA internal control logic or it is forwarded to

SpaceWire port. With the uniform design of protocol format on

backplane bus and distributed network, processor applications

can easily access mass memory resources in or out the

computer through one standard interface.

IV. FAULT TOLERANT APPROACH

Since storage system for satellite platform is required to be

with high reliability, multilevel fault-tolerant approach is

supported in this distributed storage system. By distributing

several mass memory modules in different computers, namely,

SMU and DIU, failure risks in the system are reduced. Each

modular computer can accommodate more than two mass

memory modules and provide redundancy and expansion

ability, and multiple module parallel work mode produces

better throughput and latency performance. Each mass memory

module provides standard interface and is able to be substituted

by other mass memory modules in case of failure or to replace

any other faulty mass memory module. By dynamic

configuration of SpaceWire network routing tables, data

transfer channels to mass memory modules can be redirected,

and specific RMAP command is design to update the logical

address of mass memory module online, these approaches

make the module replacement task easy to be accomplished.

SpaceWire network is the backbone of distributed storage

system, all nodes, links and routers in the network are dual

redundant. Network controller is implemented in SMU

processor application to monitor network heath state and

realize fault detection, isolation and recovery (FDIR).

SpaceWire network routing tables are designed based on

network physical topology and stored in application library. At

startup, network controller initializes all routers in the network

using data in the library. In operation period, it checks routing

tables and other control registers in the network periodically.

When a single event upset fault is detected, then the impaired

register is scrubbed immediately. If a SpaceWire port is found

abnormal it is firstly reset for recovery, if the abnormal state

cannot be mended then the port will be disabled to avoid

sending babbling data which may block the network. Watch

dog timer is also enabled at each port on routers with a timeout

setting of one micro second to prevent blockage caused by

faulty nodes. The network controller is designed in cold spare

mode and centralized control scheme based on network

controller greatly strengthens robustness of the distributed

storage system.

V. TEST AND VERIFICATION

A distributed storage system prototype is built based on star

topology SpaceWire network in a remote sensing satellite

platform upgrade program for test and verification, as shown in

Fig. 4. The system includes three onboard computers, a SMU

and two DIU, each computer is equipped with two mass

memory modules, with 256Gbits capacity of each module and

total capacity is 1.5Tbits. Other user nodes in the network

include two payload simulator, a payload data processing unit

(PDPU) and a data formatter and encoder unit (FEU). The

whole network architecture is dual redundant and data rate is

normalized to 100Mbps. SMU takes responsibility of network

configuration and management. Engineering telemetry,

housekeeping data and software images received from uplink

channel are also recorded in SMU and SMU application

commands these data to user nodes through SpaceWire

196

network. Two payload simulators work in parallel mode and

generate experiment data at rate of 60Mbps and 40Mbps

separately. The experiment data is sent to mass memory

modules in the two DIUs separately. High speed payload data

processing unit read experiment data from both DIU and

request auxiliary data such as attitude parameters and orbit

position, etc., from SMU to perform calculation and analysis.

Then the result is written back into SMU mass memory module

and downloaded to ground station with other recorded data in

the storage system.

Data transfer protocol introduced in II (D) is implemented

in the system, command and data are sent by applications

simply based on target node logical address regardless of

physical position of storage elements. The testing process and

results have shown notable advance in system reconfiguration

and expansibility. The distributed storage architecture well

satisfies the needs of simultaneously processing of multiple

high rate data flows, and the data transfer and processing

ability of satellite platform is greatly boosted with SpaceWire

network. The system is now planned to be applied in new

remote sensing satellite missions.

VI. CONCLUSIONS

A distributed storage system is designed for intelligent

satellite platform based on SpaceWire network, by

incorporating flash memory modules in onboard computers.

Central control scheme is used to provide concurrent, regular

and balanced data record and retrieval service. Memory

modules parallel operation and backup mechanism achieve

high throughput, robustness and reliability. Verification result

in a satellite program indicates the distributed storage system

satisfies onboard data processing requirements quite well. Next

step work will focus on more intelligent file transfer protocol in

the system.

REFERENCES

[1] European Space Agency, “Space engineering, SpaceWire -

Links, nodes, routers and networks,” ECSS-E-ST-50-12C, Jul.

2008.

[2] S Parkes, P Armbruster. “SpaceWire: Spacecraft onboard data-

handling network,” Acta Astronautica, 66, 88-95, 2010.

[3] Carlos G， Alan C, Gordon A. “Health management and

automation for future space systems,” AIAA 2005-6803，Sept.

2005.

[4] Verfaillie G, Lemaitre M. “Tutorial on planning activities for

earth watching and observation satellites and constellations:

from off-line ground planning to on-ling on-board planning,”

Proceedings of International Conference on Automated Planning

and Scheduling, Cumbria, p29-39, 2006.

[5] European Space Agency, “Space engineering: SpaceWire -

Remote memory access protocol,” ECSS-E-ST-50-52C，Feb.

2010.

[6] EADS Astrium GmbH, “STUP SpaceWire protocol

specification,” SMCS-ASTD-PS-001, Jul. 2009.

[7] Consultative Committee for Space Data Systems, “AOS space

data link protocol,” Blue Book CCSDS 732.0-B-3, Sept. 2015.

197

FDIR Method using an Embedded Timecode in

Packets for SpaceWire-D
SpaceWire Networks and Protocols, Short Paper

Michiya Hayama

Information Technology R&D Center,

Mitsubishi Electric Corporation,

Ofuna 5-1-1, Kamakura, Kanagawa, 247-8501, Japan

Hayama.Michiya@db.MitsubishiElectric.co.jp

Hiroto Namikoshi and Isao Odagi

Kamakura Works,

Mitsubishi Electric Corporation,

Kamimachiya 325, Kamakura, Kanagawa, 247-8520, Japan

Odagi.Isao@cb.MitsubishiElectric.co.jp,

Namikoshi.Hiroto@bk.MitsubishiElectric.co.jp

Abstract— In satellite systems, triple modular redundancy

(TMR) method with interconnected 3-CPUs is widely used to

improve fault tolerance for the SEU/SET. Fault Detection,

Isolation and Recovery (FDIR) functionality is also used to

improve robustness of the system which isolates a faulty CPU

and switches to a redundant CPU automatically. However, the

FDIR does not work correctly in the following cases. First, SEU

and SET may cause an unnecessary link occupation on the

SpaceWire network. In this case, the voting mechanism and the

fault detection mechanism work incorrectly due to the

communication failure. Second, it is difficult to classify the cause

of the fault combined with more than 1 failure mode by the

master CPU. This paper proposes a novel FDIR method to

overcome examples described above. The proposed method

masks output signals of the SpaceWire interface with the error

signal outputted from the voter. It enables the system to reset the

link and notify the faults automatically. Furthermore, the CPUs

notify each other the signal applying exclusive-OR (XOR)

operation to the calculation results and a Timecode. This

mechanism improves granularity of the fault classification.

Finally, this paper clarifies the recovery time of the system in

case of the double-fault including the link occupation by

computer simulation. The simulation results show that the

proposed method recovers the system with the same speed of the

method which only uses a timeout mechanism.

Index Terms—FDIR, SpaceWire, Timecode, Triple modular

redundancy

I. INTRODUCTION

The satellite payloads are required to ensure reliability and

fault tolerance to the failure caused by SEU and SET. In

general, TMR method is employed to them because it can

reduce functional error with simple structure. For example,

SpaceWire routers which uses majority voting with

interconnected 3 CPUs through the network are proposed in

[1],[2]. While, the multiplexing components through the

network maintains the design flexibility, the network failure

affects the FDIR functionalities. Because the notification of the

faults and switching the redundancy depend on the network

performance. In addition, it is difficult to classify the cause of

faults only using the simple TMR mechanism. As a result,

these systems cannot select appropriate recovery procedures

based on the type of failure.

The SpaceWire is a standard considering an usage in the

space environment and some works evaluated the effects of the

SEU/SET in [3],[4]. These works targeted the faults of the

single component. However, the report in [5] summarized 80%

of the SEU in the satellite cause single-bit errors and the

remained 20% cause multiple-bit errors to the SRAM in the

space environment. This report suggests that the SEU causes

failure in multiple components at the same time. In particular,

if the components synchronize to the same Timecode (e.g.

SpaceWire-D), whole system are affected by missing and

delaying Timecode caused by the SEU/SET.

To deal with above mentions, this paper addresses high-

reliability SpaceWire network by selecting the appropriate

recovery method according to type of faults even if the

multiple faults are occurred. This paper proposes the novel

classification method which improves granularity of the fault

classification for double-fault by embedding Timecode in the

messages. Additionally, our proposal disconnects the

SpaceWire links according to the classification result so as to

enable each component to notify the faults to the other

components. As a result, this mechanism can operate normally

under the network failure. Finally, we clarify the classification

granularity of proposed method by using failure mode and

effect analysis (FMEA) considering the 15 types of the faults

(e.g. occurring the SEU/SET, undeliverable Timecode). In

addition, we evaluate the recovery time of the FDIR

mechanism under the link occupation by using the computer

simulation [6]. The evaluation result shows that the FDIR

mechanism recovers the system with the same speed as an only

using a timeout mechanism.

II. EMBEDDED TIMECODE

This section describes how to embed the Timecode to

exchanging messages. Figure 1 shows the block diagram of the

proposed system. One of the 3 CPUs in the system operates as

a master. The master collects the calculation results from the 2

other CPUs through the SpaceWire network then selects the

198

majority of the results. The voting mechanism is implemented

in the Voter block. The Failure Mode and Effect Analysis

(FMEA) block classifies the faults by analyzing the output

signals from the Voter and the Update checker. The other 2

CPUs operating as a slave send the own calculation result with

the CRC that is embedded a Timecode. Table 1 shows the

encoding of the embedded Timecode. Each Timecode is

encoded to the binary pattern either A or B. The CPUs select

the binary patterns not to match previous result of the XOR

operation. For example, the CPU selects the binary pattern B in

case of the Timecode 4 because the previous XOR operation

Fig. 1. The block diagram of the proposed system

TABLE I. THE BINARY PATTERNS OF EACH TIMECODE

Input Timecode Pattern A Pattern B Result

00000000 1 00000001 11111110 00000001

00001001 2 00000010 11111101 00001011

00001100 3 00000011 11111100 00001111

00001011 4 00000100 11111011 11110000

01000001 5 00000101 11111010 01000100

: : : : :

Fig. 2. The schematic of the voter

result is same as that of the pattern A. As a result, this

mechanism detects an updating failure of the calculation results

from the slaves by a simple comparison. Furthermore, the

master can detect the difference of the Timecode between the

other CPUs by checking the CRC which is recovered by

applying XOR operation with the current Timecode.

Meanwhile, even though the master does not know

Timecode pattern, not only Timecode patterns but also the

CRCs decoded by each patterns have a relationship of bit

inverting respectively. Therefore, the master can select the

majority result using the circuit shown as Figure 2.

III. GRANULARITY OF THE FAULT CLASSIFICATION

This section shows granularity of the fault classification

using the proposed method. The master CPU knows the

information about the embedded Timecode and the comparison

result of the corresponding calculation results from the other

CPUs. These information improves the granularity compared

to the simple TMR mechanism. Figure 4 shows that the

number of failure modes combined with maximum 3 faults

described in Table 2 are consisted in each input signal pattern

of the FMEA block. The vertical axis indicates the input signal

pattern whose meaning is shown in Figure 3. For example, it

indicates that the result of the CPU1 and 2 is different with the

result of the CPU2 and 3.

The result shows that the consisting failure modes in each

pattern are increased with increasing of the combination of

faults. If it considers the combination of 2 faults, the number of

consisted failure modes is 5 at most except the one case (the

input signal is “111000”). On the other hand, the number of

consisted failure modes reaches nearly 30 if it considers the

combination of 3 faults. These results shows that the proposed

method is appropriate for the analysis considering the

combination of 2 faults in maximum.

IV. THE FDIR METHOD

This section presents the FDIR method based on the

analysis described in Section 3. We designed the FDIR method

by defining the recovery operations using the FMEA tree

considering the combination of maximum of 2 faults based on

the analysis in Section 3. Figure 5 shows the FMEA tree.

According to the FMEA tree, the failure modes colored

with gray (the input signal is “100000”) mean the CPU1 or 2

might be failed. In this case, it is difficult to change the master

to the CPU3 even though it is appreciate to recover the system

when the CPU1 does not operate correctly. The FDIR method

force disconnects the link between CPU1 and 3 in this case.

This mechanism also releases the occupied SpaceWire link.

1 0 1 0 0 0

Indicates that the result of the CPU3 isn’t updated

Indicates that the result of the CPU2 isn’t updated

Indicates that the Timecode of the CPU1 isn’t updated

Indicates that the results are different between CPU1 and 3

Indicates that the results are different between CPU2 and 3

Indicates that the results are different between CPU1 and 2

Fig. 3. The meaning of the FMEA input patterns

199

TABLE II. THE FAILURE MODES CONSIDERED IN THE ANALYSIS

Mode Description

cpu1 CPU1 returned an invalid result.

cpu2 CPU2 returned an invalid result.

cpu3 CPU3 returned an invalid result.

time0 Timecode distribution failed

(e.g. stopped the global Timecode distributor)

time1 CPU1 returned an invalid Timecode.

time2 CPU2 returned an invalid Timecode.

time3 CPU3 returned an invalid Timecode.

lost2 The result of the CPU2 was not delivered.

lost3 The result of the CPU3 was not delivered.

diff1 The updating checker for the Timecode in CPU1

returned a wrong signal.

diff2 The updating checker for the result of the CPU2

returned a wrong signal.

diff3 The updating checker for the result of the CPU2

returned a wrong signal.

voter1 The voter returned a wrong signal related to CPU1

and CPU2.

voter2 The voter returned a wrong signal related to CPU2

and CPU3.

voter3 The voter returned a wrong signal related to CPU1

and CPU3.

The failure modes indicated with bold box (input signal is

“000010”) means the failure of the detection circuit for

updating results from the other CPUs and Timecode. In this

case, CPU1 can notify the fault to the other CPUs using

communication. Besides, the FDIR only stops the system ether

when 2 or more CPUs failed or when the Timecode

distribution failed in the most part of the system.

V. THE EVALUATIONS

This section shows the recovery time of the FDIR method

described in Section 4 using the simulator based on NS-3. We

evaluate the recovery time in case that both the link occupation

described in [6] and the operation failure of the CPU are

occurred simultaneously. The evaluation conditions are shown

in Table 3. We compare two FDIR methods described in the

following sections.

A. The Target Systems

1) The Conventional System

The system uses a simple TMR mechanism and the RMAP

reply timeout for fault detection. The master CPU detects the

faults including it self’s one by the TMR mechanism. Then, it

resets the SpaceWire link triggered by the RMAP replay

timeout. The other CPUs take a master if it detects the

disconnection of the link.

2) The proposed System

The system uses the FDIR method described in Section 4.

The FDIR functionality in the master CPU recovers the system

according to the FMEA tree shown in Figure 5 if it detects the

failure. The other CPUs take a master if it detects the

disconnection of the link same as the conventional system.

B. The Evaluation Result

The simulated packet trace of the proposed system is shown

in Figure 6. The packet trace shows that the CPU2 operates as

a master after the link disconnection which is generated by the

FDIR functionality. The comparison of the recovery times is

shown in Table 4. The results show that the recovery time of

the proposed FDIR method is same as the conventional system.

000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
100000
100001
100010
100011
100100
100101
100110
100111
101000
101001
101010
101011
101100
101101
101110
101111
110000
110001
110010
110011
110100
110101
110110
110111
111000
111001
111010
111011
111100
111101
111110
111111

0 10 20 30 40

Number of the failure modes

T
h
e F

M
E

A
 in

p
u
t p

attern
s

Triple failure

Double failure

Single failure

Fig. 4. The number of failure modes matched to each FMEA input pattern

200

Fig. 5. The FMEA tree of the proposed system

TABLE III. THE EVALUATION CONDITIONS

Parameters Conditions

Simulator NS-3 with SpaceWire-D protocol[6]

Failure mode Combination of following 2 faults.

(1) A link occupation caused by SEU[6]

(2) A calculation failure of CPU3

Slot Interval time: 100 µs

Number of slots: 8

Timing of

counting votes

The next slot of collecting the calculation

results of other CPUs

RMAP reply

timeout

100 µs (equal to the interval time of a slot)

Data rate 10 Mbps

Network 3 CPUs, 1 Router and 4 sensor nodes

TABLE IV. THE SYSTEM RECOVERY TIME

Parameter Conventional System Proposed System

Recovery time 103µs 103µs

Because, the timing of counting votes in the proposed

system is same as the end of the time for waiting the RMAP

reply in the conventional system.

VI. CONCLUSION

This paper proposed the fault detection and classification

method to improve granularity of the fault classification in the

case of a double-fault by embedding the encoded Timecode to

the exchanging messages between the 3 CPUs in the TMR

system. We evaluated the classification granularity of the

proposed method with considering the 15 types of faults. The

evaluation result showed that the proposed method could

classify the most part of the failure modes combined maximum

of 2 faults into maximum of 5 failure modes. Furthermore, the

proposed method can notify the faults to other components by

disconnecting the SpaceWire links even if the link occupation

is occurred.

In addition, we evaluated the recovery time of the FDIR

method. The evaluation result showed the recovery time of the

proposed method is same as the FDIR method using the simple

TMR mechanism and the RMAP reply timeout.

REFERENCES

[1] A. Popovich, “Method Providing Fault Tolerance of Spacecraft

Electronics by N-Modular Redundancy in Information Space of

SpaceWire Network,” Proc. of ISC 2010, pp.273-278, 22-24,

Jun. 2010.

[2] F. Siegle, T. Vladimirova, J. Ilstad and O. Emam, “FDIR

Techniques for Payload Streaming Applications using

SpaceWire-based Networks,” Proc. of ISC 2014, pp.11-18, 22-

26, Sep. 2014.

201

recovery time

collecting data from Node1-4 return the calcuration
results to CPU1

forwarding data
from Node1-4 to CPU2-3

counting the votes and disconnect the link

Fig. 6. The character trace of the proposed system

[3] Jimmy Tarrillo, R. Chipana, E. Chielle and F. L. Kastensmidt,

“Designing and Analyzing a SpaceWire Router IP for Soft

Errors Detection,” Proc. of LATW 2011, 27-30 Mar. 2011.

[4] Jimmy Tarrillo, M. Altieri and F. L. Kastensmidt, “Improving

Error Detection Capability of a SpaceWire Router IP,” Proc. of

RADECS 2011, pp.501-506, 19-23 Sep. 2011.

[5] Y. Bentoutou and M. Djaifri, “Observations of Single-Event

Upsets and Multiple-Bit Upsets in Random Access Memories

On-Board the Algerian Satellite,” Proc. of NSS 2008, pp.2568-

2570, 19-25, Oct. 2008.

[6] M. Hayama, Y. Yokoyama, R. Yagiu, I. Odagi and H.

Namikoshi, “Impacts of Faults on a SpaceWire Network,” Proc.

of ISC 2014, pp.90-94, 22-26 Sep. 2014.

202

Generic core

Instrument dependent

Processing

(generic)

Interfaces

(generic)

Power

(generic)

Power, Processing

& interfaces

(Application

specific)

B
ac

k
-P

la
n

e
(s

p
ec

if
ic

)

Processor, memory banks, C&C interfaces for

platform and instruments units, synchronization

and datation

Instrument TM/TC functions: standard discrete

interfaces as telemetry acquisition and

commad generation

ICU Service DC/DC CV and heater drivers for

the instrument Thermal Control

Instrument specific power functions

Instrument specific processing

Instrument specific

Generic ICU – A family of ICUs for MetOp-SG

instruments
SpaceWire missions and applications, Short Paper

Alfonso Gonzalo Palomo

Space Equipment Engineering – Digital Engineering

Airbus Defence and Space - CRISA

Tres Cantos, Spain

alfonso.gonzalo@airbus.com

Abstract— Airbus Defence and Space Electronics have

developed in last recent years a modular and scalable concept for

Instrument Control Units (ICU) which has been used with high

success in several missions as EUCLID and MetOp-SG.

SpaceWire communication is a key element with this concept.

This paper presents the Generic ICU architecture and its

application in the MetOp-SG instruments.

Index Terms— ICU, MetOp-SG, SpaceWire

I. INTRODUCTION

The purpose of this paper is to present the Generic ICU

concept developed by Airbus Defence and Space Electronics,

the main constituents and the concept application to the

different MetOp-SG instruments. SpaceWire is a key element

in the architecture of the MetOp-SG satellite and it is widely

used within the different instruments.

During the years 2013 and 2014 Airbus Defence and Space

Electronics has conducted and internal R&D programme where

the Generic ICU concept has been developed. The concept

covers all the aspects related to a space electronics unit as

modularity, scalability, mechanical and thermal design and

electrical interfaces, both internal and external.

Variants of this concept have been applied in several units

for EUCLID mission, as the Instrument Control Units for the

NISP instrument or the Electronic Unit for the Fine Guidance

Sensor Instrument. However, the full application of the Generic

ICU concept has been performed in the MetOp-SG instrument

with high success where 5 Instrument Control Units have been

awarded to ADS Electronics during 2015.

II. GENERIC ICU CONCEPT

The electrical architecture of the Generic ICU is conceived

as a cold-redundant one supplied by independent Main and

Redundant Power Busses powering independent electrical

chains, and managed by independent Main and Redundant

TM/TC/Science SpW Interfaces with the platform.

The Generic ICU is composed by two sections with two

main groups of functions/modules:

 A set of core modules which implements basic functions

common to all ICUs, as processing functions, standard

interfaces and power conditioning functions as Service

DC/DC converter and Thermal control interfaces.

 A set of specific modules which implements very specific

functions of the instruments as power distribution, especial

interfaces and processing not covered by the core modules.

All these modules are connected together by means of a

backplane and enclosed in a common mechanical housing.

The Figure 1 shows this concept:

Fig. 1. Generic ICU architecture

A short description of each of the modules composing the

general architecture is the following:

A. Generic Processing Module (GPM)

The GPM includes all the processing electronics (processor

with its associated memory banks), the interfaces with the

platform (SpaceWire interfaces with a router function,

Equipment switch-off line –EQSOL- and synchronization

interfaces), the interfaces with the downstream units

(synchronization distribution, SpaceWire and UART links),

203

the interface to the internal backplane and the test interface.

This module is based on a MDPA System-On-Chip ASIC

(which includes a LEON-2FT microprocessor) and a

RTAX2000 FPGA. The other ICU modules are controlled by

the GPM by means of internal point to point SpW links, SPI

links and discrete LVCMOS input/output lines.

B. Generic Interface Module (GIM)

It implements standard discrete I/O functions, such as

generation of HLC discrete commands for power supply

configuration of instrument downstream units as well as the

acquisition chains of the thermal monitoring sensors (NTC &

PTC types), voltages and bi-level status TMs provided by the

units. This slave module is based on the Airbus DS’s SECOIA

ASIC (a general purpose board control ASIC) and is controlled

by the GPM through an internal SPI link.

C. Generic Power Conditioning Module (GPCM)

It provides the power resources required by internal use of

the unit (service DC/DC converter) and the thermal control

support function, which in in charge of supply and control of

the heater switches for the instrument operational thermal

control function. Similarly to the GIM, this slave module is

based on the same SECOIA ASIC and is controlled by the

GPM through an internal SPI link.

In addition to these core modules, the ICU is completed by

specific modules that implement all the functions and

interfaces not covered by the core modules. The nature of this

specific modules can diverse ranging from digital processing

modules (for those instruments requiring data processing of

digital video), or power conversion and distribution modules

(for instrument requiring secondary power distribution to

down-stream units), or a combination of functions of different

nature in the same board.

All this modules are connected by means of a Backplane

(BP), which provides basic power and interface services as

follows:

 Secondary Power lines: the Service and Distribution

DC/DC Converters in GPCM drive +28V/±15V/+8V/+5V

secondary voltages towards the BP. The remaining modules

use these secondary power rails for their internal needs and

in case of additional voltages are required, they are

generated by means of local regulation.

 SPI busses: the FPGA in the GPM manages two SPI

busses through the MB, the SPI-1 for the TM/TC access to

generic modules (GPCM and GIM), and the SPI-2 for the

TM/TC access of specific modules, if needed. These buses

are oriented to slave modules requiring low throughput (in

the range of 1 to 10 Mbps)

 SpW links: the GPM provides two point-to-point SpW

links through the BP for those modules requiring high data

throughput (from 10 to 100Mbps). These SpW are

connected to the SpW router in the GPM module which

allows direct downloading of scientific data without

software intervention.

 Discrete lines: they are managed by the FPGA in the GPM

to transmit synchronization and command and control

signals to the remaining slave modules.

The ICU is an intelligent unit with on-board software

running on it. The GPM is in charge of hosting the Basic SW

and the Application SW. The Basic SW has two main

components:

 Boot and Service Mode Software (BSSW): It provides

basic services for GPM board monitoring and control (e.g.

memory and registers load and dump…). It is also able to

load and activate the instrument application software.

 Execution Platform Software Package (EPSW): contains

elements to build the instrument application software. This

includes libraries to be linked to the application software

(e.g. real-time kernel, standard PUS services, low level I/O

drivers) and the associated tools (e.g. compiler, linker…).

The Generic core architecture is supported by two key

ASICs developed by Airbus Defence and Space and available

as recurrent products:

 MDPA ASIC. The MDPA ASIC is a System-On-Chip

designed by Airbus Defence & Space GmbH and

manufactured by ATMEL using the ATC18RHA

technology. It embeds a LEON2FT microprocessor, which

executes the processor’s embedded SW, and interface

control buses used on satellite – SpaceWire, 1553, UART –

and with state of the art utilities for processor such as

floating point unit, AHB bus, debug function, memory

controller, etc. The MDPA ASIC is flight proven (TRL-9)

on Alphasat Payload Controller since July 2013.

 SECOIA ASIC. The SECOIA ASIC (SErial COntrol

Interface ASIC) is a general-purpose ASIC intended for

communicating a slave electronic module with a master one

in order to command and control their different internal

functions (command generation, Bi-level / Relay status

acquisition, Analogue Acquisition and serial interfaces).

This ASIC has been developed by Airbus Defence and

Space - CRISA and manufactured by Aeroflex using the

ATC18RHA technology. This ASIC is widely used in

many other Airbus DS products The device has been

submitted to full qualification at component level and it has

achieved TRL-8

In order to raise the TRL level of the Generic ICU concept,

the most important modules of the ICU Core were developed

through an internal R&D programme: The GPM (including

HW design and Boot and Service Mode Software) and the

GIM modules.

Next pictures show the EM models of the GPM and the

GIM boards.

204

Fig. 2. GPM EM model

Fig. 3. GIM EM model

III. GENERIC ICU APPLICATION IN METOP-SG INSTRUMENTS

The Generic ICU concept has been applied in the following

MetOp-SG instrument control units.

 Sentinel-5 Instrument Control Subsystem (S5 – ICS).

 Microwave Sounder Instrument Control Unit (MWS –

ICU).

 Multi-viewing, Multi-channel, Multi-polarization Imager

Instrument Control Unit (3MI - ICU)

 MetImage Main Control Electronics (MetI – MCE)

 Scatterometer Digital Control Unit (SCA – DCU)

Main characteristics of the instrument and their ICUs

configuration are provided following.

A. Sentinel-5 Instrument Control Subsystem (S5-ICS)

The Sentinel-5 instrument is a spectrometer covering the

UV1, UV2/VIS, NIR, SWIR1 and SWIR2 ranges. The mission

of the instrument is to detect the presence and local distribution

of various gasses and aerosols in the earth atmosphere.

The ICU for Sentinel-5 is composed of the generic core

(GPM + GIM + GPCM) plus 3 additional specific boards:

 Specific Interface Module (SIM). This module is in charge

of providing interfaces with the instrument calibration

subsystem.

 Specific Processing Module (SPM). This module is in

charge of the acquisition and processing of the 5

spectrometer channels. Data generated by the SPM are

routed to the P/F SpW link directly through the routers

implemented in the GPM.

 Specific Thermal Control Module (STCM). It implements

the thermal control function of the instrument for Survival

and LEOP.

B. Microwave Sounder Instrument Control Unit (MWS –

ICU).

The Microwave Sounder (MWS) is a 24 channel self-

calibrating Microwave Radiometer. MWS provides the

operational microwave humidity sounding capability for the

METOP-SG meteorological satellites.

The ICU for MWS is composed of the generic core (GMP

and GIM) arranged in a single board plus 3 specific boards:

 Signal Processing Electronics module (SPE). This module

is in charge of providing high linearity video acquisition

channels. Data are collected by the GPM, processed and

formatted by the software for further transmission via the

P/F SpW link.

 Rx power and Rx 54GHz secondary voltage switching

Module (RxM). It provides a distribution DC/DC converter

and switching matrix to the 54 GHz radiofrequency

receivers

 Service Power and Rx non-54GHz switching module

(PRx). It provides a second distribution DC/DC converter

and switching matrix for the non-54 GHz radiofrequency

receivers

C. Multi-viewing, Multi-channel, Multi-polarization Imager

Instrument Control Unit (3MI - ICU)

The 3MI instrument is a wide-field of-view spectro-

radiometer that is designed to acquire sequential images of the

same ground target which are combined with multiple spectral

views in both un-polarized and polarized channels in the VNIR

and SWIR spectral ranges.

The ICU for 3MI is composed of the generic core (GPM +

GIM) plus 1 additional specific board implementing the

Service DC/DC CV and one additional distribution Converter

for Front End power supply.

Front End data are acquired directly through the SpW links

available in the GPM, processed and formatted by the software

for further transmission via the P/F SpW link

D. MetImage Main Control Electronics (MetI – MCE)

MetImage is a passive imaging spectro-radiometer, capable

of measuring thermal radiance emitted by the Earth and solar

205

backscattered radiation in 20 spectral bands from 443 to 13.345

nm (VNIR, SMWIR and VLWIR). The instrument achieves

global coverage with 500 m square pixels.

MetImage Central Electronics (MCE) is composed of the

generic core (GPM + GIM + GPCM) plus 2 additional specific

boards:

 Rotation Control Module (RCM). In charge of controlling

the instrument mechanisms, including position sensors.

Encoder position telemetry is provided via an internal

Spacewire link.

 Data Formatter Module (DFM). It is charge of generation

of the rotation synchronisation of the instrument,

acquisition of the video data from the Front End

Electronics. Data are processed, packetized and transmitted

to P/F SpW link directly through the routers implemented

in the GPM.

E. Scatterometer Digital Control Unit (SCA – DCU)

The SCA is a real aperture C-band (5.355 GHz) radar with

6 slotted waveguide antennas, comprising 2 dual (H- and V-)

polarised plus 4 single (V-) polarised antennas, which are

accommodated on three roof-top-shaped antenna assemblies. It

has to illuminate two at least 645 km wide measurement

swaths on each side of the sub-satellite track.

The DCU for Scatterometer is composed of the generic

core (GPM + GIM + GPCM) plus 1 additional specific board

implementing the specific radar functions, including the radar

timing signal generation, the chirp generation, mission data

reception, A/D-conversion, processing, formatting and

forwarding to the P/F SpW link directly through the routers

implemented in the GPM.

The MetOp-SG ICU mechanical configuration ranges from

small units composed by 4 boards assembled in a single

housing with nominal and redundant sections in separated

boxes (SCA-DCU), up to large units assembling 12 boards

(N+R sections) in a single enclosure (Sentinel-5 ICS).

Fig. 4. MetOp-SG ICUs (S5-ICS –left- and SCA DCU –right-)

IV. USE OF SPACEWIRE IN METOP-SG SATELLITE

The MetOp SG Payload Data Handling System and

Instrument communications are based on SpaceWire. MetOp-

SG SpaceWire communications is based on the CCSDS Packet

Transfer Protocol (CPTP) layered on the SpaceWire standard.

In addition, a Time Synchronization protocol based on

SpW time-codes and CPTP packets is used to update the local

time in each unit on the network.

Each OBC Processor Module is connected to the Mass

Memory and Formatting Unit (MMFU) via two SpaceWire

interfaces. All TC and TM data packet transfer to and from the

MMFU is done via one of this SpaceWire interface.

All Instrument ICUs are connected by SpaceWire interfaces

to the MMFU. Each Instrument has a dedicated (dual-

redundant) SpaceWire interface for communicating mission

data as well as monitoring & control data. The TM/TC packet

routing and multiplexing is centralized within the MMFU.

The following picture shows the MetOp SG SpaceWire

Network topology.

INSTRUMENT
MMFU

Routing Function

 OBC

SpW I/F 1
(N)

SpW I/F 2
(N)

SpW I/F 1
(R)

SpW I/F 2
(R)

SpW Router
(N)

SpW Router
(R)

Mass
Memory 1

Mass
Memory n

Input
Processing 1

Input
Processing 2

ICU

ICU (N)

ICU (R)

x6C&C (CPTP)

COBT (SpW TC)

C&C (CPTP)

COBT (SpW TC)

SCI TM (CPTP)

Fig. 5. SpaceWire Network topology in MetOp-SG

The SpW network is used for the following tasks:

 Command & Control (C&C) task from OBC to the MMFU

routers and Payload Instrument based on CCSDS Packet

Transfer Protocol.

 Transmission of the Central On-Board Time over the

Spacewire network via a combination of SpaceWire time-

codes and a PUS time update packet.

 Transmission of the scientific data from Instruments to

MMFU for further downloading to ground.

V. USE OF SPACEWIRE IN THE GENERIC ICU

Management of the SpaceWire links in the GPM is

performed by means of the MDPA ASIC. The MDPA

processor incorporates two SpaceWire Modules with 4 ports

each. Routing capabilities can be used within each module

The SpaceWire network at instrument level is depicted in

Figure 6. Only one section of the ICU/instrument is shown.

Two network topologies can be implemented in the Generic

ICU:

 Common network. Used for those applications where there

the data processing and generation of the scientific data is

206

ICUGPM

Router#1

Router#2

FPGA

LOBT

In
te

r-
ro

u
te

r
lin

k

ICU Slave#1

SpW
node

ICU Slave#2

SpW
node

External Unit #1

External Unit #2

SpW
node

SpW
node

P/F link

INSTRUMENT

performed in real time with no intervention of the Software.

Both SpaceWire Modules of the MDPA are connected

together in such a way that a single network is

implemented. Data volume generated by the instrument is

very high and routing to the MMFU is performed by HW

means. One of the links is used for Platform (P/F)

connection; other link is connected to an FPGA. The other

4 links are available for external units and internal modules

connection (slave modules within the ICU).

Fig. 6. SpaceWire Network topology at instrument level

 Two separated networks. Used for those applications where

direct routing to the platform link is not required. Data

processing and generation of the scientific data is

performed by the instrument software. In some cases

special management of the SpW link is needed, as

generation of SpW time codes for synchronization

purposes.

This topology is configured simply by not initializing the

inter-routers links.

The ICU internal/external functions managed through the

SpaceWire network are described following;

A. RMAP client in BSSW

The SpaceWire controllers in the MDPA don’t support

Remote Memory Access Protocol (RMAP) protocol by HW. A

RMAP client has been implemented instead in the Boot

Software which provides means for patch, dump and check the

Boot EEPROM Memory through the P/F SpaceWire link

without using the CCSDS Packet Transfer Protocol. Memory

writing can be performed at ground level only.

B. Communication with the OBC (C&C, HK data)

The ICU is controlled and monitored via the P/F SpW link

following CCSDS Packet Transfer Protocol layered on the

SpaceWire standard.

Communication with platform is performed following an

end-to-end data flow logical addressing scheme. The ICU is

able to:

 Receive telecommand from the OBC

 Transmit housekeeping telemetry to the OBC

 Transmit ancillary data and housekeeping telemetry to the

MMFU

All these transmissions are controlled at ICU level by the

software embedded in the unit.

C. Instrument Local On-Board Time management

The ICU implements in the GPM FPGA a Local On-Board

Time (LOBT) compliant with the CCSDS Unsegmented Code

specification and is based on a default 32 bit LOBT Coarse

Time field (indicating the number of seconds) and a 24 bit

LOBT Fine Time field (indicating the sub-seconds).

The LOBT value is synchronized each a time tick message

is received in the SpW port implemented in the FPGA. The

datation function supports both LOBT direct and smooth

synchronization methods.

Direct synchronization consists on LOBT setting upon

reception of a SpW time tick with the COBT content which has

been received via of a PUS time update packet.

Smooth synchronization is based in the same principle than

Direct Synchronization but instead of a direct load of the

LOBT, a computation of the LOBT drift with respect to the

COBT is performed. This drift is used in the next 1 second

counting cycle to compensate the excess or lack of count. In

this mode, the Fine Time counter of the LOBT is never

updated abruptly. This method allows also compensating the

jitter and latency induced by the transmission of the SpW Time

codes through the Spacewire network in the platform.

D. Scientific data transmission

Mission data are generated by the ICU either by specific

HW processors implemented in the ICU or by Instrument’s

Application SW after acquisition from either external units or

internal modules. Transmission of data to platform (either OBC

or MMFU) is performed following a logical addressing

scheme.

In case of HW generators internal to the ICU, the data are

formatted as CCSDS TM packets, encapsulated into SpW

packets and transmitted to the internal router where the node is

connected to. The transmission to platform in this case is

performed following a combination of path and logical

addressing in order to route the information through the MDPA

routers. First characters in the packet header are removed as

long as the packet passes through one router to the other, in

such a way that the first character at the P/F link is the logical

address information.

In case of mission data generated by Application SW, the

formatted packets are sent directly over the P/F link with the

logical address at the packet header.

VI. CONCLUSIONS

The use of SpaceWire technology is a key element in the

architecture of the Generic ICU. High speed data throughput as

well as routing capability is an enabling factor for this high

performant unit.

Simplicity of interfaces also allows offering a compact

design from mechanical point of view with the consequent

saving in mass and volume.

207

Deterministic Communication and Distributed

Control of Avionics Based on SpaceWire-D
SpaceWire Missions and Applications, Short Paper

Liu Weiwei, Niu Yuehua, Cheng Bowen, Wang Luyuan

 Institute of Spacecraft System Engineering

China Academy of Space Technology(CAST)

Beijing, China

akinglw@163.com

Abstract—As a switched network, SpaceWire can easily

connect SpaceWire nodes together to realize parallel data

communication, which can not only contain spacecraft

interconnection between independent equipment, can also be

used as “virtual backplane” to achieve mutual connection and

communication between avionics internal hardware modules.

However, SpaceWire nodes using asynchronous parallel

operation mode are prone to causing network congestion, which

is not conducive to the balance of network bandwidth. In this

paper, a method of using the driver table between existing all-

purpose interface controller of hardware module and SpaceWire

node controller is implemented based on the SpaceWire-D

protocol, to achieve deterministic SpaceWire network

communication management. SpaceWire node send data to or

receive data from the allowed nodes within the predefined time

interval according to the information in the driver table,

reaching the goal of deterministic communication and network

flow optimization. In addition, through global communication

time planning, when the processor module in certain avionics

equipment fails while other hardware modules is still functioning,

only the routing table in the SpaceWire router need to be

reconfigured to complete the takeover of hardware module inside

faulty equipment, without changing communication driver table

information, thereby achieve the goal of distributed control.

Index Terms—SpaceWire, Time-Code, driver table, virtual

backplane, deterministic communication, distributed control.

I. INTRODUCTION

With the continuous development of space technology, the

electronic network interconnection technology from traditional

low speed bus interconnections between subsystems gradually

evolved in the direction of high-speed switched network [1].

SpaceWire provides extremely simple communication

protocols, and its link rate can be tuned within the range of

2400Mbps, adapting to most of the instruments and equipment

in spacecraft communications requirements. With the

deepening of research and continuous improvement of the

protocol, SpaceWire has been adopted by more and more

spacecraft as the backbone of the data communication network,

as the basis of implementing distributed avionics [2]. However,

it is a pity that SpaceWire asynchronous parallel work between

nodes and wormhole routing mechanism, makes the SpaceWire

network’s ability to adapt to the sudden data transmission is not

strong, especially in the case of multiple link routing to the

same destination, more prone to causing problem of network

congestion and uncertain transmission delay [3]. Therefore,

based on the SpaceWire-D, this paper implements a

mechanism that all SpaceWire nodes are equipped with driver

table for network communication management, and SpaceWire

network is divided into multiple communication windows

according to the information within driver table, which controls

each node send to and receive from allowed nodes with

specified length and within specified window. As a result,

SpaceWire can mutually parallel communication without

influence each other in one time window through global time

planning. The communication driver table is executed and

parsed by SpaceWire-D controller, which is increased table

processing logic based on the original SpaceWire Codec core

and RMAP core. According to the Time-Code values,

SpaceWire-D controller can distinguish communication

window and gets the corresponding control information in the

driver table. If the communication window at this moment for

receiving window and data updates, the all-purpose interface

controller of hardware module will be notified for data reading

and processing, if the communication window for sending

window and data updates, data will be sent to the designated

SpaceWire node. In addition, when avionics hardware module

failure occurs in certain equipment, with the aid of the routing

table of SpaceWire network reconfiguration and different time

window planning for different hardware modules, the failed

equipment can be taken over by other equipment, achieving

smooth and seamless switching of data transmission and

multitasking. This can also be adapted to the management and

control of the equipment that without processor essentially.

II. DESIGN OF SPACEWIRE-D CONTROLLER

Figure 1 illustrates the structure of SpaceWire-D controller,

which is composed by SpaceWire-D core and SpaceWire

Codec core and RMAP core, and SpaceWire-D core is

responsible for the management of communication window in

SpaceWire network.

208

User Application

SpaceWire-D Core

RMAP core

SpaceWire Codec Core

SpaceWire-D Controller
Fig. 1. Structure of SpaceWire-D controller

SpaceWire-D core not only able to communicate with the

RMAP core, also can communicate with SpaceWire Codec

core directly, to realize the RMAP packets and user-defined

data packets transmission in SpaceWire network at the same

time. By configuring different kinds of driven table in

SpaceWire-D core can achieve communication window

management, and can decide whether the SpaceWire network

resources can be accessed and which packet type to be sent

according to the information in table.

In order to guarantee the certainty of the parallel

communication of SpaceWire network, all contents in the

driver table are determined at the system design stage, cannot

be changed during system operation, and cannot be accessed

by user application. However, the whole SpaceWire system is

allowed to carry different versions of driver table, used for

system reconstruction and fault recovery.

There are two main driver tables in the SpaceWire-D core,

which are ADDR_TABLE and SCHEDULE_TABLE as

shown in Fig. 2.

The ADDR_TABLE is used to define the destination logic

address of SpaceWire node that is allowed to access and the

total length of sending and receiving data. The destination logic

address and total data length can be obtained through

simulation and calculation according to the time-slot and

communication plan of whole SpaceWire network and the

processing capacity of destination node. Besides, the table is

divided into 64 segments that are corresponding to 64 time-

slots respectively, and each segment contains LOGIC_ADDR

field and TOTAL_DATA_LEN field.

 The LOGIC_ADDR field in each segment of the

ADDR_TABLE is the destination logic address that is

allowed to access. In each time-slot, the maximum

destination logic address every source node allowed to

access is up to six, and the six destination logic

addresses within different SpaceWire nodes cannot be

overlapped. If the actual number of destination logical

address is less than six, the later corresponding

position in the table is set to all zeros.

 The TOTAL_DATA_LEN field is the total length

including sending and receiving data length, and is

constrained by the node with the lowest processing

performance, so in order to obtain higher efficiency of

data communication, the destination node with

different performance largely should be putted into

different time-slot.

The SCHEDULE_TABLE is used to define the type of bus,

multi-slot, the base address of the user memory space and the

time-slot duration. This table is also divided into 64 segments

corresponding to 64 time-slots in the same way, and each

segment contains BUS_TYPE field, MULTI field,

BASE_ADDR and SLOT_DURATION field.

 The BUS_TYPE field contains 3 bits. The value from

1 to 4 represents the static bus, dynamic bus,

asynchronous bus, and packet bus respectively, while

the value from 5 to 7 represents user-defined bus and

protocol type, to send and receive data packets through

the SpaceWire-D core communicate directly with the

SpaceWire Codec core.

 The MULTI field is used to indicate whether using

multi-slot. It contains 2 bits and the value represents

the number of included time-slot of multi-slot.

 The SLOT_DURATION field contains 16 bits, which

is used to define the duration of the time-slot. Each

SpaceWire node use local time counter to divide time-

slot and use the Time-Code to synchronize with global

time of SpaceWire network.

 The BASE_ADDR field contains 11 bits, and is

responsible for addressing the stating address of user

control memory. Once obtaining the base address, the

data in user data memory can be sent in the time-slot

according to the information in user control memory

just as whether or not the data is updated. The data

format of user control memory as shown in Fig. 3.

0

1

2

3

4

63

BUS_TYPE BASE_ADDR

3 bits 2 bits 11 bits

…

…

LOGIC_ADDR1

8 bits

LOGIC_ADDR2

LOGIC_ADDR4 LOGIC_ADDR4

LOGIC_ADDR5 LOGIC_ADDR6

TOTAL_DATA_LEN

8 bits

LOGIC_ADDR1

8 bits

LOGIC_ADDR2

LOGIC_ADDR4 LOGIC_ADDR4

LOGIC_ADDR5 LOGIC_ADDR6

TOTAL_DATA_LEN

8 bits

LOGIC_ADDR1

8 bits

LOGIC_ADDR2

LOGIC_ADDR4 LOGIC_ADDR4

LOGIC_ADDR5 LOGIC_ADDR6

TOTAL_DATA_LEN

8 bits

…

TIME_SLOT

(Communication

Window)

ADDR_TABLE

SCHEDULE_TABLE

SLOT_DURATION

BUS_TYPE BASE_ADDR

3 bits 2 bits 11 bits

SLOT_DURATION

BUS_TYPE BASE_ADDR

3 bits 2 bits 11 bits

SLOT_DURATION

MULTI

MULTI

MULTI

Fig. 2. Driver table in SpaceWire-D controller

209

PACKET HEADE_POINTER

WRITE_DATA_POINTER

SENT_NOTIFY_POINTER

REPLY_DATA_POINTER

REPLY_NOTIFY_POINTER

UNUSED DATA_LENGTH

REPLY_TIMEOUT

6 bits 10 bits

BUS_TYPE

QUEUE_DEPTH

4 bits

FLAGS

4 bits3 bits3 bits2 bits

TX_EN

UNUSED WRITE_idx READ_idx

PRIORITY LOGIC_ADDR

TX Information Queue k

…

T
X

 In
fo

rm
atio

n
 Q

u
eu

e

…

TX Information Queue n

WRITE_cnt READ_cnt

Segment 1 of user control memory

Segment 64 of user control memory

…

Fig. 3. Structure of user control memory

The user control memory contains 64 segments, each

segment is actually an information queue to support transaction

group, and the head of each segment provides the reading and

writing information of TX information queue. In addition, each

segment is divided into accessible spaces and inaccessible

spaces; the accessible space in the Fig. 3 is represented by

white areas, while the inaccessible space is represented by the

shaded area. The accessible space mainly provides the

information of data update flag (TX_EN), priority, bus type,

destination node logical addresses, and the memory address

pointer and data length and other information that RMAP core

or user-defined protocol required.

When a certain time-slot comes, SpaceWire-D controller

get the information in user control memory, and judge whether

the data is updated, the bus type is same as indicated in

associated index of SCHEDULE_TABLE, the logic address

exist in ADDR_TBLE, and finally, whether the total data

length is less than the specified maximum length in the

ADDR_TBLE. When meet the above conditions, the RMAP

core or SpaceWire-D core itself start data transmission

depending on the bus type and address pointer. If there are

multiple data update region in TX information queue, the static

bus and dynamic bus read user control memory sequentially to

transfer data, while the asynchronous bus read information in

accordance with the highest priority.

It is important to note, SpaceWire-D controller does not

distinguish between current transaction group and next

transaction group for the reason that each time-slot corresponds

to a separate base address. The current transaction group and

the next transaction group can be associated with different base

address, and the user application can choose to visit which base

address of user control memory according to the current

transaction group and next transaction group. For example, the

time-slot 0 and time-slot 10 are all assigned to dynamic bus 1,

the base address of time-slot 0 and time-slot 10 are set

differently, and the current transaction group and the next

transaction group can be realized by access two base addresses

by turns. The base address associated to time-slot 0 and time-

slot 10 can also be set to the same, and only the current

transaction group is realized.

III. CONSTRUCTION OF SPACECRAFT AVIONICS

COMMUNICATION NETWORK BASED ON SPACEWIRE-D

The SpaceWire-D controller is used as the bus interface

unit of the hardware modules to connect with the SpaceWire,

and realize the data communication between the host controller

(all-purpose interface control or CPU) of hardware and

SpaceWire network.

A. The Composition of Spacecraft Avionics

The design of spacecraft avionics follows module and open

structure [4]. Based on the analysis and abstract of system

function, the nine standard and generic hardware modules with

independent design and test capacity and a series of software

component have been designed, as shown in Fig. 4. These

hardware module and software components as the underlying

fundamental support and under the framework of avionics

standard bus architecture, the avionics equipment (management

unit) with specific features can be designed by assembling

different hardware module through internal communication bus,

and to establish a complete avionics by aid of connecting every

management unit through external bus [5].

Spacecraft Avionics System

Manage Unit 1 Manage Unit 2 Manage Unit n
Standard

External Bus
…

TC/TM

Channel

gateway

Module

ON/OFF

Command

Module

High

Current

ON/OFF

Command

Module

Power

Drive

Module

EED

manage

Module

Telemetering

Data Acquisition

Module

BUS

Communication

and Time Sync

Module

General

CPU

Module

Mass

Memory

Module

Operating

System and

Software

Component

Standard

Internal

Bus

Spacecraft

Avionics BUS

Structure

Nine standard hardware module
Fig. 4. Hierarchy of spacecraft avionics system

210

B. Application of SpaceWire-D Controller in Avionics

SpaceWire has been adopted as the internal communication

bus between hardware modules within avionics management

unit, and the SpaceWire network as the “virtual backplane” of

equipment, to realize the interconnection between each

hardware module through SpaceWire-D controller. In addition,

besides the general CPU module, other hardware module

configures all-purpose interface controller to control

SpaceWire-D controller and as the communication bridge

between SpaceWire-D controller and functional circuit. The

all-purpose interface controller and SpaceWire-D controller are

the uniform configurations of hardware module, while

functional circuit is varied depend on the function of hardware

module.

The external communication bus between management

units also chooses SpaceWire. This makes the avionics with

the same structure and interface, internal and external bus with

the same communication protocols and access mechanisms. As

a result, there is no level and grade difference and can achieve

distributed and parallel operation between avionics equipment,

and more important, this makes the avionics has the capacity of

task migration, system reconstruction, coordination and

cooperation among different equipment. The schematic

diagram of the avionics communication network based on

SpaceWire-D is shown in Fig. 5.

SpaceWire

Router

SpaceWire Router

……

SpaceWire-D

Controller

CPU

…

1
5
5
3
B

SpaceWire-D

Controller

Interface

Controller

Function

Circuit

SpaceWire-D

Controller

Interface

Controller

Function

Circuit

O
N

/O
F

F

C
o
m

m
an

d

T
elem

eterin
g

D
ata S

D
O

S
D

I

P
P

S

SpaceWire Router

SpaceWire-D

Controller

Interface

Controller

…

Function

Circuit

SpaceWire-D

Controller

Interface

Controller

Function

Circuit

SpaceWire-D

Controller

Interface

Controller

Function

Circuit

Manage Unit 1 Manage Unit n

…

1
5
5
3
B

O
N

/O
F

F

C
o
m

m
an

d

T
elem

eterin
g

D
ata S

D
O

S
D

I

P
P

S…

1 2

1 2 7

8

1 2 7

8

Fig. 5. Example of avionics communication network based SpaceWire-D controller

IV. DETERMINISTIC COMMUNICATION AND DISTRIBUTED

CONTROL OF AVIONICS BASED ON SPACEWIRE-D

Relying on the time planning of SpaceWire-D and unify

interface of the hardware module, makes it easy to realize

deterministic communication and distributed control of

avionics.

A. Realization of Deterministic Communication in SpaceWire

Network

The communication network based on SpaceWire-D with

global time planning characteristics, SpaceWire node and

packets according to the arranged time-slot for transmission,

there is no link resource competition and conflicts to ensure

packet transmission latency and deterministic communication.

In order to ensure no link resource competition and

collision in any time-slot, any target node only allows one

initial node to access. Take the avionics communication

network in Fig. 5 for example; each management unit contains

seven hardware module, and two management units through

port 1 and port 2 of SpaceWire router for connection. Each

hardware module is numbered by the connection port of the

router, and the number of target node that initial node allowed

to communicate is six in one time-slot. The time-slot planning

schematic is shown in Table 1.

TABLE I. EXAMPLE OF TIME-SLOT LAYOUT

Time-Slot Initial Node Target Node

0 1-1

2-1

1-2,1-3,1-4,1-5,1-6,1-7

2-2,2-3,2-4,2-5,2-6,2-7

1 1-2

2-2

1-1,1-3,1-4,1-5,1-6,1-7

2-1,2-3,2-4,2-5,2-6,2-7

2 1-3

2-3

1-1,1-2,1-4,1-5,1-6,1-7

2-1,2-2,2-4,2-5,2-6,2-7

…… …… ……

7 1-1 2-2,2-3,2-4,2-5,2-6,2-7

8 2-1 1-2,1-3,1-4,1-5,1-6,1-7

9 1-2 2-1,2-3,2-4,2-5,2-6,2-7

10 2-2 1-1,1-3,1-4,1-5,1-6,1-7

…… …… ……

Because of the demand to avoid competition of link

resources, the hardware module that directly connect a router

can communicate simultaneously (such as time-slot 0, 1, 2), but

when the hardware module needs to communicate cross the

router, the communication have to be done in different time-

slot (such as time-slot 7, 8, 9, 10).

Compared to traditional SpaceWire network, SpaceWire-D

not only can improve the deterministic communication, and

data package is no collision and competition between each

other, also can according to the time-slot where packet error, to

realize SpaceWire network fault location, isolation and

restoration expediently.

211

B. Distributed Control in SpaceWire Network

Thanks to the internal bus and external bus of avionics

equipment also use SpaceWire, breaks the boundaries between

equipment on the logic, SpaceWire network as “virtual

backplane”, each hardware module can be seen as independent

SpaceWire node, this makes the communication within and

between management unit can be unified to design.

During the normal operation of the avionics system,

different management units can operation independently and

concurrently, and the data interaction between different

management units is the processed data rather than the original

data and only through general CPU module, reducing data

traffic and improving the efficiency of communication.

When a failure occurs in general CPU module within

certain management unit, the general CPU module within other

management unit can directly take over the task and function of

faulted general CPU module, to control and communicate with

the hardware module within faulted equipment for task

migration and system reconfiguration.

During the system reconfiguration and task migration, there

is no need to change the configuration of driver table, but just

reconfigure router table to make the logic address of fault

general CPU module can be routed to the migrated general

CPU module. However, there may appear a plurality of

hardware modules to transmit data to a general CPU module in

the same time-slot and need to reserve bandwidth when design

SpaceWire network and SpaceWire-D driver table. There is

another way to replace the destination logic address of the

RMAP packet from the fault general CPU module to the

migrated general CPU module directly, this need to provide

corresponding mechanism to control all-purpose interface

controller using new logic address when generating RMAP

packet. This mechanism maybe implemented in sequent design.

V. FOLLOW-UP WORK

Although the SpaceWire-D can bring more benefits for the

network communication, it still faces some difficulties in the

process of network design, which will be optimized and

improved in the following work.

 The time-slot planning is mainly dependent on manual

work at present, which is very difficult and even

cannot be completed when network contains more

SpaceWire node, so it must to design simulation or

calculation software to achieve the optimal timing

planning.

 In the current design, the Time-Code have to be

broadcasted frequently when time-slot duration is

small, and cause the waste of network resources.

Therefore, the future design will use local clock to

generate multiple time-slot between two Time-Code,

and Time-Code only to synchronize local time with

global time.

VI. CONCLUSIONS

Through the SpaceWire-D realized the deterministic

communication and distributed control, not only reduces the

difficulty of avionics controller real-time multitasking, and

enhances the system’s ability to tolerate failure with the help of

distributed control and faulty recovery. This advances the

utilization of fault equipment hardware modules and the

realizability of task migration, the robustness of switched

network data communication and processing also be improved

significantly.

REFERENCES

[1] DI Suran, ZHANG Weigong, CHEN Chuan, BA Feng, ZHOU

Huazhang, WANG Jiajia. “The Development of SpaceW ire

Simulation System Oriented Onboard Data M anagement

System,” MICROELECTRONICS& COMPUTER, vol. 29, pp.

164-167, January 2012.

[2] XU Shuqing ， WANG Zhen ， DONG Yaohai ， LI Qing.

“Research and Development of SpaceWire and SpaceFibre High

Speed Bus,” AEROSPACE SHANGHAI, vol. 31, pp. 29–36,

2014.

[3] YANG Zhi, LI Guojun, YANG Fang, LIU Shengli. “Design of

Communication Protocol for SpaceWire On-Board Networks,”

Journal of Astronautics, vol. 33, pp. 200–209, February 2012.

[4] ZHAO Heping. “To build a highway to spacecraft

intelligentization with avionics technology,” Spacecraft

Engineering, vol. 24, pp. 1–6, December 2015.

[5] Yang Tao, Li Chengwen, Yang J unxiang, Gao Yang, Wang

Chunwei, Liu Yu. “Design and Application of the Mass

Memory Module for Distributed Computer System,” Computer

Measurement&Control, vol. 22, pp. 909–911, 2012.

212

Network Latency Analysis of a SpaceWire-based
Control System for Space Robotic Arm

SpaceWire missions and applications, Short Paper

Giuseppe Montano, Marek Rucinski (Authors)
Data Processing Advanced Studies Group

Airbus Defence and Space Limited
Stevenage, United Kingdom

giuseppe.montano@airbus.com
marek.rucinski@airbus.com

Elie Allouis1, Olivier Notebaert2, David Jameux3
(Co-Authors)

1/Airbus Defence and Space Limited, UK
2/Airbus Defence and Space SAS, France

3/European Space Agency, The Netherlands

Abstract— The Lightweight Advanced Robotic Arm

Demonstrator (LARAD) is a state-of-the-art, two-meter long
robotic arm for planetary surface exploration currently being
developed by a UK consortium led by Airbus Defence and Space
Limited under contract to the UK Space Agency (CREST-2
programme). LARAD has a modular design, which allows for
experimentation with different electronics and control software.

As ESA is drafting plans to address the design of sample return
missions from key locations such as a Mars or Phobos, a number
of technology developments are being undertaken across Europe
to raise the maturity of key enabling systems, such as sample
handling and robotic manipulators. One of these technologies is a
high-TRL, SpaceWire-based control system for robotic arms
currently being investigated by Airbus Defence and Space. This
paper presents the results of a worst-case latency analysis of the
fully SpaceWire-based control system currently being developed
for LARAD. Some of the results are general enough to be
extended to other robotics applications.

Index Terms—SpaceWire, Latency, Robotics, Robotic Arm,
Planetary Exploration.

I. INTRODUCTION
The control system of the Lightweight Advanced Robotic

Arm Demonstrator (LARAD) is currently based on a
combination of two communication protocols, Ethernet and
CAN. The bandwidth limitations of the CAN protocol
(maximum 1 Mbps, half duplex) have led to the need for the
development of a new control system architecture for LARAD
fully based on the SpaceWire protocol. The higher bandwidth
provided by the SpaceWire protocol will allow for the adoption
of advanced control schemes potentially based on multiple
vision sensors and for the handling of sophisticated end-
effectors that require fine control, such as science payloads or
robotic hands. A feasibility assessment study has been
performed recently. Preliminary system-level results have been
presented at the Data Systems In Space (DASIA) Conference
in 2015 [1]. Here, final and more detailed results regarding
latency analysis are presented, including implications in terms
of reliability and predictability of the behaviour of the LARAD
control system.

SpaceWire has a technology development roadmap towards
the support of Command & Control on board spacecraft [2].
The analysis performed in this study contributes and supports
such roadmap by providing inputs from the space robotics
domain.

In the remainder of the paper, the latency analysis is
structured as follows. First, timing requirements of the
LARAD OBC-JE interface (On-Board Computer – Joint
Electronics) are established. Second, worst-case analysis
related to the current CAN implementation is presented.
Finally, a worst-case analysis for a SpaceWire implementation
of the full control system is introduced and compared to the
CAN version, covering the analysis of nominal and fault
conditions, with and without the end-effector (EE).

II. TIMING REQUIREMENTS
The nominal rotation rate of the LARAD joint motors is

around 9000 rpm. At this rate, full motor revolution happens at
the frequency of 150 Hz, taking approximately 6.7 ms to
complete. Design of the control system envisions that, in the
worst case (i.e. when motion profile computation is performed
by the OBC), motor control commands, consisting of position
and rate demands for the PID controller, would have to be
transmitted to the JE with 10 Hz frequency, i.e. at 100 ms
intervals. Ten Hertz is also the frequency at which JE telemetry
is acquired.

The above figures allow concluding that in order to achieve
smooth motion, JE must receive and process the position/rate
demand within 100ms after the previous one. In order to
provide sufficient margin for the delays connected with
processing, it may be concluded that the worst-case latency
resulting purely from communication should be kept within
one order of magnitude less that the deadlines discussed above,
i.e. it should not exceed 10 ms.

III. WORST-CASE LATENCY ANALYSIS – CAN
CAN has a bus architecture with a well-defined frame

sizing and medium arbitration; the mechanism of prioritization
is a key determinant for the communication delays. These
features simplify worst-case latency analysis.

213

Table I shows the packets prioritisation in the current
version of the LARAD Data Communication Definition
between the OBC and Joint Electronics. Lower values take
priority. “JE-X” designates a specific JE module (X can take
values 0-5), “*” indicates broadcast.

TABLE I. PACKETS PRIORITISATION OF THE LARAD OBC-JE PROTOCOL

Message
priority Message name Sender Recipient

0 Emergency Stop OBC JE-X or *
1 Non-emergency Stop OBC JE-X or *
2 Position Control OBC JE-X
3 Torque Control OBC JE-X
4 Start Motion OBC JE-X
5 Brake Control OBC JE-X
6 Parameter Update OBC JE-X
7 Error Message JE-X JE-X
8 Telemetry JE-X JE-X

Considering message size, frame overhead due to the CAN

standard and bit stuffing mechanism [3], the worst-case
estimates shown in Table II are calculated for LARAD,
assuming the bit rate of 1Mbps and extended frame format.

TABLE II. WORST-CASE SINGLE PACKET TRANSMISSION LATENCIES
(CAN, EXTENDED FRAME FORMAT, 1 MBPS BIT RATE, 6-BIT INTER-FRAME

DELAY)

Message
name

Worst-
case

stuffing
bits

Worst-
case frame
size [bits]

Worst-
case single

frame
delay [s]

Worst-
case total

packet
delay [s]

Emergency
Stop 17 105 105.0E-6 105.0E-6

Non-
emergency

Stop
17 105 105.0E-6 105.0E-6

Position
Control 25 153 153.0E-6 153.0E-6

Torque
Control 22 134 134.0E-6 134.0E-6

Start
Motion 19 115 115.0E-6 115.0E-6

Brake
Control 19 115 115.0E-6 115.0E-6

Parameter
Update 25 153 153.0E-6 630.0E-6

Error
Message 20 124 124.0E-6 124.0E-6

Telemetry 25 153 153.0E-6 630.0E-6

The analysis of all possible combinations of messages with

the features showed in Table II yields a worst-case sequence of
messages potentially leading to the worst-case latencies for the
messages transmitted over CAN bus given in Table III.

TABLE III. WORST-CASE OBC-JE TRANSMISSION LATENCIES (CAN,
EXTENDED FRAME FORMAT, 1MBPS BIT RATE, 6-BIT INTER-FRAME DELAY)

Message name Worst-case transmission delay [s]
Emergency Stop 105.0E-6

Non-emergency Stop 105.0E-6
Position Control 153.0E-6

Torque Control 134.0E-6
Start Motion 115.0E-6

Brake Control 115.0E-6
Parameter Update 630.0E-6

Error Message 7.0E-3
Telemetry 10.2E-3

Table II reveals that the worst-case latency upper bound for

the Telemetry message meets the timing requirements
discussed in Section II. However, values are close to the
established acceptability threshold (10 ms). The future use of
more sophisticated end effectors and control strategies
involving additional sensors requires higher bandwidth, beyond
the possibilities offered by CAN.

IV. WORST-CASE LATENCY ANALYSIS METHOD FOR
SPACEWIRE

The SpaceWire protocol allows for the setup of networks
with arbitrary topology and traffic. Therefore, calculating
worst-case latencies in this kind of networks is not trivial. A
pessimistic upper-bound method to calculate the actual worst-
case latency values has been proposed [4], which inherently
over-estimates the figures to a certain extent, similarly to what
was done with the analysis for CAN presented in the previous
section.

Unlike the current CAN-based control system, the LARAD
SpaceWire control system will have to be able to host an
exchangeable End Effector (EE). As a result, the resulting
packet flows are summarised in Table IV.

TABLE IV. PACKET FLOWS IN THE LARAD CONTROL SYSTEM
SPACEWIRE NETWORK

Packet
Flow Source Destination Packet size

Tf
fOBCJE-X OBC JE-X for X = 0..5 24

fJE-XOBC JE-X for X = 0..5 OBC 24

fOBCEE OBC EE TOBCEE

fEEOBC EE OBC TEEOBC

The End Effector is intended to be exchangeable.

Therefore, the properties of the flows fEEOBC and fOBCEE
cannot be fixed at this point. They will be treated as additional
variables in the analysis. This leads to the following parameters
on which worst-case network latencies depend:

• Spacewire network topology and packet routing;
• Link bit rate;
• Maximum sizes of the packets transmitted between

the EE and the OBC in both directions.
A parametric analysis focusing on these three factors is

presented in the next sections.

V. SPACEWIRE LATENCIES ANALYSIS – NO END EFFECTOR
In a configuration with no end effector, EE and JE traffic

do not interact. This case provides a baseline for comparison
with the CAN-based design (Section III), in which the EE is
controlled via a dedicated bus. Furthermore, this will cover the

214

nominal scenarios for those network topologies which allow
routing motor control flows independently of the End Effector
data flows (i.e. doubly-linked chain and ring topologies); note
that all the network topologies allowed in LARAD are
discussed in details in a previous publication [1].

Assuming a link bit rate C of 1 Mbps, the method of
Ferrandiz et al. yields, for the chain, ring, interleaved ring, and
doubly-linked chain topologies, the worst-case latency upper
bounds shown in Fig. 1.

The method of Ferrandiz et al. [4] provides what can be
argued to be very pessimistic latency figures. In order to get a
better idea about the expected performance of the SpaceWire
implementation of the LARAD control system, let us consider
an optimistic scenario in which packets do not delay one
another. In this case, network latency is simply the time
necessary to transmit the longest packet between the furthest
JE node and the OBC. This results in latency and
corresponding maximum achievable control loop frequency
figures shown in Table V.

Figure 1a shows the obtained upper-bounds on worst-case
latencies for the flows fOBC→JE-X (telecommand), and Fig. 1b
for the flows fJE-X→OBC (telemetry).

Note the considerable (one order of magnitude) disparity
between the pessimistic and optimistic estimates obtained for
the chain topology for the 1 Mbps link bandwidth. The
behaviour of the network in practice will be somewhere
between these figures.

(a)

(b)

Fig. 1. Worst-case SpaceWire network latencies without the EE data flows
(C = 1 Mbps) for Joint Electronics telecommand (a) and telemetry (b)

TABLE V. OPTIMISTIC SPACEWIRE NETWORK LATENCIES WITHOUT THE
EE DATA FLOWS FOR JOINT ELECTRONICS TELECOMMAND AND TELEMETRY

C [Mpbs] 1 10 200

Topology Latency
[s]

Freq.
[kHz]

Latency
[s]

Freq.
[kHz]

Latency
[s]

Freq.
[kHz]

Chain 195.00
E-06 5.13 22.20E-

06 45.05 3.96E-06 252.53
Ring / I-Ring /

D-Chain
193.50
E-06 5.17 20.70E-

06 48.31 2.46E-06 406.50

Calculations presented so far in this section assume that the
End Effector is either not present, it does not communicate
with the OBC during the arm movement, or its data flows are
routed separately from the JE data flows. The latter is
achievable in the doubly-linked chain and ring topologies. In
this case, these become equivalent to the chain topology
without the EE traffic and thus are expected to offer the same
performance. In the case of the remaining SpaceWire network
topology options (chain and interleaved ring), for the analysis
to be more representative, the interaction between the motor
control and End Effector traffic needs to be taken into account.
The same applies for the doubly-linked chain and ring
topologies when some of the links are lost due to failures. We
investigate these scenarios in the next sections.

VI. SPACEWIRE LATENCIES ANALYSIS – CHAIN AND
INTERLEAVED RING TOPOLOGIES WITH EE TRAFFIC

The LARAD End Effector is intended to be exchangeable.
Therefore, a parametric analysis is proposed here, assuming
different maximum sizes of the End Effector traffic packets
(for both telecommand and telemetry).

Assuming that the ranges of realistic telecommand sizes is
covered by the values of TOBCEE of 128, 256, 512, and 1024
bytes, and of realistic telemetry sizes by the values of TEEOBC
equal to 1, 16, 128, and 1024 KB, the upper bounds on worst-
case latencies of the OBC-JE communication in the chain
network with link speed of 10 Mbps are as shown in Fig. 2.

The overall conclusion from the latency analysis for the
network with chain topology is that, should it be adopted,
careful attention would have to be paid to the properties of the
End Effector protocols: End Effector communication shall not
disrupt the operation of the LARAD control system.

(a)

(b)

Fig. 2. Worst-case SpaceWire latencies in a network with chain topology
(C = 10 Mbps) for JE telecommand (a) and telemetry (b)

215

More optimistic conclusions can be drawn in the case of the
Interleaved Ring network topology. Although End Effector and
Joint Electronics data flows cannot be routed completely
independently in this topology, it is possible to set up packet
routing in such a way that End Effector telemetry does not
interfere with any other data flow [1].

The upper bounds on worst-case latencies for a network
with such routing, calculated under the same conditions as for
the chain topology, are shown in Fig. 3. EE telecommand data
flows introduce increased latencies on the data flows of the JE
modules which they share communication links with.
However, the interference is at acceptable levels for all
considered packet sizes. Maximum obtained latency bounds
are 0.992 ms for JE telemetry and 1.68 ms for JE telecommand
(both for JE-1). Note that in the case of JE telemetry, latency
values do not depend on the EE telemetry maximum packet
size, as the flows do not interact. Increased latencies in the case
of JE-1, JE-3, and JE-5 are caused by the fact these telemetry
flows interact with their own telecommand flows, as they are
all transmitted in the same direction along the ring.

(a)

(b)

Fig. 3. Worst-case SpaceWire latencies in a network with interleaved ring
topology (C = 10 Mbps) for JE telecommand (a) and telemetry (b)

The qualitative conclusion from the analysis in the presence

of the EE is that EE telemetry traffic, due to its large packet
sizes, can be very disruptive in terms of latency performance to
the data flows it shares communication links with. In order to
guarantee that motor control communication meets the
assumed deadlines at the link speed of 10 Mbps, the maximum
allowable size of the EE Telemetry packet in the case of the
chain topology is only around 16 KB. The case of the
interleaved ring topology demonstrates that if EE telemetry
traffic can be isolated, much more optimistic latency estimates

are obtained. Even if sophisticated routing set-up is needed,
figures indicate it is worth the effort.

VII. SPACEWIRE LATENCIES ANALYSIS – CONTINGENCY
SCENARIOS

The distinct advantage of the doubly-linked chain, ring, and
interleaved ring topologies in comparison to the chain topology
is the resistance of the former three to link failures. For the first
two topologies, a failure of any of the SpaceWire links (except
for the internal links between JEs and their built-in SpW
Switches) means that EE messages cannot be routed
independently from the motor control messages any more. The
extent to which link loss affects worst-case latency estimates
for each of these three topologies is assessed in this section.

Multiple different points of failure are possible for doubly-
linked chain, ring, and interleaved ring topologies. Here the
analysis focuses on the representative cases shown in Fig. 4.

Fig. 4. Example failure points (red crosses) chosen for the doubly-linked

chain topology (a), ring topology (b) and interleaved ring topology (c)

For telecommands, the estimated latencies are all well

within the assumed acceptable range (10 ms). The largest
figures have been obtained for the doubly-linked chain
topology – about 2.6 ms for TOBCEE of 1 KB, and about 1.4 ms
for TOBCEE of 512 B; in all other cases the estimated worst-
case latencies are below 1 ms. The reason behind increased
estimates for the doubly-linked chain topology is that in this
case the interaction between the JE and EE data flows may be
indirect, and therefore the delay caused by EE packets may be
inflicted multiple times (e.g. flow fOBCJE-0 is potentially
delayed by flows fOBCJE-3, fOBCJE-4, and fOBCJE-5, each of
which can be delayed on the link between JE-2 and JE-3
routers by packets belonging to fOBCEE). In situations depicted
in Fig. 4b and in Fig. 4c, according to the calculation method
[4] adopted, the delay caused by the EE packets may be
inflicted only once, in the OBC node, in which all interacting
packet flows originate. As the result, figures obtained for
telecommands sent over ring and interleaved ring topologies
are identical. As may be expected, they are also equivalent to
the performance of the simple chain topology without failures.

Upper-bounds on the worst-case network latencies
calculated for the three scenarios for both telecommands and
telemetries are shown in Fig. 5, Fig. 6 and Fig. 7.

216

(a)

(b)

Fig. 5. Worst-case SpaceWire latencies for the JE telecommand (a) and
telemetry (b) data flows in the doubly-linked chain network topologies with

failures as per Fig. 4a

(a)

(b)

Fig. 6. Worst-case SpaceWire latencies for the JE telecommand (a) and
telemetry (b) data flows in the ring network topologies with failures as per Fig.

4b
The general conclusion from the analysis of the worst-case

latencies in the fail-over scenarios is that although the
considered network topologies offer resistance to failures in the
sense of network connectivity, the resulting jitter in
communication timings may cause it to be challenging to
guarantee reliable operation of the LARAD control system in
parallel with the End Effector payload.

(a)

(b)

Fig. 7. Worst-case SpaceWire latencies for the JE telecommand (a) and
telemetry (b) data flows in the interleaved ring network topologies with failures

as per Fig. 4c

VIII. CONCLUSIONS
A system-level evaluation of a new SpaceWire version of

the LARAD control system has revealed a number of benefits
compared to the current CAN-based version [1]. The following
SpaceWire network topologies have been taken in
consideration for LARAD: star, chain, doubly-linked chain,
ring, interleaved ring.

The latency analysis results presented in this paper
contribute to the general conclusion that the interleaved ring
topology provides the best trade-off in terms of performance
and reliability of the overall control system.

The SpaceWire-based version of the LARAD control
system was analysed with asynchronous communication
because of assumptions on the functioning of the End Effector;
this has the by-product of high jitter. Further analysis should
consider the use of SpW-D 2.0 which will provide a mix of
synchronous and asynchronous communication services, hence
reducing jitter to very low values for critical communications
(LARAD control).

REFERENCES
[1] M. Rucinski, A. Coates, G. Montano, E. Allouis and D. Jameux,

“SpaceWire-based Control System Architecture for the
Lightweight Advanded Robotic Arm Demonstrator (LARAD),”
in DAta Systems In Space (DASIA), Barcelona, Spain, 2015.

[2] D. Jameux, “SpaceWire for Command & Control,” ESA,
Noordwijk, The Netherlands, 2015.

[3] Robert Bosch GmbH, “CAN Specification,” 1991.
[4] T. Ferrandiz, F. Fabrice and C. Fraboul, “Worst-case end-to-end

delays evaluation for SpaceWire networks,” Discrete Event
Dynamic Systems , vol. 21, no. 3, pp. 339-357, 2011.

217

SpaceFibre Port IP Core (GRSPFI)
SpaceFibre, Poster Paper

Felix Siegle, Sandi Habinc
Cobham Gaisler AB
Gothenburg, Sweden

[felix | sandi] @gaisler.com

Johannes Both
European Space Agency

Noordwijk, The Netherlands
johannes.both@esa.int

Abstract—Cobham Gaisler presents the SpaceFibre Port IP
Core implementation GRSPFI. A fully validated VHDL imple-
mentation is readily available.

Index Terms— ASIC, FPGA, Networking, SpaceFibre

I. INTRODUCTION
SpaceFibre is a new high-speed serial data link specifically

designed for spaceflight applications that incorporates several
Quality-of-Service (QoS) techniques. Independent communica-
tion channels can be combined into a single network stream by
means of virtual channels. The virtual channels are multiplexed
based on reserved bandwidth, priorities, time-slots, or a
combination of these mechanisms. Integrated Fault Detection,
Isolation and Recovery (FDIR) support guarantees fault-free
communication. Comparable to other modern intercommunica-
tion architectures like Serial RapidIO, Serial ATA or PCI
Express, SpaceFibre communicates over a Serialiser/De-
serialiser (SerDes) device and can therefore reach throughput
rates of several Gigabits Per Second (Gbps). However, due to its
native support of the SpaceWire packet format, its small area
overhead and its high performance, SpaceFibre is particularly
well suited for future high-speed on-board communication.

Cobham Gaisler closely follows the standardization efforts
of the European Cooperation for Space Standardization (ECSS),
which will soon publish the SpaceFibre Specification E-ST-50-
11C. Already now, Cobham Gaisler can provide a draft single-
lane SpaceFibre IP core that can easily be implemented on
modern FPGA devices like Xilinx Virtex-5 or Microsemi
RTG4.

II. SPACEFIBRE
SpaceFibre is a high-speed serial link mainly designed for

payload data processing applications on board spacecraft. Like
many other modern network architectures, SpaceFibre utilises a
SerDes circuit at its physical layer, allowing data rates of 2 Gbps
and more. The SerDes can either be part of the chip design or a
standalone device can be used.

Interfacing a SpaceFibre port from the user application is
simple as it closely follows the procedure known from
SpaceWire. A SpaceFibre port has one or more pairs of transmit
and receive buffers, referred to as virtual channels, and each
virtual channel acts like a single SpaceWire interface,

Fig. 1. Simplified block diagram of the GRSPFI SpaceFibre Port IP Core.

i.e. several SpaceWire network streams can be multiplexed

into one SpaceFibre network stream. The multiplexer is called
medium access controller and is choosing the active virtual
channel according to a number of Quality-of-Service rules.

Data is always transferred in frames with a size of 256 bytes
or less. While such a data frame is passed to the physical link, it
is also stored in an error recovery buffer. It remains in this buffer
until the destination node acknowledges the correct reception of
the frame, which is detected by checking a CRC checksum at the
end of the frame. However, if the destination node sends a
negative-acknowledgement (NACK) word instead, the frame is
re-transmitted from the error-recovery buffer.

Aside from data frames, SpaceFibre also supports broadcast
frames, which are multi-purpose high-priority messages. These
messages are comparable to SpaceWire time-codes but in
addition to a simple sequence number they also comprise a data
payload of 8 bytes. Broadcast frames are stored in the error
recovery buffer just like the data frames, i.e. they are
automatically retransmitted after a link error.

On the receive side, incoming data from the physical link is
processed continuously, i.e. one 32-bit word is processed every
clock cycle. To avoid buffer overruns in the virtual channel
receive buffers, the communication between a virtual channel
transmit buffer in the local node and the virtual channel receive

218

buffer in the destination node is flow-controlled by means of
Flow Control Token (FCT) words. Just like the data and
broadcast frames, the FCT words are stored in the error recovery
buffer and are therefore retransmitted in case of errors.

III. GRSPFI – SPACEFIBRE PORT IP CORE
A simplified block diagram of the SpaceFibre IP core can be

seen in Figure 1. As described in [1], the SpaceFibre IP port
comprises a data link layer and lane layer. Internally, the data
link layer is further divided into the so-called broadcast layer,
virtual channel layer and retry layer, which are responsible for
the transmission and reception of broadcast frames, for the
transmission and reception of data frames and for the error
recovery mechanism, respectively.

A. Hard Configuration Options
Instantiating the GRSPFI IP Core is straight-forward. The

following configurations options are available at compile time
through VHDL generics:

1) Virtual Channels

• The number of virtual channels.
• The depth of the receive buffers.
• The depth of the transmit buffers.
• Width of the data bandwidth credit counter.
• Bandwidth idle time limit in clock cycles.

2) Broadcast Channel

• Width of the broadcast bandwidth credit counter.
• Minimum bandwidth credit threshold limit.

3) Error-Recovery

• Depth of the data error recovery buffer.
• Depth of the FCT error recovery buffer.
• Depth of the broadcast error recovery buffer.

4) SerDes Interface

• With internal 8B/10B coding: 20-bit or 40-bit
interface, without internal 8B/10B coding: 18-bit or
36-bit interface.

• Enable/disable internal 8B/10B coding.
• Use a separate transmission clock: This feature is

mandatory if the 18-/20-bit SerDes interface is used
and optional in case of the 36-/40-bit interface.

5) Technology

• Use asynchronous or synchronous reset.
• Memory technology: enables the automatic

instantiation of technology-dependent internal
RAMs, including fault-tolerant versions, for
different ASIC and FPGA families.

B. Soft Configuration Options
The following options can be set during runtime:

• Lane Start & Autostart.
• Internal loopback.

• Enable/disable data scrambler.
• Expected broadcast bandwidth value.
• An expected virtual channel bandwidth value for

each virtual channel.
• A timeslot vector for each virtual channel.
• A priority value for each virtual channel.

C. Status Registers and Flags
The GRSPFI IP Core implements all status registers and

flags as required by [1]. They indicate the current state of the
lane (e.g. lane state and RXERR word counter) and data link
layer (e.g. error-recovery retry count, sequence errors, CRC16
errors, virtual channel bandwidth over- and underuse).

D. Interfacing the SerDes
Connecting the GRSPFI IP Core to a SerDes is done through

an interface logic that allows various clocking and data width
schemes, supporting a wide range of available on-chip and off-
chip SerDes circuits. On the transmit side, it comprises the
optional 8B/10B encoder and an optional asynchronous FIFO
used for data width conversion and clock domain crossing. On
the receive side, it comprises the optional 8B/10B decoder, the
optional data path with conversion logic, the word
synchronisation logic and the elastic buffer.

Example 1: A Xilinx RocketIO GTX transceiver [2] with its own
8B/10B coding logic can be interfaced through a 36-bit
interface. Then, only one transmission clock is needed for both
the GTX transceiver and the GRSPFI IP Core.

Example 2: The SerDes of a Microsemi RTG4 device [3] must
be interfaced through its 20-bit wide EPCS interface and does
not include its own 8B/10B coding logic. In this case, the
GRSPFI IP Core can be configured to implement the 8B/10B
encoder and decoder and the asynchronous FIFO on the transmit
side. Then, two transmission clocks are required, one for the
SerDes and one derived clock for the GRSPFI IP Core at half
the frequency. For instance, to achieve an effective link speed of
2.5 Gbps, the SerDes would need to be clocked at 125 MHz and
the GRSPFI IP Core at 62.5 MHz.

IV. VERIFICATION AND VALIDATION
The IP core is fully verified by means of a VHDL testbench

system and validated in hardware.

219

Fig. 2. Block diagram of the GRSPFI SpaceFibre Port IP Core testbench.

A. Verification
The default testbench setup comprises a SpaceFibre port

with four virtual channels as depicted in Figure 2. Four data
generator and data sink processes are connected to the virtual
channel interface as well as one broadcast generator and
broadcast sink process to the broadcast interface. The signals to
the SerDes can either be looped back to the SpaceFibre port
through a link monitor process or directly fed into the testbench
process, allowing two basic operation modes:

• The SpaceFibre port is operated in (external) loopback

mode, i.e. data and broadcasts transmitted by one of the
generator processes arrive in the corresponding sink
process and the link initialisation handshake is done
automatically between the transmit and receive side of
the SpaceFibre port.

• The SerDes signals are directly stimulated, i.e. data and
broadcasts transmitted by one of the generator
processes arrive in the testbench process and the link
initialisation handshake is managed by the testbench
process.

The first operation mode is well suited for testing most

Quality-of-Service features of the port whereas the second
operation mode is particularly useful for driving the port into
states, which are rarely hit during normal operation.

The testbench executes 45 tests altogether, including tests
covering all aspects of the lane layer, the virtual channel data
communication and flow control, the virtual channel QoS
mechanisms (bandwidth allocation, priorities, timeslots,
babbling idiot protection), the reception and transmission of
broadcasts, the correct behaviour of the error-recovery
mechanisms and the data scrambler and de-scrambler.

The IP core was verified according to guidelines of the
European Space Agency (ESA). Full code coverage was
achieved, i.e. 100% statement coverage, 100% branch coverage
and 100% FEC condition terms coverage.

B. Validation
The SpaceFibre IP has been successfully verified in a

hardware testbench as depicted in the block diagram in Figure
3. The IP is configured to have four virtual channels and one
data test block is connected to each of these channels. A data test
block is able to send and receive SpaceWire packets through its
virtual channel with maximum bandwidth. On the receive side,
incoming data is checked for correctness by means of a sequence
number as well as detectors for EOP and EEP characters. In
addition, a timer is running throughout the reception of data,
allowing the calculation of the average data throughput rate.
Similarly, a broadcast test block is connected to the broadcast
interface of the SpaceFibre IP that is able to send and receive
broadcast frames at a configurable frequency. Again, received
broadcasts are checked for correctness and a timer allows the
calculation of the throughput rate. In addition, a counter keeps
track of the number of broadcasts that were received with a Late
flag set to 1. The configuration and status registers of the data
and broadcast test blocks are accessible through an APB bus
interface.

Fig. 3. Block diagram of the hardware validation setup.

A link analyser is placed between the SpaceFibre IP and the

RocketIO GTX transceiver, allowing the monitoring of
incoming and outgoing traffic. The link analyser block can
trigger on specific SpaceFibre control words or specific word
content. A trace buffer is then filled with 8192 values, which can
later be read out through an APB interface.

Communication with the hardware testbench is done through
a UART block that is connected to the APB bus. On the host PC,
GRMON [4] is responsible for setting and reading the
configuration and status registers. Within GRMON, a TCP
server listens for commands. A graphical user interface has been

220

designed that allows a quick and easy validation of the hardware.
A brief overview of its functionality is given in the next sections.

1) Test Software

a) Port Configuration

Fig. 4. Screenshot of the GUI: Port configuration.

The following functions are available on this first tab, see

Figure 4:

• Lane Layer: The 'Start', 'Autostart' and 'Internal

Loopback' control flags can be toggled. All status flags
and values are displayed.  

• Retry Layer: The 'Scrambler Enabled' flag can be
toggled. All status flags and values are displayed.  

• Broadcast Channel: The expected bandwidth value can
be chosen (1% to 95%).  

• Virtual Channels: The expected bandwidth value can
be chosen (1% to 95%), the priority level can be chosen
(0 to 15) and a timeslot vector can be defined as hex
value.  

• A warm reset and SpFi system reset can be triggered.  

b) Data and Broadcast Tests
The following functions are available on the second tab, see

Figure 5:

• Data Tests: Up to 4 SpaceWire addresses, the packet

length as well as the number of packets can be defined.
The transmit and receive side can be enabled separately
and an auto-repeat function allows the continuous
generation of packets. Important status information is
shown, including the average throughput rate for the
last block of packets.

• Broadcast Test: The number of broadcasts, the
broadcast channel as well as the transmission delay
between each broadcast can be defined. Similarly to the
data test blocks, the transmit and receive side can be
enabled separately and an auto-repeat function allows
the continuous generation of broadcasts. Important

status information is shown, including the average
throughput rate for the last block of broadcasts.

Fig. 5. Screenshot of the GUI: Data and broadcast tests.

c) Link Analyser

Fig. 6. Screenshot of the GUI: Link analyser.

On this tab, see Figure 6, link traffic to/from the SerDes can

be analysed. It is possible to trigger on either the receive or
transmit side on the following words: Any, Data/Broadcast
Payload, SKIP, IDLE, INIT1, INIT2, INIT3, STANDBY, LOS,
ACK, NACK, FULL, RETRY, SDF, EDF, SBF, EBF, FCT, SIF
and RXERR. Depending on the word, further trigger conditions
can be added. For instance, the SDF word allows the triggering
on a specific virtual channel number or the EBF word allows the
triggering on a specific sequence number or late flag. In
addition, a sample trigger point can be defined. Once the core is
armed, the software is waiting for the trigger condition to
become true. Then, the 8192 values are transferred to the host
PC and displayed in a table. The table displays the raw data
word, the corresponding K-flags as well as information about
control words. On the receive side, the RX error flags and the
byte alignment flags of the SerDes are displayed as well.
Multiple rows of the table can be selected and exported as a text
file.

Doc. No: SPFI-VVR-0001

Issue: 1 Rev.: 0

Date: 2016-02-29 Page: 41 of 47

Status: Approved

6.1.1 Port Configuration

The following functions are available on this tab:

• Lane Layer: The 'Start', 'Autostart' and 'Internal Loopback' control flags can be toggled. All

status flags and values are displayed.

• Retry Layer: The 'Scrambler Enabled' flag can be toggled. All status flags and values are

displayed.

• Broadcast Channel: The expected bandwidth value can be chosen (1% to 95%).

• Virtual Channels: The expected bandwidth value can be chosen (1% to 95%), the priority

level can be chosen (0 to 15) and a timeslot vector can be defined as hex value.

• A warm reset and SpFi system reset can be triggered.

© Cobham Gaisler AB
ESA contract: 4000116134/15/NL/LF

Deliverable: D3

Figure 4: SpaceFibre IP Core Demonstrator Software: Port Configuration

Doc. No: SPFI-VVR-0001

Issue: 1 Rev.: 0

Date: 2016-02-29 Page: 42 of 47

Status: Approved

6.1.2 Data and Broadcast Tests

The following functions are available on this tab:

• Data Tests: Up to 4 SpaceWire addresses, the packet length as well as the number of packets

can be defined. The transmit and receive side can be enabled separately and an auto-repeat

function allows the continuous generation of packets. All important status information is

shown, including the average throughput rate for the last block of packets.

• Broadcast Test: The number of broadcasts, the broadcast channel as well as the transmission

delay between each broadcast can be defined. Similarly to the data test blocks, the transmit

and receive side can be enabled separately and an auto-repeat function allows the continuous

generation of broadcasts. All important status information is shown, including the average

throughput rate for the last block of broadcasts.

© Cobham Gaisler AB
ESA contract: 4000116134/15/NL/LF

Deliverable: D3

Figure 5: SpaceFibre IP Core Demonstrator Software: Data and Broadcast Tests

Doc. No: SPFI-VVR-0001

Issue: 1 Rev.: 0

Date: 2016-02-29 Page: 43 of 47

Status: Approved

6.1.3 Link Analyser

On this tab, link traffic to/from the SerDes can be analysed. It is possible to trigger on either the

receive or transmit side on the following words: Any, Data/Broadcast Payload, SKIP, IDLE, INIT1,

INIT2, INIT3, STANDBY, LOS, ACK, NACK, FULL, RETRY, SDF, EDF, SBF, EBF, FCT, SIF

and RXERR. Depending on the word, further trigger conditions can be added. For instance, the

SDF word allows the triggering on a specific virtual channel number or the EBF word allows the

triggering on a specific sequence number or late flag. In addition, a sample trigger point can be

defined. Once the core is armed, the software is waiting for the trigger condition to become true.

Then, the 8192 values are transferred to the host PC and displayed in a table. The table displays the

raw data word, the corresponding K-flags as well as information about control words. On the

receive side, the RX error flags and the byte alignment flags of the SerDes are displayed as well.

Multiple rows of the table can be selected and exported as a text file.

© Cobham Gaisler AB
ESA contract: 4000116134/15/NL/LF

Deliverable: D3

Figure 6: SpaceFibre IP Core Demonstrator Software: Link Analyser

221

2) Test Setup, Cases and Results
The testbench uses a RocketIO GTX transceiver tile

available on the Virtex-5 device, which is connected to Serial
ATA connectors on the Xilinx ML510 development board. The
internal data width of the SerDes is 20 bits with a target line
frequency of 2.5 Gbps. The internal 8B/10B encoder/decoder is
enabled and the interface data width is 32 bits. The reference
clock is 100 MHz and provided by the system clock of the
ML510 board.

The GTX transceiver's PLL provides a 125 MHz clock
(TXOUTCLK), which is used to feed both the TXUSRCLK and
RXUSRCLK. For the 32-bit wide interface and the SpaceFibre
IP core a 62.5 MHz clock is needed, however, and therefore
TXOUTCLK is first fed into a DCM that generates this phase-
aligned divided clock.

Standard settings for pre-emphasis and differential swing are
used, however, RX equalization is enabled. The receive side is
terminated with a termination voltage of 2/3 * VTTRX. The
comma detection is set up to detect and align on positive and
negative K28.5 commas. Clock correction for the elastic buffer
is enabled and set up to use the SKIP word as clock correction
sequence.

Near-end PMA loopback was enabled in the RocketIO
Transceiver, i.e. the transmitted data was serialised, looped
back, de-serialised and fed back to the receive side of the
SpaceFibre IP core. This configuration allowed in-depth testing
of all cases listed in Table I. They cover all aspects of SpaceFibre
and were partly conducted over the course of days or even weeks
to ensure data integrity and that the logic is driven in all possible
states.

TABLE I. HARDWARE VALIDATION TEST CASES

Test Case Description Result
Link initialisation handshake test (link start and auto start
mode). Passed

Transmission and reception of data frames. Passed

Data frames interrupted by link resets are resent correctly. Passed

Transmission and reception of broadcast frames. Passed
Broadcast frames interrupted by link resets are resent
correctly. Passed

Scrambled data frames transmitted/received correctly. Passed
Broadcast transmissions do not exceed maximum allowed
bandwidth value. Passed

Priority mechanism for virtual channels works as expected. Passed

Timeslot mechanism for virtual channels works as expected. Passed

Bandwidth limitation of virtual channels works as expected. Passed

Internal loopback mode works as expected. Passed

V. IMPLEMENTATION RESULTS
Example post-P&R results for Virtex-5 FX130 are given in

Table 2. A typical implementation with 4 virtual channels (1024-
words deep transmit and receive buffers) was chosen.

TABLE II. IMPLEMENTATION RESULTS ON VIRTEX-5 FX130

Max. Throughput Rate: > 6.25 Gbps (ƒ = 156.25 MHz)

Slice LUTs: 4318/81920 (5%)

Slice Flip-flops: 1892/81920 (2%)

Block RAMs: 11/298 (3%)

As can be seen from the results, the pipelined structure of the
GRSPFI IP Core allows high throughput rates while keeping
the resource utilisation low. Similar results can be expected for
Microsemi’s RTG4 device and preliminary experiments
showed that small configurations (e.g. with 2 virtual channels)
can also be implemented on older devices like Microsemi’s
RTAX2000.

VI. CONCLUSIONS
Cobham Gaisler offers with the GRSPFI SpaceFibre Port IP

core a fast and easy to implement single-lane implementation of
SpaceFibre with low area and power overhead. It is fully verified
in a complex VHDL testbench environment and validated by
means of a FPGA prototype system that also includes a versatile
test and debug software.

REFERENCES

[1] Space Technology Center/University of Dundee, “SpaceFibre

Specification Draft H1”, Aug. 2015.
[2] Xilinx, "Virtex-5 FPGA RocketIO GTX Transceiver. User Guide

UG198". Xilinx, Oct. 30, 2009. [Online]. Available:
http://www.xilinx.com/support/documentation/user_guides/ug19
8.pdf.

[3] Microsemi, “RTG4 FPGA High-Speed Serial Interfaces. User
Guide UG0567”. [Online]. Available: http://www.micro-
semi.com/document-portal/doc_view/134409-ug0567-rtg4-fpga-
high-speed-serial-interfaces-user-guide.

[4] Cobham Gaisler, “GRMON Website”. [Online]. Available:
http://www.gaisler.com/index.php/products/debug-tools/grmon.

222

Synchronization of Distributed Interrupts Delivery in

Aerospace Onboard Networks

Network and protocols, Short Paper

Liudmila Koblyakova, Elena Suvorova, Yuriy Sheynin
Institute of High-Performance Computer and Network Technologies

St. Petersburg State University of Aerospace Instrumentation

St. Petersburg, Russian Federation

liudmila.koblyakova@guap.ru, suvorova@aanet.ru, sheynin@aanet.ru

Abstract - SpaceWire is integrated networking technology

where the data packets and control traffic in the form of hard

real-time signals are transmitted throw the same links of

communication network. Last decades for hard real-time signals

transmission in onboard networks the specialized buses like

CAN and MIL-STD 155b and sideband signals were used. All

buses have the property that the signal from the source node to

all other nodes propagates simultaneously, so there is no jitter

for signal delivery. When the industry moves to a common

communication medium for control and data traffic

transmission through network with routing switches and point-

to-point connections, there is a problem of synchronization hard

real-time signals delivery from the source to all other nodes

because of different distance (number of switches and link

speeds in a path) between source and receiver.

There are many different algorithms and methods for the

system time synchronization. In this paper we consider the

questions of delivery synchronization of distributed interrupts

which intended to control and inform the devices about critical

system events in hard real-time.

Index Terms—hard real-time signaling, Distributed Interrupts,

synchronization

INTRODUCTION

SpaceWire standard has developed specially for aerospace

applications, [1]. For every onboard system the important task

is the control signal transmission in hard real-time.

The SpaceWire standard for hard real-time signal

transmission uses the mechanism of time-codes transmission

and the distributed interrupts mechanism. The distributed

interrupts mechanism can work in two modes: with or without

acknowledges. They can be used for:

 for control signal transmission in hard real-time

(distributed interrupts in mode with

acknowledges);

 for notification signals transmission in hard real-

time (distributed interrupts in mode without

acknowledges);

 for synchronization of distributed actions

(distributed interrupts in mode without

acknowledges).

In this paper we consider the use case of distributed

interrupts mechanism for distributed actions synchronization.

FORMULATION OF THE DISTRIBUTED ACTIONS

SYNCHRONIZATION TASK

Assume that it is necessary to synchronize the certain

actions in the group of devices. We use the distributed

interrupts in the mode without acknowledge. The source of

the interrupt is the one pre-known node, which sends the

distributed interrupt when:

 particular event appears and the time between

events can be different, or,

 by timer, and the time between events is the

same.

The recipients of these interrupts are pre-defined group of

the devices in which some distributed action should be

synchronized. The devices of this group could be concentrated

at one part of the subnetwork/region, or could be distributed

between different parts of network. The propagation time of

the distributed interrupt code from the source to all recipients

might be different, even though small, therefore there is the

task of distributed interrupts delivery synchronization from

the known source to the group of recipients which are known

in advance, at system design stage. This task requires that

jitter of interrupt code propagation time from the source to all

recipients should be minimized.

The paper [2] describes the time characteristics of

distributed interrupts in general and was basically aimed for

estimation of maximum propagation time and timeouts values.

Let consider the interrupt-code propagation time from the

point of view of our problem.

The maximum propagation time of an interrupt code

between most distanced nodes by the shortest path is defined

in the paper [3]:

ccccbitwtcccQueue TDNTTDTLT))1(()1(max
, (1)

where LQueue – the worst case of queue length with

interrupts/acknowledges codes, D – the number of edges

(links) in the shortest path between the most distanced nodes,

Twtc – interrupt-code propagation time through the router

without taking into account the latency of previous codes

transmission, Tcc – control code propagation time through the

link, Tbit – propagation time of one bit through the link. In our

task we are interested in the mean interrupt-code propagation

time.

223

mailto:liudmila.koblyakova@guap.ru
mailto:suvorova@aanet.ru
mailto:sheynin@aanet.ru

The Interrupt-code from the known source node to each of

the known handler nodes propagates through the shortest path.

Let P – a set of paths from the source node to the n handler

nodes:

P = {P1, P2, …, Pn} (2)

Every path P has a length LP of edges (links):

LP = {LP1, LP2, …, LPn} (3)

The mean propagation time of the interrupt-code through

the LPk path we could write as (4):

),(
1

11 i

Buf
L

i

wtc

L

i i

CC
L

S

N
T

S

N
T i

P

i

P

kP

 (4)

where the first sum defines the transmission time through

the links and Si - is a speed in i-th links of LP path, the second

sum defines the interrupt-code propagation time through the

routers in the path, where the first summand Twtci defines

interrupt-code propagation time without taking into account

the waiting time for transmission of previous codes in every

router, the second summand defines the transmission time of

symbols which are the previous to the interrupt-code, where –

NBufi the number of bit waiting for transmission in buffer of

output port. For every port we get its value of mean

propagation time TLp (5):

},...,,{
21 nP LPLPLPL TTTT (5)

From the equation (4) is seen that jitter depends on the

number of links in the path, the speeds in these links, and if

the network contains the routers of different versions the Twtc

parameter can be different too. Also the value NBufi at each

interrupt-code transmission at every router can be different. It

is obvious that the task of interrupt-codes delivery

synchronization is dependent on the specific structure of

network, their parameters and interposition of the interrupt

source and handlers (nodes which are necessary to

synchronize). Therefore it is hardly ever possible to find the

universal solution of this problem. Further we consider the

different variants of solving this task.

SYNCHRONIZATION OF INTERRUPTS CODE DELIVERY IN A

STATIC SYSTEMS

Under a static system we mean a system with known in

advance topology, links speed, interposition of the interrupt

source and all its handlers – group of nodes, which it is

necessary to synchronize some actions in. For such a system

at the stage of its design it is possible to determine

theoretically the set of paths and their length. By the equation

(4) it can be estimated the value of interrupt-code propagation

time from the source to every handler, because links speed

and the interrupt-code are known and the value of Twtc is

defined by the device manufacturer. It remains to determine

the values NBuf for every output port of every router from the

set of paths. These values depend on the flow intensity of

time-codes and distributed interrupts of other types on the

paths of propagation interrupt-codes for synchronization and

its value can be calculated accurate. Therefore these values

can be chosen by the system designer only approximately,

based on presumptive control code flows in a particular

system.

Then we should calculate all values of the set TLp (5).

Choose the maximum interrupt code propagation time from

the set TLpMAX. Further, based on this maximum value it is

necessary to calculate the correction values TCorr for all other

recipient nodes.

},...,,{
21 nMAXMAXMAX LPLPLPLPLPLPCorr TTTTTTT (6)

The corresponding value of TCorr should be written in

every recipient node. Then, when the interrupt code for

synchronization is received, the node should wait during a

time TCorr before starting the action TCorr, (7):

TAct = TReceive + TCorr (7)

SYNCHRONIZATION OF INTERRUPTS CODE DELIVERY IN

DYNAMIC SYSTEMS

Under a dynamic system we mean a system in which

during the operation devices or channels can be connected or

disconnected, can be changed the link speeds and as

consequence of this the traffic flows may be redistributed.

Interrupt-codes are broadcasted from the source to all other

nodes, so if occurred any changes, under which the network

remains connected, the interrupt-codes would be delivered to

all nodes in the network, but the paths of interrupts-code

propagation could be changed in dependence with network

state in transmission moment. That is why we can not

calculate corrections before restarting the network and then

use it during network operation. The variants of solving the

interrupts-code delivery synchronization task in dynamical

systems can be different, we consider them further.

The theoretical method of interrupt-code delivery

synchronization

In current on-board networks methods of Plug and Play

are actively developing and applying , which allow defining

automatically network structure, including all connections and

links speed, to configure and monitor the network state during

the operation, [4, 5]. If the Plug and Play methods are used in

the network, than the special node (or several nodes) –

network manager, gets and contains all information about

changes of link speed, in including/excluding devices and

channels. In this case calculation of correction values could be

done by a separate application on a node, which has the access

to Plug and Play manager’s data.

The interrupt-code source and handlers are known in

advance; the shortest codes propagation paths and corrections

for every recipient are calculated before network starting or

during initialization. Further, when any changes in the

network occur, the network manager checks whether these

changes relate to the considered interrupt-code propagation

paths. Next, for all paths where have been changes, the

224

application calculates new values of TLp, and check if the

TLpMAX value has changed or not. If TLpMAX value has not

changed, then it is required to recalculate the correction value

TCorr only for nodes, which signal propagation path has

changed. If the maximum value TLpMAX has changed, it is

required to recalculate the correction values TCorr for all

recipient nodes. To provide possibility for changing correction

values TCorr during the network operation, they should be

stored in registers or some memory area, which allow access

for writing by the RAMP protocol, [6].

This method does not required large overheads for the

traffic transmission of statistics, and require only existence of

Plug and Play methods which monitor the changes in a system

and some processing resources in one of the nodes, for

example in the source node of in the manager-node of Plug

and Play.

 The statistical methods of interrupt-code delivery

synchronization

In the statistical method, in contrast to the theoretical, the

interrupt-code delivery time to every recipient node should be

estimated by experiments. Statistics should be collected based

on the which the correction values could be calculated. For the

statistic calculation it is required to measure the interrupt-code

propagation time from the source to the recipient, which in

itself is a difficult task because it requires that the time in all

devices in the network should be synchronized. There are

different time synchronization algorithms [7, 8], but all of

them for synchronization use the time-codes (or packets),

which propagate through the same links and have the same

time delivery jitter as the interrupt-codes have.

If the time in a system is not synchronized then for

measuring of interrupt-code propagation time it is required to

allocate the additional testing interrupt-code types with

acknowledges. Sending the testing interrupt-code and get

acknowledge it is possible to estimate the interrupt-code

propagation time to the recipient. For collecting the statistics it

is necessary to send such tested interrupt-codes many times

that will create a significant additional load of the network

and also takes one or more interrupt-codes types.

These ways for solution of the interrupt-code delivery time

synchronization task will be difficult and expensive in

resources; It does not give the required accuracy also.

Therefore it does not make sense to solve the interrupt-code

delivery synchronization task by statistical methods.

SYSTEMATIC APPROACH TO THE INTERRUPT-CODE

DELIVERY SYNCHRONIZATION

As was mentioned earlier and shown in equation (4), the

interrupt-code delivery jitter is very dependent on network

structure and links speed. The jitter will be greater if the

recipient nodes are placed from the source at different

distance, separated by a different number of routers, and if the

speeds in links differ significantly. So if for some particular

tasks in the network accuracy of interrupt-code delivery

synchronization are important, then this task it should be

solved at the system design stage.

The system structure should be chosen in a way to reduce

difference in distances between the source node and other

recipient nodes of interrupt-codes. All onboard networks for

reliability and fault tolerance have redundancy. This

redundancy should be added in a way, that when some device

(routers or links) fail, t the length of the interrupt-code

propagation path due to its broadcast would not change, or

change insignificantly. It allows minimizing changing of

interrupt-code delivery jitter. In the paper we considered the

problem of interrupt-code synchronization delivery and

described the ways for its solving:

 At the stage of system design we recommend to

choose the network structure in a way, that when

some routers or links fail,the length of the interrupt-

code broadcasting propagation paths due to its are

not changed, or changed insignificantly. Further, if it

necessary, the correction values could be calculated

theoretically for every recipient.

 If the the network changes during its operations

insignificantly, than it is sufficient to use only static

method of interrupt-code delivery synchronization

with the pre-calculated correction values.

 If during the network operation its structure is

changed significantly and the Plug and Play

mechanisms are used, than we recommend to use

data about all changes in the network from the

manager of Plug and Play and, basing on these data,

recalculate the correction values as for a static

system and transmit new values to the recipients by

RMAP command.

To use the methods with statistic collection in onboard

networks is not rational. For a small network with the

interrupt-code time delivery jitter will not be great because of

paths length and speeds will not be differ significantly. If the

network size is big then the process of statistic collection will

be very complicated and recourse-intensive in terms of

memory, traffic and processing consumption that is

unacceptable for onboard applications; furthermore statistical

methods may not to give better accuracy in comparence to

static methods.

REFERENCES

[1] Space Engineering; SpaceWire Links, nodes, routers and

networks, ECSS-E-ST-50-12C, July 2008.

[2] Sergey Gorbachev, Liudmila Koblyakova, Yuriy Sheynin,

Alexander Stepanov, Elena Suvorova, Martin Suess,

“Distributed Interrupt Signalling for SpaceWire Networks”.

Proceedings of the 5th International SpaceWire Conference.

Gothenburg 2013. ISBN: 978-0-9557196-4-6.

[3] Liudmila Koblyakova, Yuriy Sheynin, Elena Suvorova,

“Asynchronous hard real time signals transmission in

embedded networks”, International journal of embedded and

225

real-time communication systems. 2014, v.5(4), October-

December, pp.24-44.

[4] Khramenkova K, Fortyshev E., "Tasks of Decentralized

SpaceWire-Plug-and-Play Algorithm", 17th conference of the

Open Innovations Association FRUCT, Yaroslavl, Russia,

2015, pp. 287-290, Publishing house of research university of

Innovation Technologies, Mechanics and Optics "ITMO",

Saint-Petersburg, ISBN 978-5-7577-0493-7, ISSN 2305-7254

[5] Fortysherv E., Khramenkova K. "SpaceWire Network

Support Algorithm as a Part of Decentralized Plug-and-Play

Algorithm", 17th conference of the Open Innovations

Association FRUCT, Yaroslavl, Russia, 2015, pp. 283-286,

Publishing house of research university of Innovation

Technologies, Mechanics and Optics "ITMO", Saint-

Petersburg, ISBN 978-5-7577-0493-7, ISSN 2305-7254

[6] European Cooperation for Space Standardization, “Space

engineering – SpaceWire – Remote memory access protocol,”

ECSS-E-ST-50-52C, 5 February 2010

[7] A. Sakthivel, J.Ekergarn, D. Hellström, S.Habinc, M. Suess;

SPACEWIRE TIME DISTRIBUTION PROTOCOL

IMPLEMENTATION AND RESULTS, p.19-24, 6th

International SpaceWire Conference, Athens 2014

[8] H. Kopetz, “Real-Time Systems. Design Principles for

Distributed Embedded Applications. Second Edition”,

Springer, 2011.

226

Basic Study of Non-Contact Connector

for High-Speed Space Cable Transmission
Space Fibre, Short Paper

Hiroshi Itakura, Yoshihiro Akeboshi, Hirotoshi

Yamada, Hisashi Yoshiko

Mitsubishi Electric Co.

Kamakura, Japan

Itakura.Hiroshi@ah.MitsubishiElectric.co.jp,
Akeboshi.Yoshihiro@ak.MitsubishiElectric.co.jp

Yamada.Hirotoshi@ab.MitsubishiElectric.co.jp

Yoshiko.Hisashi@dy.MitsubishiElectric.co.jp

Satoshi Ichikawa
Japan Aerospace Exploration Agency

Tsukuba, Japan
ichikawa.satoshi@jaxa.jp

Atsutake Kosuge, Masashi Haraguchi, Tadahiro Kuroda

Dept. Electronics and Electrical Engineering

Keio University

Yokohama, Japan

kosuge@kuroda.elec.keio.ac.jp

haraguchi@kuroda.elec.keio.ac.jp

kuroda@elec.keio.ac.jp

Abstract—The data transmission rate required for the earth

observation satellites is in the order of Gbps because of the

enhanced performance of the observation sensors. However, the

data transmission rate is approaching to the capable limits due to

the issues of increased loss caused by the connectors or wires

connected. In addition, there is another issue of the transmission

irruption due to the vibration during the satellite launch. The

transmission technology using the non-contact connector which

has high vibration tolerance against the lossy wire connection

systems is proposed and this paper describes the advantages of

the non-contact connector, consisting of Transmission Line

Couplers (TLC). With the transmission characteristics analysis

of the connector and the design concepts, analysis of actual

measurement results reveal that 15 m cables transmission of

2.5Gbps and BER less than 10-12 is feasible.

Index Terms—Transmission line coupler, Non-contact

connector, WizardLink, Cable, Comparator.

I. INTRODUCTION

Data processing components that are mounted in satellites

must be small and light, having high data transfer rates, and

high storage capacity [1]. The next generation of earth

observation satellites will require data transmission rates to a

maximum of 20 Gb/s and at least one terabyte of storage

capacity [2]. However, the data transmission rate is

approaching to the capable limits due to the issues of increased

loss caused by the connectors or wires connected. These

connections consequently have the mismatch of impedance and

complication of systems ensued by the increase in parts and

wires of wired connections. In addition, there is another issue
of the transmission irruption due to the vibration during the

satellite launch.

Transmission Line Coupler (TLC)

Tx

Cable Hysteresis

Comparator

Rx

Phase.1

TxData

Phase.2

TLC

Phase.3

Cable

Phase.4

RxData

Time

TLC

Tx Component

Rx Component

Threshold

of Comparator

Fig. 1. High-speed space cable transmission system

In order to conquer the above problems, we focused our

efforts on the new high-speed data transmission methodology,

which is using the non-contact connector, consisting of

Transmission Line Couplers (TLC) [3][4][5]. This method has

227

been known to enable high speed transmission up to 12.5Gbps

and have high tolerance for vibrations during the satellite

launch to the space. Moreover, it is considered that the

transmission with the non-contact connector includes the

potential to reduce the inter symbol interference (ISI) [4]. Thus

our study suggested the transmission technology with non-
contact connector for lossy wire connection system and this

paper describes the advantages of that. With the 3D EM

simulations and measurements with test boards, it could be

possible that the proposed system could expand the length of

cable transmission system up to 15 m of 2.5 Gbps and BER

less than 10-12 is feasible with the tolerance for the vibration.

II. CABLE TRANSMISSION SYSTEM WITH NON-CONTACT

CONNECTOR

The space cable transmission system with the non-contact

connector is described in this chapter, shown in Fig. 1. Using

the TLC as the non-contact connector in this system is the most

important. Signals sent from the transceiver get into each TLC

<phase.1>. After going through the TLC, the signals are shifted

differential pulses because the TLC should behave the series

capacitance which cuts dc components of the signals <phase.2>,
and get into the cable, as lossy transmission line. Due to the

conductivity loss of the long cable transmission, the pulses

might be attenuated terribly when pulses reach the component

where the receiver is mounted on <phase.3>; nevertheless the

pulses could be reshaped to rectangle signals by the hysteresis

comparator <phase.4>. A hysteresis receiver recovers the

original data by retrieving them [5]. The recovered data signals

are transferred to the receiver. Therefore, the receiver could get

the high integrity data signals depended on the characteristics

of the comparator however attenuated pulses might be. In

addition, this system must be unrelated to the jitter caused by
the ISI if the width of the pulse stays in a unit interval (UI), in

principle.

III. DESIGN CONCEPT OF NON-CONTACT CONNECTOR

A. Transmission Line Coupler as Non-Contact Connector

The design concept of the TLC as the non-contact

connector is described by the view of EM/transient simulations

in this section.

When a differential data signal is transmitted from a

transceiver to the other module, its shape has to be changed to

1st order differentiated pulse shape in this system [5].

Therefore, it is necessary that the non-contact connector has
low-cut characteristics. In order to satisfy the above

characteristics, the differential TLC might be suitable and

proposed in recent studies [3][4][5]. The TLC is made by use

of simple board patterns without any connector components.

The coupling range meets a dual constraint: not too long for ISI,

and not too short for received amplitudes. The ac coupling is

needed to be bilaterally symmetric, so that the signals and I/O

circuits in both directions are the same [4]. The coupling

distance is supposed that it could be adjusted by the thickness

of the spacer whose dielectric constant is close to the

substrate's dielectric constant. The TLC has been known to

have the strong horizontal offset tolerance, which is about the

same as the width of the coupler [5].

B. 3D Electromagnetic(EM) Analysis

3D EM model of the proposed TLCs in this study are

shown in Fig. 2. The mixed s-parameters of this model are

evaluated. The differential pulse is generally created by the

backward coupling between the upper and the lower TLCs.

Therefore, the mixed s-parameter from differential port 1 to

differential port 2 (SDD21) is the critical parameter for the

transmission characteristic of the pulse created by the TLCs.

The coupling gain of the TLC is known to be determined

by the ratio of the electrode width (W) and the connection

distance (H). The bandwidth and the amplitude are also known

to be determined by the electrode length (L). The value of W is

fixed to 3 mm, and H is fixed to 1.34 mm, as the typical design.

The value of L is shifted from 6 mm to 10 mm by 2 mm steps

in this section.

The result of 3D EM analysis is shown in Fig. 3. From the

results, each TLC has the low-cut characteristics and broad

bandwidth less than 10 GHz. Moreover, it is confirmed that the

more L is longer, the lower the frequency at the peak level of
the SDD21. These characteristics suggest that the TLC of

which L=10 mm which has the largest gain at 1.0 ~ 5.0 GHz

could generate a pulse whose shape has the largest amplitude

and the pulse width.

C. Transient Analysis

Transient analysis model of the proposed TLCs are shown

in Fig. 4. Transceiver’s output parameters are set as

TLK2711A, in order to compare the waveform of the pulse
generated by the TLCs. The TLC model is the mixed s-

parameter obtained in the preceding chapter. The data

transmission rate is set 2.5Gbps as WizardLink transmission.

As shown in Fig.5 (a) ~ (c), it is confirmed the conventional

rectangle signals are certainly shifted to the 1st order

differential pulses by the TLCs. In particular, it is clear that the

pulse amplitude and width are the largest when the value of L

is 10 mm. In this study, the TLCs of L=10 mm is accordingly

selected from the perspective of the influence of the attenuation

in the cable transmission system, and used for measurement

works.

Transmission line coupler (TLC)

Length：L

Width：W (=3mm)

Height：H (=1.34mm)

H

Fig. 2. 3D EM model of TLC

228

Fig. 3. Transmission characteristics of TLCs

TX

・1480mVpp
・Tr/Tf=150ps
・Data rate:2.5Gbps

TLC
(S-parameter)

50Ω

50ΩZdiff=100Ω

PRBS

Obs. pointObs. point

Fig. 4. Transient analysis model of TLC

IV. CABLE TRANSMISSION MEASUREMET

In order to confirm the availabilities of the proposed
transmission system with the TLC, 15 m space cable

transmission measurement is evaluated in this section. From

the results of measurements, the validations of the design of the

TLC and the signal integrity of the proposed system are

discussed.

A. Measurement System

There are two measurement systems in this study, shown in

Fig. 6. Time domain measurements were made with an Agilent

DSO81304A oscilloscope at every probe point. Figure 7 shows

the view of the measurement.

One is the proposed non-contact connector system, shown in

Fig 6 (a). The TLC whose L is 10 mm was selected for this
measurement because of its amplitude superiority for the lossy

cable transmission. 1480 mVp-p signals sent from transceiver, T

LK2711A, get into non-contact connector, and are shifted to

the differential pulses. The data transmission rate of this system

is set 2.5 Gbps as the WizardLink transmission. Tx/Rx

components are connected by the space cable whose length is

15 m. This cable called MW311 is made by Junkosha Co. The

attenuation of this cable is defined 0.91 dB/m@1GHz. Then,

differential pulses are reshaped to rectangle pulses by the

hysteresis comparator. The levels of hysteresis thresholds are

set ±70 mV, which could be estimated from the gain of the

non-contact connector and the quantity of the decrement of the

space cable.

.

(a). L=6 mm

(b). L=8 mm

(c). L=10 mm

Fig. 5. Calculated waveform of pulse created by TLC

The other is the conventional system without the TLC in
order to compare the transmission characteristics, shown in

Fig.6 (b). Except the TLC and the comparator, it is the same

setup with the non-contact connector system.

B. Results of Measurement

Fig.8 shows the results of the measurement at each probe

point.

Probe.1 shows the eye pattern of the output data signals

from TLK2711A. It is indicated that the output signals have

approximately 1480 mVp-p and 80 ps jitter. Thus, it could be

said that the tendency of the waveforms of the transceiver

model used in the transient analysis should be valid with that in

this measurement system.

229

Tx

<TLK2711A>

TLC

Hysteresis Comparator

<ADCMP580>
Differential probe

(Zdiff=100W)

Oscilloscope
Cable

<15m>

Probe.1 Probe.2 Probe.3 Probe.4 # TLC

(a). Non-contact connector system

Tx

<TLK2711A>

Cable

<15m>

Probe.4 # Conv.

Differential probe

(Zdiff=100W)

Oscilloscope

(b). Conventional system for comparison (without non-contact connector)

Fig. 6. System of evaluation for cable transmission

Fig. 7. View of measurement system

Probe.2 is the waveforms of the differential pulses created

by non-contact connector. Shown in Probe.2, the differential

pulses of about ±400 mV amplitude and less than 250 ps pulse

width were obtained by the proposed TLCs. It suggests that the
width of obtained pulses could be within less than UI [ps] at

2.5 Gbps.

Probe.3 shows the waveforms of the differential pulses
after transmitted through the 15 m cable. Due to the loss of the

cable, the amplitude of the differential pulses were certainly

attenuated by less than ±100 mV. Even though they might be

attenuated by the lossy component, it is note that the

comparator can reshape them to the rectangle pulse if the

thresholds of the comparator are set properly. However, it is

obvious that the width of differential pulses was force to be

expanded to more than 400 ps because of the increase of the

RC component of the cable. This width of the differential pulse

might be over the UI at 2.45Gbps when it reaches to the

comparator. Thus the waveform of Probe.3 seems to be

affected by ISI, but it should be too small to cause the

transmission irruption.

(a). Probe.1 [Txdata]

(b). Probe.2 [Pulse created by TLC]

(c). Probe.3 [Pulse attenuated by cable]

(d). Probe.4 # TLC [Rxdata reshaped by comparator]

(e). Probe.4 # Conv. [Rxdata without TLC]

Fig. 8. Measured waveforms

230

Finally, the eye pattern of the rectangle pulses reshaped by

the comparator is shown in Probe.4#TLC. In order to confirm

the availabilities of the non-contact connector system, the eye

pattern of the conventional system is shown in probe.4#Conv.

From these results, in the proposed non-contact connecter

system, this clearly shows the differential pulses were reshaped
well by the comparator and the signals transmitted at 2.5Gbps

to the receiver. It suggests that the parameter of L of the TLCs

and the hysteresis thresholds should be set properly taking the

amount of attenuation of the cable into consideration. On the

other hand, in Probe.4#Conv., it is confirmed that there is too

many jitters to achieve the cable transmission in the

conventional system. This is because the bulk conductivity and

the loss tangent of 15 m cable simply influenced the eye

opening.

C. Communication Test

Using embedded test function of TLK2711A, bit error

checks were proceeded in order to confirm the integrity for the

communications in the proposed system. Fig.9 shows the

configurations of this test. The effective data transmission rates,

is actually up to 2.0 Gbps, was transmitted. Consequently, It

was confirmed that no signal bit failure occurred during the

period of launch (1 hour). Therefore, the BER less than 10-12

for the WizardLink transmission was confirmed in the

proposed system. On the other hand, it was observed that the

communication test was end in failure continually in the
conventional system. From the above, it could be said that the

proposed non-contact connector system could have the

availability for extending length of the transmission line, such

as space cable, and so on.

V. CONCLUSION

The cable transmission system at 2.5Gbps with non-contact

connector was presented in this paper. The detailed design

methodology of the non-contact connector was described at

first. The analysis suggests that the parameter of L of the TLCs

determines the pulse amplitude and it should be set taking the

amount of losses of the cable into consideration. In addition,

analysis of actual measurement results reveals that the 15 m

cables transmission of 2.5 Gbps and BER less than 10-12 is

feasible with non-contact connector. It also means that the

flexibility in the arrangement of the satellite components could
be improved by using the proposed scheme. There is still room

for improvement of broad band transmission characteristics for

the shape of the differential pulse on the TLCs. Thus the

alternative solutions to generate the more edged pulse with

larger amplitude are needed, as the further study.

Tx

<TLK2711A> TLC

Tx

<TLK2711A>

Hysteresis Comparator

<ADCMP580>

Cable<15m>

Cable

<15m>

(a). Proposed system (b). Conventional system

Fig. 9. Configurations of Bit error check

ACKNOWLEDGMENT

This work was supported by CREST/JST.

REFERENCES

[1] T. Seki, et al., “Development of Mass Data Storage for Space
Applications with Commercial Memory Devices,” 29th
International Symposium on Space Technology and Science,
2013-j-21, June 2013.

[2] A. Kosuge, et al.., “A 6.5Gb/s Shared Bus Using
Electromagnetic Connectors for Downsizing and Lightening
Satellite Processor System by 60%,” ISSCC, Dig. Tech. Papers,
pp.434-435, Feb, 2015.

[3] A. Kosuge, et al., “A 12.5 Gb/s/link non-contact multi drop bus

system with impedance-matched transmission line couplers and
dicode partial-response channel transceivers,” in Proc. IEEE
Custom Integr. Circuits Conf., Sep. 2012, pp. 7.9.1–7.9.4.

[4] T. Simon, et al., “A 1.6Gb/s/pair Electromagnetically Coupled
Multidrop Bus Using Modulated Signaling,” ISSCC Dig. Tech.

Papers, pp.184-185, Feb. 2003.

[5] A. Kosuge, et al., “Analysis and Design of an 8.5-Gb/s/Link
Multi-Drop Bus Using Energy-Equipartitioned Transmission
Line Couplers,” IEEE Trans. Reg. Papers, vol. 62, no. 8,

pp.2122-2123 Aug, 2015.

231

High Performance Network Components for Scalable
Spaceborne Processing Needs

Poster, Short Paper

Joseph R. Marshall, Richard W. Berger

BAE Systems
Manassas, VA 20112

joe.marshall@baesystems.com

Abstract— this paper will describe high performance interface
building blocks, compare their networking features and show
how they may be used in small and large systems especially as
they apply to SpaceVPX modules. Emphasis will be placed on
their SpaceWire and other networking capabilities.1

Index Terms—SpaceWire, Networking, Spacecraft Electronics,
SpaceVPX, RapidIO, Endpoint, Router

I. INTRODUCTION
Future spaceborne systems will require additional onboard

processing and much greater interface connectivity. Many
efforts worldwide are starting to address these needs.
SpaceVPX, a recently released ANSI/VITA standard, was
created to provide the structure and definition for interoperable
modules that will be created to meet these needs. It provides a
multi-layer set of fabrics using SERDES, LVDS and
LVCMOS devices to provide interconnects in a scalable and
fault tolerant way. Initial fabrics used by SpaceVPX are
RapidIO, SpaceWire and I2C. Provisions are provided for
heritage or user defined interfaces to interact with these within
the structure. SpaceWire is setup as both a control plane for
command and data handling throughout the box as well as a
medium speed data plane.

Building on previous SpaceWire network elements such as
its SpaceWire ASIC and its application specific standard
products (ASSP) SpaceWire Endpoint ASSP (RADNET™
SpW-EP) and Golden Gate ASSP (RADNET™ SpW-RB4),
BAE Systems is creating a set of silicon ASSP devices to
provide power efficient general purpose building blocks for the
creation of scalable SpaceVPX modules across these three
fabrics. These building blocks are key to a new family of
SpaceVPX processing and network modules being developed
for a wide variety of space applications. 16 SpaceWire ports
and a router are provided on the RAD5545™ multi-core
system on a chip (SoC) and the RAD5515™ single core SoC
while four SpaceWire ports and a router will be provided on
the RapidIO Endpoint and the RADSPEED™ Host Bridge
devices. These complement the higher performance four four-
lane RapidIO ports on the SoC and Host Bridge devices, the

1 Approved for public release ES-ISR-080916-0097 ATR 467

one redundant four-lane RapidIO port on the RapidIO
Endpoint (RADNET™ SRIO-EP), the 16 lane SERDES cross-
point switch ASSP (RADNET™ 1616-XP) and the 48
RapidIO lanes on the RapidIO packet switch ASSP
(RADNET™ 1848-PS).

II. INTERFACES
SpaceWire is a versatile interface fabric and now has over

seven years of flight experience [1]. It was the first extendable
standard fabric interface for spacecraft onboard processing and
interconnection. It may be easily created out of space-worthy
FPGA or ASIC components that support LVDS interfaces and
thus has seen widespread usage as highlighted at six
SpaceWire conferences. Its 200-400 Mbps bandwidth per link,
enables high performance command and data handling as well
as medium speed data movement. In future systems it is likely
to continue to supplant PCI as a medium speed backplane
interface. It is complemented by SERDES-based fabrics such
as SpaceFibre and RapidIO, providing an order of magnitude
bandwidth improvement per lane when needed. Taken
together these support flexible and scalable heterogeneous
systems and spacecraft.

III. HERITAGE SPACEWIRE ASSPS
In March of 2003, the first SpaceWire router ASIC [3] was

started as a joint development project of BAE Systems and
NASA Goddard Space Flight Center (GSFC). The four port
SpaceWire router core as designed by GFSC was attached to
the BAE Systems On-Chip Bus (OCB) through a router
interface (RIF) block with two interfaces to the bus. The
radiation-hardened by design (RHBD) ASIC in 250nm CMOS
technology included on-die low-voltage differential signaling
(LVDS) drivers and 64 deep FIFOs on each transmit and
receive port. The ASIC included a BAE Systems 32-bit RISC
microcontroller [4] called the embedded microcontroller
(EMC) that can be used to program or interpret SpaceWire
operations, two 16KB on-die SRAM blocks, a memory
controller for external memory, and dual peripheral component
interface (PCI) buses for connections to the rest of the module
or system. The EMC is supported by a C compiler, and a
software development environment that includes an assembler,

232

linker, debugger, and simulator. The “SpaceWire ASIC” was
first flown on the NASA Lunar Reconnaissance Orbiter (LRO)
mission, launched in 2009 [1] [2].

This device was followed by the decision to further
integrate components in 150nm radiation-hardened CMOS
technology, combining the standard bridge ASIC for the
RAD750® radiation-hardened PowerPC™ processor [5] with
both a four port SpaceWire router and a MIL-STD-1553 port
as shown in Figure 2. Called the “Golden Gate” bridge, this
RHBD application specific standard product (ASSP)
introduced new features to the SpaceWire core, including four
internal RIF interfaces allowing bypass of the router by all four
ports if desired and the remote memory access protocol
(RMAP) providing direct network access to the entire 4 GB
address space of the device. An enhanced version of the EMC
processor was incorporated with additional instructions, four
32 KB SRAM blocks, allowing for more on-die code and
greater scratchpad memory storage. An enhanced memory
controller was also included. This enhanced product is now
being delivered with the newest generation of RAD750
processor flight modules. The ASSP is also available
separately as part of BAE Systems RADNET™ family of
products, where it is designated the RADNET SpW-RB4.

With the use of SpaceWire routers established and interest
in the community to extend the SpaceWire standard to more
parts of the system, a smaller SpaceWire endpoint ASSP was
designed to allow existing instruments and peripheral functions
to move to the emerging SpaceWire standard [6]. With a
single redundant RMAP-enabled SpaceWire link, the
SpaceWire endpoint offers a variety of alternative parallel and
serial connections to existing designs, including I2C and SPI.
The EMC processor is included along with a 32 KB SRAM
and external memory controller. The RADNET SpW-EP is
built in 150nm radiation-hardened technology using a RHBD
circuit library.

IV. RAD55XX™ SOC ASSP VARIATIONS
The next generation of technology, a leap to RHBD 45nm

silicon-on-insulator (SOI) CMOS known as RH45™
technology, offered the opportunity to develop a massively
integrated high performance processor system-on-chip (SoC)
as shown in the die layout in Figure 1. Based on Power
Architecture® and leveraging the NXP (formerly Freescale)
QorIQ® multicore communications processor family, an entire
series of products was defined built on a platform RAD55xx™
ASSP [7] that can be configured into multiple personalities.
The RAD55xx platform uses licensed intellectual property (IP)
from the NXP P5020 and P5040 processors and other IP.

Supporting up to four 32/64-bit RAD5500™ processor
cores, three levels of on-die cache memory, hardware
encryption accelerator, dual interleaved DDR3 DRAM
memory controllers, an SRAM/EEPROM controller, a Flash
memory controller, up to four four-lane (x4) RapidIO ports @
5 Gbaud/lane, and more, the RAD55xx platform also
incorporated a 16-port SpaceWire router with RMAP and up to
eight internal ports as shown in the block diagram in Figure 3.
The sixteen port SpaceWire router is supported by the currently

announced RAD5545™, RAD5515™, and RAD5510™
processors. A fourth product variant known as the
RADSPEED™ HB processor, a host/bridge matched with the
BAE Systems RADSPEED DSP [8], offers a 4-port SpaceWire
router. Low speed interfaces including both I2C and SPI are
also provided. The RAD55xx products have completed first
hardware and are currently in test and characterization.

The large SpaceWire router supports the ability to use these

processors as the hub of a large SpaceWire data network or as
the system controller of a high performance on-board
processing subsystem based on the new VITA 78 SpaceVPX
standard [9] [10] [11]. The SpaceVPX standard employs the
RapidIO ports as the data plane and the SpaceWire links for the
control plane. The SpaceVPX utility plane is supported with
four I2C ports.

V. RAPIDIO PACKET SWITCH
With the development of a high performance processor

underway with both RapidIO and SpaceWire capability, the
next logical step was to develop a RapidIO packet switch
ASSP as the hub of the data plane for the on-board processing
system. Based on licensed IP from Integrated Device
Technology (IDT), the RADNET 1848-PS [12] is a RapidIO
switch with up to 18 total ports of various widths or up to
twelve x4 ports, all operating at up to 3.125 Gbaud/lane. The
RADNET 1848PS, manufactured in 45nm SOI CMOS
technology with the RH45 library, is now in hardware and is
completing testing for delivery. Since this was almost
completely based on purchased commercial IP, there is no
SpaceWire port on the packet switch. Configuration takes
place over an I2C interface which could be driven by a
SpaceWire device such as the SpaceWire Endpoint ASSP or
derived from the I2C interface on the SpaceVPX backplane.

Figure 1: Die layout of the RAD55xx platform ASSP

233

VI. RAPIDIO ENDPOINT
Currently in design is a RapidIO Endpoint ASSP designated
the RADNET SRIO-EP, also built in RH45 45nm SOI CMOS
technology. It provides a single redundant RapidIO port @ 5
Gbaud/lane and a variety of additional ports including two
redundant XAUI ports, a 32-bit PCI parallel bus, a redundant
MIL-STD-1553 interface, a dual interleaved DDR3 DRAM
controller, an EEPROM memory controller, a Flash memory
controller, and both I2C and SPI serial ports. The RADNET
SRIO-EP includes a four-port SpaceWire router with the same
features found in the RADNET SpW-RB4 along with two

64KB blocks of SRAM. A simplified block diagram of the
endpoint ASSP is shown in Figure 4. The RADNET SRIO-EP
is designed as primary interface for SpaceVPX payload
modules, with flexibility to provide the interface to mass
memory (DDR3 or flash), or most other payload functions and
interfaces through FPGAs or other ASICs.

From a processing perspective, the RADNET SRIO-EP
includes both the EMC processor and four instantiations of a
specialized version of the core called the SEMC. The SEMC
core includes a 32KB instruction SRAMs that can be loaded
with a specific program and a 24KB data scratchpad memory.
The SEMC attaches directly to the ARM ABMA extensible

Figure 2: RADNET SpW-RB4 block diagram

1024 KB

Frontside

L3 Cache

CoreNet™ Coherency Fabric
Peripheral

Access Mgmt Unit

Power Architecture®

RAD5500™ Core

D-Cache I-Cache

512 KB
Backside
L2 Cache 32 KB 32 KB

PAMU

64-bit

DDR 2/3

Memory Controller

64-bit

DDR 2/3

Memory Controller

1024 KB

Frontside

L3 Cache

Power Mgmt

Clocks/Reset

GPIO

PreBoot Loader

Internal BootROM

CCS Regs

eOpenPIC

2x DUART

4x I2C

SPI

Security Monitor

NAND FLASH

controller

CCBR #2CCBR #1

ClearConnect Bus™

PAMU PAMU

Host

Debug

Port

To RADSPEED™ DSPs

24-Lane 1.25 / 2.5 / 3.125 / 5 GHz SerDes

PAMU

S
R

IO

S
R

IO

DMA

x2

S
R

IO

S
R

IO

SRIO

Mgr.

SRIO

Mgr.

SRIO

Mgr.

SRIO

Mgr.

PAMU

Queue

Mgr.

Buffer

Mgr.

SEC
Frame Manager

Parse, Classify,
Distribute

Buffer

1 Gb
Ethernet

PAMU

1 Gb
Ethernet

Watchpoint
Cross

Trigger

Perf
Monitor

CoreNet
Trace

Aurora

Real Time

Debug

IEEE

1588

timer

PAMU

SRAM / EEPROM

controller

On Chip Bus

PCI-32

16 port

SpaceWire router

DiscretesEMC JTAG DMA

SRAM

Figure 3: RAD55xx platform configured as the RAD5545 processor personality

234

interface (AXI) bus. The four SEMC cores are supported by a
128KB block of on-die SRAM. As in the case of the EMC, the
SEMC is supported by a software development environment
and compiler. In the RADNET SRIO-EP, the four SEMCs
work with a 4KB storage and hardware assist core called the
“scoreboard” that accelerates priority queue management
functions that are more typically performed in software [10].
The scoreboard hardware tracks transmitted and received word
counts, identifying which queues contain data and when a
queue reaches a programmed threshold.

VII. CROSS-POINT SWITCH
Another component for use with high speed serial link

networks is the RADNET 1616-XP ASSP. The protocol
agnostic product provides for circuit switching of serializer-
deserializer (SERDES) lanes at up to 5 Gbaud/lane with low
latency and low power dissipation. It provides the ability to

execute primary/redundant switching of SERDES signals, and
also performs a repeater function through recovery of a
degraded SERDES “eye” for longer distance transmission.

VIII. SYSTEMS USAGE
Figure 5 shows a SpaceVPX system with several

representative module types focused on using SpaceWire for
Control and Data. This system is based on an application
example in the revised SpaceWire standard and controls six
instruments attached to the SpaceVPX chassis. SpaceWire is
used as the control plane as well as a medium speed data plane.
The controller uses its 16 port router to control and move data
between all other logic modules. Shown in green are the BAE
Systems ASSPs used to provide the SpaceWire interface
functions. Not shown are additional FPGA or ASIC resources
for unique functions or interfaces. A single string solution
could be created using all the solid modules. Redundant
modules are shown and dashed lines connect these to the other
modules. The SpaceVPX star configuration supports 14
SpaceWire links on the backplane equivalent to up to 4.5 Gbps
of cross sectional data bandwidth.

Figure 6 shows an upgraded system where RapidIO is used
for the data plane and SpaceWire continues to function as the
control plane. Here many of the SpaceWire components have
migrated to RapidIO components that also support SpaceWire
interconnects. The Mass Memory now relies on RapidIO on
the data plane for its data stream inputs and outputs. Note the
data plane switch is implemented in a seventh logic module.
This system still provides the 4.5 Gbps of control plane cross
sectional bandwidth over SpaceWire. The 12 ports of the data
plane add an additional 120 Gbps of cross sectional bandwidth.

Figure 4: Block diagram of the RADNET SRIO-EP RapidIO endpoint

ASSP

Instrument 1 Instrument 2 Instrument 3 Instrument 4 Instrument 5 Instrument 6

Remote InterfaceI/O Conversion

14

Control Plane SpaceWire

Utility Plane (P0) 6

SpaceUM Power
SupplyPower

Supply
SpaceUM

Controller
Controller

RAD5515™ SoC

Utility Plane (P6)

User Defined I/O

SpaceVPX
chassis

Top of Module SpaceWire
Top of Module SpaceWire

Data Processor
Data Processor

RAD5545™ SoC

Telemetry Formatter
& EncryptionTelemetry Formatter

& Encryption SpW EP

Remote Interface
SpW RB4

I/O Conversion
SpW EP

Mass Memory
Mass Memory

SpW RB4 or SRIO EP

Figure 5: SpaceVPX system using SpaceWire for control and data. Solid horizontal lines represent point to point backplane connections.

235

IX. SUMMARY
BAE Systems has been actively developing and delivering

SpaceWire solutions to the space community since 2003.
These are transforming solutions from heritage bus-based
modules to fabric-based solutions leveraging the recently
ratified SpaceVPX standard for interoperable modules. Recent
RAD55xx SoC and RADNET ASSPs under development and
testing extend the fabrics to enable control, command and data
handling solutions spanning four orders of magnitude of
performance and the full range of typical digital functions in
onboard spaceborne electronics. Using these devices and the
SpaceVPX standard, families of scalable and interoperable
modules may be created to meet current and future onboard
processing needs.

REFERENCES
[1] Berger, R. W., et. al., “RAD750 SpaceWire-Enabled Flight

Computer for Lunar Reconnaissance Orbiter”, Proceedings of
1st International SpaceWire Conference, Dundee, Scotland,
September, 2007.

[2] Marshall, J. R., “Evolution and Application of System on a Chip
SpaceWire Components for Spaceborne Missions”, 2nd
International SpaceWire Conference, Nara, Japan, 2008.

[3] J. Marshall and R. Berger, “A One Chip Hardened Solution for
High Speed SpaceWire System Implementations”, International
SpaceWire Conference 2007, October 2007

[4] J. Marshall and J. Robertson, “An Embedded Microcontroller
for Spacecraft Applications”, IEEE Aerospace Conference 2006,
Big Sky MT, USA, March 2006

[5] R. Berger, et al, “The RAD750 – A Radiation Hardened
PowerPC Processor for High Performance Spaceborne

Applications”, IEEE Aerospace Conference 2001, Big Sky MT,
USA, March 2001

[6] J. Marshall, S. Santee, M. Hanley, J. Robertson, D. Stanley,
“Leveraging SpaceWire Networking Prototyping to Create
Flexible SpaceWire Components and Support Software”,
International SpaceWire Conference 2011, San Antonio TX,
USA, November 2011.

[7] R. Berger, et al, “Quad-Core Radiation-Hardened System-on-
Chip Power Architecture Processor, IEEE Aerospace
Conference 2015, Big Sky MT, March 2015

[8] J. Marshall, R. Berger, A. Berard and M. Bear, “Applying
Advanced Networks and Signal Processing to Spaceborne
Computing”, AIAA Infotech@Aerospace 2012, Garden Grove
CA, USA, June 2012.

[9] Collier, Charles Patrick, et al., “Next Generation Space
Interconnect Standard (NGSIS): A Modular Open Standards
Approach for High Performance Interconnects for Space”,
Proceedings of 2015 IEEE Aerospace Conference, Big Sky, MT,
March 2015

[10] J. Marshall, “Standardized SpaceWire Solutions for Next
Generation Systems”, Proceedings of the 2014 International
SpaceWire Conference, Athens, Greece, September 2014.

[11] P. Collier, J. Marshall, R. Berger, M. Enoch, S. Goedeke, “Next
Generation Space Interconnect Standard (NGSIS): A Modular
Open Standards Approach for High Performance Interconnects
for Space”, AIAA 8 Reinventing Space 2013 Conference
Proceedings, Los Angeles, CA, September 2013.

[12] D. Rickard, et al, “On-Board Networks with Radiation-
Hardened 45nm SOI Standard Components”, IEEE Aerospace
Conference 2015, Big Sky MT, March 2015

All figures in this paper are Copyright BAE Systems and
used with permission.

Instrument 1 Instrument 2 Instrument 3 Instrument 4 Instrument 5 Instrument 6

14

Control Plane SpaceWire

Utility Plane (P0) 7

Power
SupplyPower

Supply

Controller
Controller

RAD5515™ SoC

Utility Plane (P6)

User Defined I/O

SpaceVPX
chassis

Top of Module
SpaceWire and RapidIO

Top of Module XAUI

Data Plane RapidIO

Telemetry Formatter
& EncryptionTelemetry Formatter

& Encryption SRIO EP

Data Processor
Data Processor

RAD5545™ SoC

I/O Conversion
I/O Conversion

SRIO EP

Mass Memory
Mass Memory

SRIO EP (1 or 2)

12

Data Switch
Data Switch

SRIO PS

SpaceUM
SpaceUM

Instrument 7

Remote Interface
Remote Interface

SRIO EP XP

Figure 6: SpaceVPX system using SpaceWire for control and RapidIO for data

236

SpaceWire Test Center in Japan
SpaceWire test and verification, Short Paper

Iwao Fujishiro, Shigeyuki Arase
Shimafuji Electric

8-1-15 Nishikamata,Ota-ku,Tokyo144-0051,Japan
fujishiro@shimafuji.co.jp

Masaharu Nomachi
Osaka University

1-1 Machikaneyama,Toyonaka,Osaka560-0043,Japan

Shoichiro Mihara, Kenji Sasaki
Japan Space systems

3-5-8 Shibakoenn Minatoku, Tokyo 105-0011 Japan

Abstract— In 2006, we developed SpaceWire platform named
SpaceCube cooperation with JAXA and NEC. After the success
of SpaceCube project, we developed number of SpaceWire
products. Some examples of this innovation include several
kinds of the SpaceWire interface boards, SpaceWire router
and SpaceWire-to-GigabitEtherR2. These developments
included the support and cooperation of JAXA, OSAKA
University, Japan Space Systems and NEC. However, there are
the big step into the Space market for the small high tech
companies. In this paper we describe Renewed SpaceWire Test
Center in Japan.

Index Terms—SpaceWire, Test

I. INTRODUCTION

The SpaceWire Test Center is open to the public who are
interested in SpaceWire study and development. The engineers
have to prepare own testing environment to study and develop
own components, equipment etc. However, this is the barriers
for the small organizations who are considering or develop the
SpaceWire components.

Shimafuji Electric Inc. has opened The SpaceWire Test

Centre in Tokyo to the public who need to test their own
components to adapt SpaceWire. This paper describes the
background, purpose, use of images and configuration of the
SpaceWire Test Center.

II. THE BACKGROUNDS

Shimafuji Electric Inc. joined ASNARO consortium and
started the SpaceWire test facility in 2010. At that time, it was a
small scale test facility, but since then has helped test products
created by consortium members.

Shimafuji upgraded this test facility in 2012, however, this
upgrade was designed for limited projects. Recently in 2016, this
facility became public open testing center.

III. THE PURPOSE

Reduction of the barriers

It is possible to lower the barriers for engineers or teams.
Shimafuji manufactured and installed an advanced high-speed
/ high-performance test equipment and capable facilities for
flight model test.(Fig1, Fig2)

Fig.1. Clean booth

Fig.2. Constant temperature and humidity chamber

237

Promote the SpaceWire (Tutorial environment)

Shimafuji developed the manual for SpaceWire Test
procedure. All new entry member, who are students, engineers
of organization or manufacturing companies, can understand
and prepare environment condition, hardware and software for
the SpaceWire testing. We also developed the low-cost
SpaceWire tutorial system for SpaceWire beginners and
researchers training. (Fig3, Fig4)

Fig.3. Tutorial system.

Fig.4. Universal SpaceWire FPGA Board.

Improvement the Open SpW IP quality

The Open SpaceWire FPGA IPs and the Test Scripts were
released and maintained.

IV. THE USE CASE

Connecting Test

The Center has the equipment to evaluate SpaceWire
connection with Conformance Tester, and SpW RMAP Tester.
The Center also fitted with debugging tools, Link Analyzer, and
Logic Analyzer FPGA tools. (Fig5, Fig6)

Fig.5. Analyzing the packets.

Fig.6. SpW backplane 12slots

Physical layer evaluation and Environment test

The center has the Network Analyzer and Digital
Oscilloscope for Physical layer evaluation as well as
temperature and humidity chambers for environment testing. In
conjuncture with these testing environments, a clean booth for
flight model. There are special equipment to evaluate the
SpaceWire cables performance. (Fig7)

Fig.7. SpaceWire cable Test.

238

V. THE TEST CENTER CONFIGURATION

TABLE1 The test center configuration

Classification Device and equipment

SpaceWire

equipment

Conformance Tester(STAR-Dundee)

Link Analyzer(STAR-Dundee)

Router USB(STAR-Dundee)

Multilink Analyzer(4Links)

SpaceWire-to-GigabitEtherR2(Shimafuji)

SpaceCube(Shimafuji)

SpaceCubeMK2(Shimafuji)

6PortRouterUnit(Shimafuji)

SpW DIOⅡ(Shimafuji)

SpW backplane 12slots(Shimafuji)

SpW RMAP Tester(Shimafuji)

Tutorial system(Shimafuji)

Open IP(Shimafuji)

SpaceFiber Universal SpaceWire FPGA Board (Shimafuji)

High speed SpaceWire Flash ADC Board

(Shimafuji)

Instrument

Development

tools

Network Analyzer(Agilent)

Logic Analyzer(Agilent)

Digital Oscillo(Agilent)

SpaceWire Adapter(Agilent)

FPGA tools (Xilinx/Altera/Actel)

Environmental

testing

Clean booth (3m x 3m, class 1000)

Constant temperature and humidity chamber

VI. SPACE TECHNOLOGY TO GROUND

Shimafuji developed the SpW-R board which use daisy chain
connection for less wiring, and based on SpaceWire and RMAP.
This idea is wide use of SpaceWire into industry and commercial.
This board has 3 port router and I/Os which can control motor,
camera and etc. The board is reasonable for non-space industries.
(Fig8, Fig9) *This board and demo system will be in the
SpaceWire test center.

Fig.8 SpW-R board

Fig.9. SpW-R Demo system

VII. CONCLUSION

The Center has wealthy instruments to Test SpaceWire in
Tokyo and it also possible to provide consultation of the
SpaceWire introduction and technical support.

This center will accumulate feedbacks from user to improve
the open IPs, and will work as Japanese SpaceWire
information source. The center is expected to increase number
of SpaceWire users in coming years.

REFERENCES

 [1] Makoto Ioki, Takeshi Tohara(Japan Space Systems), Iwao
Fujishiro(Shimafuji Electric Incorporated),Masaharu
Nomachi(Osaka University), Seisuke Fukuda, Tadayuki
Takahashi (JAXA/ISAS) ,”SpaceWire Test Office:
Practical examples”, Ukaren, Beppu, November 2012

[2] Shigeyuki Arase, Iwao Fujishiro(Shimafuji Electric
Incorporated), “SpaceWire-to-GigabitEther and SpaceWire
backplane”, Shimafuji Electric, International SpaceWire
Conference, Athens, September 2014.

239

A NEW MISSION DATA RECORDER (MDR)
WITH TIME-SEARCH FUNCTION FOR ERG

MISSION SYSTEM

NOT PERMITTED TO PUBLISH PAPER

240

SPACEWIRE NETWORKING SYSTEM FOR
PAYLOADS ONBOARD ERG SATELLITE

NOT PERMITTED TO PUBLISH PAPER

241

DEVELOPMENT OF REAL-TIME AND HIGH-
SPEED SPACEWIRE DATA TRANSFER SYSTEM

NOT PERMITTED TO PUBLISH PAPER

242

SPACEWIRE ELECTRICAL TESTING

NOT PERMITTED TO PUBLISH PAPER

243

Multi-purpose simulator for Plato mission
SpaceWire mission and applications, Short Paper

Rafael Corsi Ferrão, Sergio Ribeiro Augusto, Cássio
Berni, Franklin Ronald Ferreira dos Santos e

Vanderlei Cunha Parro
Critical embedded systems group

IMT
São Caetano do Sul, SP, Brazil

corsiferrao@gmail.com

Saulo Finco
Citar project

CTI
Campinas, SP, Brazil

saulo.finco@cti.gov.br

Philippe Plasson and Loïc Gueguen
LESIA

Paris Observatory
Meudon, France

Philippe.plasson@obspm.br

Gisbert Peter
DLR

Berlin, Germany
Gisbert.Peter@dlr.de

Manfred Steller
IWF

Graz, Austria
Manfred.Steller@oeaw.ac.at

Abstract— This paper presents hardware and software solution
for simulation of a group of cameras used by the PLATO satellite.
The simulator can be configured either to work with the scientific
processing unit or as the complementary loop attitude control
processing unit. Configuration and monitoring can be performed
remotely, which caters to cooperatively work and guarantees
traceability for quality purposes. Because the system operates
with database and configurable architecture, its performance can
be modified to operate as standard generation element (CCSDS,
e.g.) traveling via SpaceWire. Eight SpaceWire links for feeding
processing system compose the simulator. The links may route
data in real time rate configurable to 200Mbits/s, with
representative images, using the RMAP protocol, it can run
continuously up to two days of satellite operation. The
information database is stored in two solid-state drives with 500
GBytes capacity each one. Access for configuration and
monitoring are made using TCP-IP protocol. Each simulator has
a unique ID and is automatically recognized when connected to
the Ethernet network. The software layer has graphical interface
compatible but offers component for integration with other
EGSE systems. The system has own housekeeping, which enables
diagnosis operation and viewing by the operator. The system will
be used by European groups: LESIA (France), DLR (Germany)
and IWF (Austria).

Index Terms— SpaceWire, RMAP, Plato mission.

I. INTRODUCTION
The main goal of this project is to have a realistic hardware

simulation of the image acquisition system of the Plato satellite.
Part of this architecture can be analyzed in Fig. 1. Each data
processing unit (DPU) receives from the electronic front end
(FEE) 4 SpaceWire (SpW) [3] links running at 100 Mbits/s. A
similar system is used in the attitude control system, just

changing the number of links to 8 and reducing the data
amount to a half CCD. The simulator described here involves
the CCDs, with dynamic images and the FEE. More details
about Plato architecture is available in the ESA website [1].

The simulator can be subdivided in three subsystems:

• Electronic main board (EMB).
• Resident software (RSW).
• Supervisor software (SSW).

The EMB has the capability to work with eight SpW links

and to generate all RMAP [2] commands necessary to transmit
the image from the simulator to the DPU and to receive RMAP
commands (Write and Read) from the DPU.

The RSW software controls EMB where the images are
stored, running on a dedicated PC and communicates with the
EMB by a S-ATA protocols. The set RSW+EMB forms the
Simulator (SIMUCAM).

Supervisor software (SSW) is proposed to control a set of
simulators and communicates with the RSW by a TCP/IP
connection allowing debugging and configure several
simulators. The simulator runs as stand-alone application to
avoid timing glitches and the Human-Machine-Interface (HMI)
will be use only to control the simulations.

The SIMUCAM is able to work with both: normal DPU
(N-DPU) used for scientific processing and fast DPU (F-DPU),
used for the attitude control loop. They work in a similar way
besides the integration image time and the number of SpW
interfaces.

244

Fig. 1. Plato electrical architecture for science.

A. N-FEE description operating in normal mode

Each N-FEE is in charge of four CCDs. Each CCD is

acquired sequentially, the period of activity for normal camera
is 25 seconds, The full process (4 CCD) takes 25 seconds.
During these 25s, a full image from one CCD is delivered to N-
DPU each 6.25s. The full-image transfer time from N-FEE to
N-DPU should take considering the maximum optimization
value of the time transfer less than 3.3 seconds. Two
SpaceWire link is implemented as communication protocol
between N-DPU and N-FEE.

 The CCDs are divided vertically in two parts (Left

and Right), and each part is transmitted by one of the two links.
The CCDs transfer are swapped each 6.25 seconds.

 For safety reason the SpaceWire channel utilization

shall not exceed 80 %, that means the data rate averaged over
the transfer duration, including the SpaceWire overhead, shall
not exceed 80 Mbps. N-FEE is connected to a N-DPU by two
SpaceWire links, each link is responsible for transfer half of
CCD each CCD at time. The transfers occurs by encapsulating
half line of one CCD (Left and Right) on a RMAP write
command (FEE to DPU) and send it by one of the links, as
shown on Fig.2 The address of each write commands is
incremental and should be restarted at a new image transfer (25
s).

Each write command (IMAGE) have at the begining of the

data a top sync counter that is incremented at a new received
synchronism, and at the end of the data some prescan pixels.
The prescan pixels can be part of the image (loaded into the
simulator) but the top sync counter must be added by the MEB
on real time. The top sync (6.25s) is transmitted to de DPU by
a timecode command; this is the only way that DPU can access
this signal. It will be sent by both SpW links to guarantee
robustness. Housekeeping is sent by the N-FEE to the N-DPU
at the end of a full image transmission by a RMAP write

command (N-FEE to N-DPU). The HK can also be accessed
asynchronous at any operation mode by a read command from
the DPU (N-DPU to N-FEE).

Fig. 2. RMAP data diagram.

 The N-FEE has the following functional modes:

• Operational mode: the CCDs are read with the

synchronization signals. Data packets including image
and Housekeeping are sent to N-DPU.

• Stand-By mode: no sequencing signals and no data
packet sent. Bias to CCD at nominal value, only
Housekeeping data are sent on request from the MEU.

• Integration mode: during AIT specific read must be
done to compensate the huge dark current generated
by the CCD, the use of the Dump-Drain or a different
exposure time management must be implemented. In
that mode, the N-FEE may function without
synchronization signals from the SylBox.

• Test Mode: the N-FEE sends a pattern to the MEU.
This mode is mainly used during AIT step with the
MEU without the FPA. This pattern will be defined
latter.

B. F-FEE description operating in fast mode

As the N-FEE each F-FEE is in charge of four CCD. Each

CCD is acquired sequentially, the period of activity for the fast
cameras is 2.5 seconds, The full process (4 CCD) takes 2.5
seconds. During these 2.5, all full images are delivered to the
F-DPU each 1.5s. Eight SpaceWire link is implemented to
transfer the images to de DPU. The CCDs are divided
vertically in two parts (Left and Right), and each part is
transmitted by one of the eight links. The CCDs transfer
concurrently (all at the same time). F-FEE is connected to a F-
DPU by eight SpaceWire links, each link is responsible for
transfer half of CCD, this process occurs concurrently. The
transfers occurs by encapsulating half line of one CCD on a

245

RMAP write command (FEE to DPU) and send it by one link,
as shown on Fig. 2 The address of each write commands is
incremental and should be restarted at a new image transfer
(2.5 s) this means that the images are saved on the same
memory address at the DPU side.

C. ICU

There are 2 ICU channels, which work, in cold redundancy.

The ICU is responsible for the management of the payload, the
communication with the Service Module (SVM), the
compression of scientific data before transmitting them as
telemetry to the SVM. Two SpaceWire routers (RU) a Data
Compression Unit (RDCU), a memory unity (MU) and a
processor unit (PU) compose the ICU.

 Each ICU Router Unit (RU-A and RU-B) is

connected to

• 4 MEU (Router Unit A is connected to MEU routers

A and Router Unit B to MEU routers B).
• 2 F-DPU
• 4 N-AEU
• 2 F-AEU

 Other functional units of ICU throughout 4 additional

SpW links:

• ICU internal Memory Unit (MU)
• Processing Unit A (PU-A)
• Processing Unit B (PU-B)
• The other Router Unit to connect together the two

SpW network.

 The RDCU will collect the data from the twelve front

end DPUs and compress the data. Finally, the ICU generates
the telemetry packets to be sent to ground.

II. SIMULATOR DESCRIPTION

The global vision of the Simulator is synthesized in the Fig.

3 where we can see the components that compose the project.
In order to understand the MEB role in overall process it is
important to establish the main interaction during a nominal
operation. The MEB is responsible to transmit data (ack.
Images) from its internal SSD and DDR memory to the
SpaceWire links, encapsulating it on a RMAP protocol. All
transfers are started by a synchronism pulse (sync) that can be
external our internal. With the sync detected, the processor
core starts the tasks responsible to load the images stored on
the DDR2 memory to the FIFOs on each SpaceWire/RMAP
peripheral. Eight different DMA controllers, each one
associated to a specific link, perform this transfer.

Fig. 3. SIMUCAM system and its components.

 In order to understand the MEB role in overall

process it is important to establish the main interaction during a
nominal operation. The MEB is responsible to transmit data
(ack. Images) from its internal SSD and DDR memory to the
SpaceWire links, encapsulating it on a RMAP protocol. All
transfers are started by a synchronism pulse (sync) that can be
external our internal. With the sync detected, the processor
core starts the tasks responsible to load the images stored on
the DDR2 memory to the FIFOs on each SpaceWire/RMAP
peripheral. Eight different DMA controllers, each one
associated to a specific link, perform this transfer.

The DMA core supports a buffer of 512 transfers each transfers
cares 9020 bytes. At the beginning of transfer the transfer
command buffer is full filled by the task that controls the
specific link. During the transmission of the image, the DMA
core generates a interruption at every DMA transfer executed,
this causes the link task to fill again the command buffer.

The 8 DMA cores share the DDR2 memory, the round robin
scheduling is used to give access to DDR2, this scheduling is
performed, not on software level, but at hardware level (bus
controller).

The SpaceWire/RMAP FIFO is of 32 bits wide (to be
compatible with the Avalon bus) and has a depth of 512. This
peripheral is responsible to fragment the data into RMAP
packets and transmit it to the SpaceWire link. No software
innervation is necessary once the peripheral is configured, its
perform the auto increment of the destination address on the
RMAP command, inserts the data CRC, inserts (if configured)
extra data on the data (ID info, top counter).

All this is done to free the uC from critical tasks the MEB
avoiding glitch on the data transfer. Figure 4 is a resume from
the proposed architecture. The SSD are used to stored images,
this images must be loaded by the Ethernet TCP/IP connection

246

that communicates with the SSW component. These images are
than cached on the DDR2 memories, and transfer by each
SpaceWire link respecting all specification imposed for the N-
FEE and F-FEE.

Fig. 4. The simulator architecture.

 The SpW/RMAP is peripheral developed for optimize

the data transfer from de memory to the SpaceWire, which can
be analyzed in Fig. 5, its six main parts can be listed:

• RMAP: generates the RMAP head and data CRC; its
operation is controlled by the REG.

• FIFO: used to cache de data of the RMAP (image), is
a dual port with a reading clock of 200 MHz (8b) and
writing port of 100 MHz (32b).

• DELAY: block that generates the sample time (4MHz)
to emulate the A/D .

• REG: register with all RMAP configuration.
• TC: Time code.
• SpW: SpaceWire core.

Fig. 5. The SpW/RMPA peripheral architecture.

ACKNOWLEDGMENT
The authors thanks to: Fapesp grant 2008/57866-1; CNPq

grant 574004/2008-4; FINEP and Mauá Institute of
Technology.

REFERENCES
[1] ESTEC-ESA. Plato payload definition document.

”http://sci.esa.int/ science
e/www/object/index.cfm?fobjectid=42793#, 2008. ���

[2] ESTEC-ESA. Remote memory access protocol remote acess
memory protocol.
http://www.ecss.nl/forums/ecss/dispatch.cgi/standards/showFile/
100770/d2010020912165 E-ST-50-52C(5February2010).pdf,
2010. ���

[3] ESTEC-ESA. Spacewire protocol identification.
http://www.ecss.nl/forums/ecss/dispatch.cgi/standards/showFile/
100769/d2010020912161 E-ST-50-51C(5February2010).pdf,
2010. ���

247

Fig. 1. MCT-04 chip in the CPGA720 package

Radiation tolerant heterogeneous Multicore "system

on chip" with built-in multichannel SpaceFibre switch

for onboard data management and Mass Storage

Device
Components, Short Paper

Tatiana Solokhina, Jaroslav Petrichkovich, Alexander

Glushkov, Andrey Belyaev, Leonid Menshenin, Fedor

Putrya

ELVEES RnD Center,

Zelenograd, Russia,

tanya@elvees.com

Sheynin Yuriy, Suvorova Elena

University of Aerospace Instrumentation,

St. Petersburg, Russia

sheynin@aanet.ru

Abstract — Тhe article presents a 180nm CMOS Radiation

tolerant heterogeneous Multi-core ASIC MCT-04 as the SoC

(System–on-Chip) with built-in multichannel multiprotocol

SpaceFibre/ GigaSpaceWire (SpaceWire-RUS standard),

SpaceWire based switch for the onboard data and Mass Storage

Device management. The SoC design and architecture support

Single-Event-Upset (SEU) fault-tolerant. The MCT-04 embedded

networking subsystem provides multiple ports for high-rate

interconnection with combination of SpaceWire/ /GigaSpaceWire

(SpaceWire-RUS)/SpaceFibre links. Input and processed data

streams transmitted via 1.25 Gbps four multiprotocol

SpaceFibre/GigaSpaceWire links with built-in DMA controllers.

Two SpaceWire links (ECSS-Е-50-12С) provide data transfer

bandwidth 2 - 400 Mbps. The MCT-04 embedded networking

subsystem on the base SpaceWire/GigaSpaceWire/SpaceFibre

provides a balance between external and internal data

throughput especially for the multifunctional micro and

nanosatellites systems.

Index Terms — Radiation tolerant heterogeneous Multicore

ASIC, multiprotocol SpaceFibre based links, NAND-Flash,

Memory Controller, on-board Mass Storage Device management

I. INTRODUCTION

In the spacecraft data processing and storing systems, it is

necessary to solve several important tasks, including:

1. Delivering large amounts of data at high speed from

the sensors to the proper processing system;

2. High-speed data streams switching;

3. Storing of large amount of data;

4. The overall management of space system.

The article describes the experience in the creation of

MCT-04 "system-on-chip" qualified for space application with

architecture intended to provide high-speed data exchange

between data source, data processing and data storage blocks,

and also between multiprocessor networks on the SpaceWire,

SpaceFibre and Giga SpaceWire (SpaceWire-RUS standard)

base.

Thus, the limiting factor in the development of Mass

Storage Device or SSD (Solid-state Drive) s the absence of a

large selection of space microprocessors for the high-

performance space computing, that provided the highly

throughput by the links (up to the gigabits) based on modern

advanced standards such as SpaceWire and SpaceFiber and its

modifications.

This article describes the experience in the creation of an

actual high-performance the highly throughput "system-on-

chip" MCT-04 qualified for space applications with balanced

architecture of processing IP-cores and network subsystem of

the data exchange between ASIC resources and between

multiprocessor networks on the SpaceWire, SpaceFiber [2] and

Giga SpaceWire (SpaceWire-RUS standard) base.

II. THE MCT-04 ARHITECTURE

Radiation tolerant Multicore ASIC MCT-04 (Fig.1) was

developed as the homogeneous SoC (System–on-Chip) for the

onboard data and Mass Storage Device management.

The block diagram of the chip is shown in Fig. 2.

248

DDR

JTAG

CPU0

Bus

fabric

IT0, IT1,

UART
On chip

debugger

(OnCD)

DDR_PORT

RISCore

I, D CACHE

PLL

ICTR

DMA

8CH

SpFR,

 DMA (2)

SpaceFibre

NAND

Flash

NFC0

CRAM0

SWIC (2)

 DMA

…

NAND

Flash

 NFC7

SpaceWire

MFBSP

CPU1

On chip

debugger

(OnCD)

On chip

debugger

(OnCD)

RISCore

On chip

debugger

(OnCD)

I, D CACHE

CRAM1

SPINLOCk

SPI

GPIO

MAILBOX

Fig. 2. MCT-04 chip block diagram

The main MCT– 04 SoC features are:

 CPU0, CPU1 – central processing units 0, 1 based on

RISC cores with MMU, 4-stage pipeline and

Multiply/Divide accelerator; CPU clock frequency is

no less 120 MHz, which apply CPU performance as

120 MOPS each;

 On chip memory - about 3 Mb, including CRAM0,

CRAM1 – random access memory of CPU 128 KB

each;

 Error correction of internal and external memory :

single error correction and detection of double errors

Hamming code;

 I, D CACHE – instructions and data cache of CPU

32 KB each;

 DMA MEM_CH – 8-channels DMA;

 32-bit DDR port, 1600MB/s for the external memory;

 Eight NAND Flash Controllers (NFC0:NFC7). Each of

them supports speed ranging from 40 MB/s to 200

MB/s; provides a connection 128 NAND Flash chips

totaling 2 Tbytes using 128 Gb components; also

provides a connection 32 NAND Flash 3DPlus firms

modules totaling 1 Tbytes

 SWIC0, SWIC1 – SpaceWire interface controllers;

 SpFR (SpaceFibre Router) - 4-port multiprotocol

switch SpaceFibre/GigaSpaceWire (SpaceWire-RUS).

The capacity of each port from 5 MBd to 1.25 GBd

with RMAP protocols supporting. The connecting to

AXI switch was realized via two multi-channel DMA

controller;

 MFBSP - multi- buffered serial port operates in the

controller mode SPI bus and GPIO[2:0];

 ICTR – interrupt controller;

 UART – universal asynchronous port;

 IT0, IT1 – universal timers, interval/real time;

 SPINLOCK – low-level mutual exclusion

synchronization primitive;

 MAILBOX – messaging module;

 OnCD – built-in hardware debugging tools and JTAG

– debug port.

 Power Saving Modes support;

 PLL – frequency multiplier PLL based;

 Power consumption - no more 3 W.

The ASIC consists of two processing CPU. CPU is a

standard RISC - processor (RISCore32) with 4-stage pipeline.

With Multiply/Divide accelerator CPU provides the addition,

multiplication and division operations. CPU also has a memory

management unit (MMU) on the basis of fully associative

address translation buffer (TLB) of 16 double cells, the

instruction cache (I CACHE) of 32 Kbytes of data cache (D

CACHE) of 32 Kbytes. The programmable MMU provides

two operating modes: with TLB (Translation Lookaside

Buffer) and FM (Fixed Mapped). On-chip JTAG IEEE 1149.1

Debug Unit support the single stepping and data address/value

breakpoints.

MCT-04 ASIC was realized to support all architectural

solutions, which increased its resistance to failure and fault

tolerance. All ASIC memory blocks including the register files

in CPU/DSP are protected by Hamming code with single

errors correcting and two errors detecting.

The МСT-04 applies the ability to turn off unused

processor IP cores and other resources such as unused high

throughput links. The МСT-04 also supports a sleep mode in

which it consumes minimum milliwatts of power.

The ASIC has DDR memory ports (1600 MB/s), support

DMA transfers between external I/O ports and external

memory, have Multifunctional Buffed Serial Ports (MFBSP)

that can act as SPI or GPIO interfaces, six Space Wire family.

Input and processed data streams via through six

SpaceWire based family links (four up to the 1.25 Gbps and

two up to 400 Mbps) provide a balance between its throughput

and SoC performance.

МСT-04 also has a dedicated test and debug interface; run

the Linux operating system; and have a C /C++ application

software compiler for the CPU.

The NAND Flash Controller has an AHB Interface, which

allows the CPU processor to configure the operational

registers sitting inside the NAND flash Controller. The IP core

supports the Open Nand Flash Interface Working Group

(ONFI) 1.0, 2.0, 2.1 and 2.2 standard. The NAND flash

Controller handles all the command, address, data sequences,

manages all the hardware protocols, and allows the users to

access NAND flash memory simply by reading or writing into

the operational registers.

Features of NAND Flash Controller:

 Supports Flash devices up to 128 Gb

 Supports NAND Flash memories from Micron,

Samsung, ST-Micro and others.

 Supports all mandatory commands and selected

optional commands

249

 Boot mode support, Full access to spare area

 Supports speed ranging from 40 MB/s to 200 MB/s to

allow applications to balance performance and Power

 Supports Interleaving Operations: Page Program

Interleaving, Copy back Program Interleaving, Block

Erase Interleaving, Read Interleaving, Cache

Interleaving

 upports Multi LUN/Die Operations

 Supports Small Data Move

 Supports Change Row Address

 Supports Reset LUN: Page Size - 512B, 2KB, 4KB,

8KB

 Flash data bus width: Standard support - 8bit for both

Asynchronous and Synchronous mode, Additional

support - 16bit only for Asynchronous mode

 ECC:

◦ Hamming Code: 1Bit error correction, 2Bit error

detection

◦ BCH: tandard support: 4, 8 bit error correction;

Additional support - up to 32 bit error correction

 provides a connection 16 the Flash chip. Eight NAND

Flash Controllers provides a connection 128 the Flash

chip - a not less than 1 terabyte.

III. MCT-04 DESIGN ISSSUES

In addition to radiation tolerant and low power

requirements for the space applications chip there was an

additional requirement to achieve 2 GB/s exchange rate to

NAND mass storage from external devices. During the

preliminary analysis of the architecture, the following critical

points that may affect the final performance of the system as a

whole have been identified:

 SpaceFibre ports performance (digital part + PHY)

 NAND controllers performance

 DDR memory port performance

 On-chip interconnect performance

 CPU performance, in particular:

◦ CPU load by processing of requests coming from

SpaceFibre by RMAP protocol

◦ CPU load with NAND management (processing the

request queue, reorder memory accesses operations,

interrupt from the NAND controllers handling)

◦ CPU load by queries allocation algorithm between

eight NAND controllers and software cache

management to increase the overall performance and

lifetime of the memory chips

Each of the given points can become bottleneck with

critical impact on system performance. To avoid unnecessary

system redesign cycles Requirement Driven Verification

approach was applied [5]. Initial specification performance

requirements continuously checked at all stages of design, from

the very first stage in which there is uncertainty of the system

architecture. In the route was used:

 Analysis of requirements to the system elements from

memory management algorithm with high abstraction

level TLM models;

 System efficiency analysis task decomposition

(autonomous research of IP-Cores performance);

 Entire system performance analysis with RTL model

simulation and complex system-level tests [6] [7].

The principal feature of the route was the feedback from

every direction on all remaining studies. Thus, when more

detailed models of IP-cores was created, it causes updates for

TLM model environment, in which the memory management

algorithm was debugged (e.g. the number of interrupts from the

NAND controller). In other way, new details obtained from

algorithm environment causes updates in interfaces bandwidth

requirements and CPU performance. In particular, it was

fundamentally important to obtain information on the service

traffic from the CPU for memory management algorithm (in

addition to main data traffic).

Here are some important results of research carried out in

the process of designing the SoC

Case 1: 8 NAND controllers together create a huge stream

of interrupts (8 interrupt per transmission of one 4K page),

which is completely distracts the resources of a single

processor with architecture selected for the project.

Two solutions were adopted for this reason:

 Place additional CPU in a system for controlling the

eight NAND controllers

 Implement inside NAND controller hardware more

intellectual management, for example for sending

pages in auto-increment address mode (block transfer

mode)

Together, these solutions have led to the release of CPU0

for cache and SpaceFibre management tasks and selecting

CPU1 fully for NAND control task, which in a typical mode of

operation has reserve for software optimization and

parallelization of NAND transaction flow.

Case 2: System level complex tests analysis of on-chip

interconnect and memory subsystem performance showed CPU

traffic (arbitrary traffic with short transactions) crowding out

effect by a continuous high-density traffic from NAND and

SpaceFibre ports. In addition, DDR bandwidth achieved in

such tests is very close to maximum, determined by given

technology. Therefore, even the change of the arbitration

scheme and buffer organization in the DDR controller would

result in a loss of performance for NAND traffic, which would

also reduce performance, but in another place. The simplest

solution was to increase the internal memory size and place in

it program and the most frequently used algorithm data. CPU

traffic minimization has beneficial impact on system

performance for mass storage use case.

TABLE I. THE CROWDING OUT EFFECT FOR CPU TRAFFIC BY NAND AND

SPACEFIBRE HIGHER DENSITY TRAFFIC

master Average time of byte transmission, ps

nand3_w 3318.68489583

nand2_w 3385.41666667

nand4_w 3447.265625

.....

cpu1_r 29436.7913148

cpu1_w 32159.8223481

NAND controller and system performance:

250

TABLE II. NAND CONTROLLER PERFORMANCE

 ONFI mode

performance

SLC mode read

performance

SLC mode write

performance

16-bit mode 400 MB/s 304 MB/s 160 MB/s

8-bit mode 200 MB/s 152 MB/s 80 MB/s

TABLE III. SYSTEM PERFORMANCE

 Required average

interconnect

bandwidth

Payload data traffic

speed

4 КВ packets traffic 375 MB/s 5-7 MB/s

256 КВ packets traffic 350 MB/s Up to 180 MB/s

mixed 4/256 КВ packets

traffic

308 MB/s 50-60 MB/s

SoC design analysis showed that depending on the nature

of the external traffic system would show the performance

from 5MB/s (traffic from the packet of minimum size at which

the limiting factor is the CPU performance) up to 200MB/s.

200MB/s - practically achievable maximum for SpaceFibre

in the SoC, but large amount of different packets may drop

performance to 140-180 MB/s, caused by limitation in the

DDR bandwidth in case of simultaneous streams from all

masters.

Two CPU design left margin in terms of software

optimization potential, thus lower performance bound can be

improved in future work with firmware.

Large on-chip memory for memory management algorithm

program and data in addition to cache eliminates negative

impact of CPU activity on overall system performance.

The MCT-04 software platform apply the Complete tool set

for the fast development and integration of the space

applications, includes MCStudio ® IDE (Integrated

Development Environment).

IV.THE MCT-04 ASIC EMBEDDED SPACE WIRE

STANDARDS FAMILY NETWORKING SUBSYSTEM

The MCT-04 embedded networking subsystem provides

multiple ports for high-rate interconnection with combination

of the SpaceWire/SpaceFibre /GigaSpaceWire (SpaceWire-

RUS standard) links.

The combination of the SpaceWire based family links

(SpaceWire, SpaceFibre and GigaSpaceWire with various

speeds and opportunities) provides unprecedented flexibility

and scalability for space on-board processing systems.

The six MCT-04 SpaceWire based family serial high-rate

links consist of:

1) Four multiprotocol ports (belong to SpFR switch) such

as SpaceFibre (2 VC, 1250Mbps) /GigaSpaceWire

(SpaceWire-RUS); have rates up to 5,10,15 ... (with 5

Mbps increments) ... 125, 312.5, 625, 1250 Mbps);

2) Two SpaceWire ports (ECSS-Е-50-12С) have rates up

to 2-400 Mbps.

It should be noted that MCT-04 ASIC SpaceWire links

implementation supports the extensions towards next

SpaceWire standard revision such as Distributed interrupts and

others.

It is also important to note that the GigaSpaceWire ports

can provide bandwidth up to the 1250 Mbps, but can operate

also in a range of lower data rates, down to 5 Mbit/s. Lower

data rates could efficient for longer distances or using older

types of cabling.

GigaSpaceWire is in fact a high-rate link for SpaceWire

networks, and has the exactly the same Packet, Network layers

and the same packet formats that makes the packets routing

and switching between any combination SpaceWire and

GigaSpaceWire ports straightforward and resource-efficient.

The internal switch operates as a SpaceWire routing switch,

with routing and switching SpaceWire/GigaSpaceWire packets

between any combinations of its ports, in accordance with

ports operation modes and the routing table.

Two SpaceFibre links [3] are supporting by the

multiprotocol network interface controller. The main

SpaceFibre link rate in the MCT-04 ASIC is 1250 Mbit/s.

In the multiprotocol ports implementation another

operation mode is to support the GigaSpaceWire protocol.

Such combination of the different types of ASIC links

(SpaceWire/SpaceFibre/GigaSpaceWire) and internal switches

makes the MCT-04 very flexible in building ASIC network

interconnection with external processors, nodes, and

peripherals with any type of SpaceWire/SpaceFibre

/GigaSpaceWire networks; provide different types of network

services.

While SpaceFibre links provide advanced QoS features

(very important for the space onboard systems), the

SpaceWire/GigaSpaceWire combination links provide

effective and cost-efficient networking for other on-board

applications (for example, for the space Mass Storage

systems). Such applications may not require SpaceFibre QoS

features with an extra cost of the SpaceFibre implementation

silicon area.

SpFR switch supports the following main types of information

flow:

 Streams RMAP packets with hardware-software

package processing;

 Flows package SPW, a software package processing;

no hardware packet processing is not performed. The

various transport protocols and application layer can

support software for them;

 Streams RMAP appeals teams in the space SpFR block

configuration from remote network administrator.

 Interpretation of flow types calls made in relation to

the logical channel numbers SpFR virtual ports from

which they come.

All packets coming from virtual channel VC0, automatically

interpreted as RMAP treatment team in the configuration

space.

For virtual channel VC1 is possible to program the settings of

interpretation modes - either as a stream of packet transport

protocols , either as a stream of packets SpW not interpreted

SpFR unit and processed by software.

Thus MCT-04 ASIC is a new generation “system on a

chip” of that supports a wide class of space on-board

applications ranging from onboard data management to Mass

Storage systems.

251

Fig. 3. MCT-04 chip post-layout area. The chip size: 17.5 mm x 17.5 mm.

Fig. 4. Block diagram of on-board Mass Storage Device (MSD)

V. THE MCT-04 ASIC PROOF ON THE SILICON

In this MCT-04 ASIC project it was created a new

innovative multiprotocol port IP-core (SpaceFibre/Giga-

SpaceWire IP–core) that provide a balanced solution between

all advantages in QoS, FDIR and others from SpaceFibre and

the simplicity and low cost of implementation from

GigaSpaceWire. In this MCT-04 ASIC project it was created

a new innovative multiprotocol port IP-core (Space-

Fibre/GigaSpaceWire IP-core) that provide a balanced

solution between all advantages in QoS, FDIR and others from

SpaceFibre and the simplicity and low cost of implementation

from GigaSpaceWire.

MCT-04 ASIC was developed and synthesized on the

space qualifiable ASIC technologies base. The chip size is

17.5 mm x 17.5 mm (Fig.3). During the project, we analyzed

the complexity and feasibility of 4-channel SpaceFiber switch

built-in microprocessor with two virtual channels each.

From the MCT-04 ASIC post-layout area analysis the size

of the silicon area for some radiation tolerant MCT-04 IP -

cores (real layout):

 CPU0, CPU1: 47.00 mm*2;

 4-port multiprotocol switch SpaceFibre/Giga-

SpaceWire (SpaceWire-RUS): 42.5 mm*2

 SpaceWire interface controller (SWIC): 2.5 mm*2;

 NAND Flash controller (NFC): 10.5 mm*2.

The main parameters of the SpaceFibre/GigaSpaceWire

CML based transceivers IP-cores, based on the space

qualification Radiation Tolerant Libraries, are:

 A wide range of data rates 5, 10, 15… (with discrete of

5)...125, 312.5, 625, 1250 Mbps – for the

GigaSpaceWire mode (including multiprotocol links)

and - 1250Mbps for the SpaceFibre mode;

 The transmitter and receiver IP blocks dimensions are

the same: RX = TX = 0.233 mm*2.

VI. APPLICATION OF MCT-04

In Fig.4 shown the block diagram of on-board Mass

Storage Device.

The structure of the on-board MSD suggests applying of

SpaceWire and SpaceFibre high-speed interfaces as a

communication transmission medium of instructions and data.

The SpaceFibre interface will be used for communication of

those elements of informational computing system where data

transmission rates reach Gb/s per channel. The SpaceWire

interface is used as the common unified environment for

transmission of commands and interaction between all

subsystems of informational computing system.

Structurally the MSD consists of storage modules (from 2

to 15 modules) and two switch modules. Storage modules are

intended for reception of input information on two channels of

the high-speed SpaceFibre interface and it is saving in NAND-

Flash memory. Switch modules are intended for information

transfer between storage modules and for formation of an

output flow to Earth via a high-speed radiofrequency line.

Basic elements of the storage modules are the MCT-04

(memory Controller) and NAND-Flash memory.

NAND-Flash memory is based on modules available from

3D PLUS [9]. MSD consisting at 15 storage modules has total

capacity up to 15 Tbytes.

View of the 3D PLUS module shown in Fig.5.

252

Fig. 5. View of the 3D PLUS NAND Flash storage module

…

SpF

SpF

Digital Signal

Processing

SpF

SpF

SpaceWire

Switching

Network

MSD

(base on

MCT-04)

MC-30SF6

…

MC-30SF6

Mass Memory

Insruments

Insruments

…

MSD

(base on

MCT-04)

Fig. 6. Block diagram of on-board data. Processing system

In Fig. 6 shown the block diagram of on-board data

processing system.

On-board data processing system consists of Digital Signal

Processing System, Instruments and Mass Memory. Digital

Signal Processing System is implemented on Radiation

tolerant heterogeneous Multi-core ASIC MC-30SF6 [8].

VII. CONCLUSION

Radiation tolerant chip MCT- 04 was developed using

technology SpaceFibre/GigaSpaceWire (SpaceWire-RUS

standard) and is designed to create a network drive terabyte

capacity.

Under the ELVEES development is the 90 nm SOC design

for the on-board Mass Storage Device with the transmission

rates of serial I/O duplex SpaceFibre GigaSpaceWire

(SpaceWire-RUS standard), transceivers up to 12 Gb/s per

channel. It is planned to provide an opportunity to work via

fiber-optic transceivers. Further extension the volume of

storage device up to 4 Tbytes is under consideration.

REFERENCES

[1] Next Generation Processor for On-board Payload Data

Processing Application ESA Round Table Synthesis, ESA,

TEC-EDP/2007.35/RT, October 2007

[2] S.M. Parkes, C. McClements, M. Dunstan and M. Suess,

“SpaceFibre: Gbit/s Links For Use On board Spacecraft”,

International Astronautically Congress, Daejeon, Korea, 2009,

paper IAC-09-B2.5.8

[3] “D2.1 - SpaceWire-RT Outline Specification”, SPACEWIRE-

RT Consortium, 06.09.2012.

[4] “D5.1 - SpaceWire-RT ASIC Implementation Feasibility

Summary Report”, SPACEWIRE-RT Consortium, 09.05.2013

[5] Requirements-driven Verification Methodology (for

Standards Compliance). www.accellera.orq

[6] E. Golovina, M. Makeeve, A. Nikolaev, F. Putrya, A. Smirnov,

REUSABLE COMPLEX SOC LEVEL TESTS CREATING

AND DEBUGGING METHOD, Problems of Advanced Micro-

and Nanoelectronics System Development, N.2, 2015, p. 45-50

[7] F. Putrya, Method of free C++ code migration between SoC

level tests and standalone IP-Core UVM environments, Design

& Test Symposium (EWDTS), 2014 East-West, p. 1-4

[8] Radiation tolerant heterogeneous Multicore "system on chip"

with built-in multichannel SpaceFibre switch for the

“intelligent” signals and images processing systems

[9] 3D PLUS, “Radiation Tolerant Memory, FLASH NAND

Product Overview”, http://www.3d-plus.com/product.php?type-
=1&fm=20

253

http://www.accellera.orq/
http://www.3d-plus.com/product.php?type=1&fm=20
http://www.3d-plus.com/product.php?type=1&fm=20

Enabling Advanced Missions on Small Platforms

through Designing Cost Effective SpaceWire-based

Avionics Solutions in the CubeSat Form Factor
SpaceWire Missions and Applications, Short Paper

Dan Ohlsson, Henrik Löfgren, Emil Vinterhav, Stefan Strålsjö

ÅAC Microtec AB

Uppsala, Sweden

dan.ohlsson@aacmicrotec.com

Abstract—When developing the SpaceWire based Sirius Data

Handling System (DHS) for small satellites ÅAC Microtec has

had to address the dual problem of designing for a low cost and

in a small form factor while retaining the high performance,

availability and longevity required to support advanced science.

In order to achieve the low cost a number of strategies have been

applied. Notably, the data handling units are generically designed

to be reusable either used for other missions as a part of the

platforms they were initially targeted for or for use on other

platforms, including CubeSats. Also, COTS components known

to withstand the space environment have been used for the

designs, in a strategy to reduce component costs. To increase

reliability, the Sirius DHS units are designed around a Flash-

based FPGA to be tolerant to SEE through triple modular

redundancy (TMR) and other fault handling techniques and

implements SpaceWire as the main data bus, using nano D-sub

connectors to save space and weight. The paper explores in more

detail the choices made on the data handling units in order to

achieve sufficiently high performance and high reliability in a

CubeSat compatible form factor at a reasonable price.

Index Terms—Data Handling System, SpaceWire,

microsatellites, COTS.

I. INTRODUCTION

In 2014 ÅAC Microtec was awarded with a project to

design a small, low-cost Data Handling System (DHS) for the

InnoSat satellite bus, that was to be used in the national science

mission MATS [1]. The project was seen by ÅAC Microtec as

a possibility to use the experience gained from designing

previous DHS systems to make a new design that would fit the

new requirements. Designing a more generic DHS would

enable a drastic reduction in project cost since parts of the non-

recurring engineering (NRE) could then be split over several

current and future satellites. This would be a first step to enable

the cost reduction required for the project, compared to using

traditional space systems.

Figure 1. Prototype of a DHS unit.

The DHS is intended for all data handling between the

radio and payload, as well as controlling the power and AOCS

systems. Included functions shall be data storage, scheduling of

experiments and maneuvers as well as handling the radio,

converting payload data to CCSDS (The Consultative

Committee for Space Data Systems communications encoding

standard) compatible messages that can be sent to the radio.

The MATS science mission is designated for Low Earth

Orbit (LEO) and a 2 years lifespan. The requirements were

optimized for this, with a starting point in the ECSS (European

Cooperation for Space Standardization) standards but in many

cases relaxed or pointing to the established industrial standards,

giving some freedom to the designers. However, a lot of

requirements were still given on the overall reliability of the

system, also under radiation, making the alternative of a

commercially available computer extremely difficult. The

alternative of using existing CubeSat [2] electronics was also

considered risky, considering the fact that, despite in some

cases having many successful recorded flights, the systems are

not well tested for the space environment. Also, a lot of

commercial electronics, that can be sensitive to radiation

without the proper mitigation techniques, are used in most of

those designs.

254

II. DESIGN PHILOSOPHY

A. Requirements

The requirements for the DHS were, except for the national

science mission, taken from several systems that ÅAC

Microtec have previously been and are currently being

involved in the design of. Input was also taken from market

studies, such as [3], to improve the reusability of the system. In

this way a design can be achieved that will fit the ongoing

projects at ÅAC Microtec as well as be a more generic system

for small satellites.

The size of the satellites being developed at ÅAC Microtec

and their partners varies from CubeSats (3U) up to platforms in

the range of a cubic meter and 250 kg. This required the DHS

to have some kind of scalability but also to be small and

lightweight in its most basic forms. Given the development of

the market and the experience from the previous systems, those

factors were considered important also from the perspective

that the DHS was to fit upcoming satellites.

B. System level decisions

To match the different requirements on size, interfaces and

computational power, a modular approach was selected. In this

way one or a few units could make a complete lightweight

DHS for simpler systems while more units could be added to

handle the requirements of more complex systems. To handle

all the functions required from the DHS, two types of units

were identified, one combined mass-memory and radio

interface and one more generic unit, designed to act as on

board computer and subsystem handler. SpaceWire was

selected as internal communication interface, to match the

requirements in bitrate and stability as well as enabling

connections to external units over a standardized and well

known interface. However, using the standard micro-D

connectors would significantly increase the unit size, just as

would using the quite stiff standard harness. Therefore an

approach using nano-D connectors and removing the outer

shield and jacket, based on the suggestions in [4] was selected.

What could also be seen from the requirements on the

systems was that the cost level had to be kept quite low while

the reliability of the system still needed to be high, reducing

risks and downtime. Given that the number of units was

expected to be relatively large, an approach where unit cost

was prioritized compared to NRE was implemented. This led

to the conclusion that normal space grade components could

not be used other than where no other alternative could be

found. Instead commercial off the shelf (COTS) components

were to be used. In our case COTS is referring to components

that have not been specifically designed or qualified for use in

space.

To maintain the reliability of the design, several mitigation

techniques as well as thorough testing was needed. The

experience at ÅAC Microtec was that a COTS based design

could become very reliable and definitely sufficient for the

purpose, even though the total reliability would not be as high

and well defined as it would have been using space-grade

components,

The parts of the system that were considered the most

sensitive to single event effects (SEE) are the processor and

memories. Instead of using sensitive commercial processors,

and to be able to better monitor the memories, a solution based

on a flash-based FPGA (field programmable gate array) with a

dedicated system on chip (SoC), including a soft processor,

was selected. This also enabled better tailoring of the IO

capabilities, like including CCSDS encoding and decoding

directly in hardware, offloading the processor.

Even using the COTS approach would prove too costly for

the intended range if each component was to be qualified

individually. Therefore a system-level test approach for testing

was selected, which would still give a good proof of the

reliability of the system while the exact properties of each

component would be more difficult to obtain. To reduce the

risk during testing and flight, careful component selection was

needed.

III. COTS VERSUS SPACE GRADE

Building systems for space using COTS components adds a

number of difficulties to overcome, amongst others that the

components are:

 Not tested for the space environment

 Designed with restrictions that are not applicable to

usage in space

 Manufactured using cost efficient methods that are

not adapted for usage in space

 Supported by suppliers that lack the knowledge and

understanding of using the components in space

systems

 Not unit or batch tested to the same extent as space

grade components

The most obvious difficulty is that the COTS components

have not been tested for use in the space environment, leading

to undefined behavior, especially when looking at radiation

effects. This increases the requirements on component

selection and testing procedures as well as forcing measures to

be taken to reduce the impact of any effects that might still

occur.

Requirements that are not valid for space have often been

imposed, whereof RoHS (the Restriction of Hazardous

Substances Directive), resulting in the usage of leadless solder,

is one of the more troublesome. In smaller satellites the thermal

mass is quite low and this, together with the fact that less

resources is available for active thermal handling, increases the

temperature swings that can be expected. Leaded solder is

generally better in handling thermal stress than the leadless

solders often used in the industry [5]. Also, while the ground-

based industry is taking the problem into account and has made

improvements [6] the fact still remains that solders with a very

high amount of pure tin can have problems with the formation

of tin whiskers. While components with leaded terminations

can still be found, this was considered very limiting for the

component selection. Also, retermination can be made, but this

would add an extra process step increasing cost, risks and lead

time. The mitigation techniques used to cope with the problems

of unleaded solder are described in section IV.

255

While space and military grade components have mainly

stayed with ceramic and metal packages, the commercial

industry have moved to plastic packages, mainly to reduce cost

but also to decrease weight and vibration sensitivity. When

plastic packages were first introduced the differences in

reliability compared to ceramic packages were large, but since

then the plastic packages have improved significantly and

problems such as sensitivity to temperature cycling and

hermeticity are no longer large concerns. In the data handling

system (DHS) no extreme temperatures are expected, so the

greater sensitivity to high temperatures of plastic packages is

not seen as a problem either.

Another problem in using COTS components is that some

parameters that can easily be obtained from space grade

component suppliers can prove difficult to obtain from COTS

suppliers. This can be outgassing properties, batch tracking

data, the performance under thermal stress or mitigation

techniques used to reduce the tin whisker problem. While this

problem increases costs for non-recurring engineering (NRE)

somewhat, it is not a big cost driver and does not affect

reliability.

Finally a typical COTS component is not subject to the

same rigorous testing on unit and/or batch level as a space

grade one. This puts higher requirements on later testing in

general and acceptance testing of the units after assembly in

particular.

Looking at the other side a few of the advantages are:

 Cost

 Availability

 Basic quality

 Performance

The most obvious advantages of COTS are the cost and

availability. Having much higher volumes, plastic packaging

and less rigorous unit testing decreases cost significantly, about

a factor of 100 per component is not uncommon.

A not so obvious advantage is the basic quality. While

space grade components are even more thoroughly tested to

find any problems than many COTS components, the later

have the advantage of often being produced in huge quantities

and in more mainstream processes. That means that even just a

few of them are tested per batch the number of batches provide

better statistics for improvements in the processes.

Another advantage is performance. Commercial processors

and memories are often many years ahead of the space grade

counterparts, which can also be seen from the fact that also the

traditional space industry in some cases go to the COTS market

to enable their missions [7].

In some cases, especially in critical power paths, the

component needs to be used on the edge of its capacity and

therefore needs to be well defined also during and after

radiation. For those rare cases space grade components are

used in the systems to fulfill the requirements. No such cases

have been identified for the DHS while some have been found

in the power subsystems that were designed at the same time.

IV. MITIGATION TECHNIQUES

As described in the previous section, using COTS in space

comes with a large number of limitations. To handle this and to

make the system robust to faults present also for space-grade

based designs, a number of techniques are implemented on

different levels of the DHS.

A. System

On a system level housekeeping and power monitoring are

the primary ways to detect and handle any failures.

Power monitoring is done both on the different DHS units

and on the central power control and distribution unit [8],

which is not the focus of this paper. On the DHS side, each unit

has a wide input voltage range, to be able to work in many

different systems, and use number of protection and mitigation

functions:

 Overvoltage protection, shutting down the power

input in the case of a malfunction of the power supply

 Undervoltage lockout, ensuring that current leakage

does not put the unit in an unknown condition.

 Power loss detection, giving the processor a heads up

of a few microseconds for a graceful shutdown.

In general, more resets can be expected from a COTS based

than a space grade based solution, but tests performed and

flight record have shown that such resets are very rare and

generally not related to problems in the power handling. In all,

the power monitoring systems implemented are considered

enough to avoid most catastrophic failures due to SEE even

though the units are not designed to be single point failure-free.

The DHS units provide a number of housekeeping

parameters that are used by the system software to decide on

actions to prevent or analyze failures. Those also provide

feedback on the behavior of the system during testing.

Despite all the measures taken to have reliable and self-

healing units there is always a risk of having units that gets

locked-up due to untested corner cases in the software

implementation. To mitigate this all DHS units are capable of

being reprogrammed in flight. This is used together with the

possibility of resetting the units to the updated or original

software image using hardware decoded CCSDS compatible

messages in the ECSS-E70-41A packet utilization standard

(PUS) format.

Finally both the original and updated software images are

tripled, so if booting from one version of the specific image

fails due to single event upsets (SEUs) corrupting the data, the

system can move to the next one.

B. System on Chip (SoC)

To provide a system much less sensitive to SEE than using

a commercial processor, an FPGA (Field Programmable Gate

Array) with a dedicated SoC is used. The FPGA selected is

Flash based, which gives its configuration an insensitivity to

SEE. Since the configured gates can still be sensitive to SEU:s

all flip-flops of the SoC used in space are tripled, using

majority voting to decide on the outcome of the operation.

Also, all caches in the processor are controlled using parity,

provoking a cache reload if any faulty register is detected. This

256

renders the SoC, and thereby the processor in itself, more or

less immune to SEU:s, removing a large risk with a

commercial design, still using COTS components.

To mitigate the problem of SEU:s in the memories, reads

from all memories are checked using error detection and

correction code (EDAC). While the data from the non-volatile

memories is just checked when read out, the volatile memories

are also continuously scrubbed and any errors found reported

and, if possible, corrected. If an uncorrectable error is found

during the read from the volatile memory on a command to be

executed, a reset is triggered, putting a fresh image from the

non-volatile memory into the volatile one.

To prevent any software related issues from locking the

system up and to cover for errors not found by the other

systems, a watchdog is implemented in the SoC, causing a

reboot of the unit if it becomes unresponsive.

Finally, all peripherals in the SoC have parity checking of

their FIFO (First In First Out) registers, enabling data to be

resent if needed.

Figure 2 gives a rough understanding of the resulting unit.

Most parts of the system, including the processor, runs at

50MHz.

FPGA

FPU

OpenRISC

1200FT

I/D Cache

UART

GPIO

CCSDS

Memory
controller

System
flash

controller

Flash
controller

SpaceWire

DMA
Control

Watchdog

Debug
Unit

SCET
Error

manager

2x 64MB
SDRAM

1 GB System
Flash

4x 4 GB
Storage

Flash

SpaceWire

R
ad

io
 In

te
rf

ac
es

R
S4

2
2

/L
V

D
S

R
S4

2
2

/R
S4

8
5

JT
A

G
/D

EB
U

G

Pulse CMDUMBI/EGSEGPIO

ADC
Housekeeping

ADC
controller

NVRAM

Analog inputs

NVRAM

3 Port
SpaceWire

router

Figure 2. Sample unit block diagram.

C. Electronics design and manufacturing

Using COTS components with unknown reaction to the

space environment in the design introduces a risk in the test

stage, especially for radiation testing, as well as in the final

application. Therefore careful component selection is of

uttermost importance to reduce final cost and improve the

resulting reliability. A lot of effort has been spent on finding

components that are considered to be relatively safe to use. For

instance, already published radiation reports on different COTS

memories are used to find suitable SDRAM (synchronous

dynamic random access memory) and Flash (non-volatile)

memories for the DHS. A lot of effort has also been spent

finding data that is more relevant to satellite systems than

COTS-based systems, such as outgassing properties.

As previously mentioned the DHS is assembled using

unleaded solder. The two main risks with this are possible

failures due to temperature variations and the risk of tin

whiskers.

To reduce the risk of damages to the solder joints due to

thermal stress, interfaces known to be sensitive (such as chip

scale packages or ball grid arrays) were avoided where possible

and tested and analyzed when used.

Tin whiskers are crystalline spikes of tin that grow from tin

surfaces and that can create shorts between adjacent conductors

or break free and short conductors in other parts of the system.

While the effect seems to be impossible to completely avoid

for components with terminations plated with pure tin, it can be

mitigated using conformal coating that reduces growth and

protects all other surfaces from any whiskers that are able to

grow through the coating. The coating also helps protecting the

electronics from any moisture that it might be exposed to

before launch.

Figure 3. Image showing the formation of tin whiskers on uncoated, to the

left, and coated areas, to the right [9].

Since qualification testing (described further in section V)

is one of the cost drivers in the development of the DHS it is

important to make sure that no changes are done in the

manufacturing processes without an analysis of the

consequences for the test results. This is controlled using lot

travelers where the manufacturer enters the parameters that are

used in the different processes. The same lot traveler is also

used to increase traceability and ensure that the correct process

parameters and safety measures are made.

To simplify manufacturing, and thereby reduce costs,

industrial standards rather than the space specific ones have

mostly been used to define the quality requirements for those

steps. Since only a few manufacturers are used to the space

standards, this increases the selection of manufacturers

significantly. In general the highest levels of quality were been

selected, such as assembly according to IPC-A-610 class 3.

D. Mechanics

The DHS units are also separately enclosed in mechanic

boxes, adding to the radiation shielding and insensitivity to

electrostatic discharges during assembly. This also helps in

harnessing, providing fastening points for the cables and

simplifies integration.

257

V. TESTING

COTS components are not uncommon in space designs,

also in designs with even higher requirements on reliability

than the ÅAC Systems, but there are few, if any, standards for

space systems that are adapted to anything else than the very

highest (and therefore very expensive) quality level. Since

ÅAC Microtec depends on external resources doing most of

the environmental testing (except for temperature and

humidity), it is also important that any test specifications used

are either accepted and known or, for less complex tests, clear

enough to be able to do the testing without following an

existing standard. To match the requirements seen an internal

standard have had to be made, being a compromise between

the ECSS standards, NASA recommendations and the cost

efficiency required. In some cases industrial or military

standards were selected to increase the number of available test

facilities, decreasing cost and potentially lead times. As an

example, approach very close to the ECSS standard was used

for the temperature cycling while the SEE testing was done

with protons only, based on NASA recommendations, to

enable unit testing and the usage of nearby facilities.

A problem in defining the test levels have been that the

ECSS standard is mainly adapted for testing for a specific

mission, where a lot of parameters are given by the selection of

orbit and launcher. Since the DHS was designed to be reused in

future missions, a more generic approach have had to be

selected, where some test levels have been taken from the

ECSS or industrial standards while others have been tailored to

get the most reliability for a given cost. This leaves the

decision of any additional testing with the customer, if the test

levels presented are not enough.

VI. CONCLUSION

A. Summary

Using in-house knowledge from fully space grade and

purely industrial designs, a design and test philosophy

matching the requirements for the mission and more general

requirements, improving the reusability of the system, has been

made. Those incorporate ECSS, NASA as well as established

industrial standards and recommendations, reducing the cost

while only slightly decreasing the overall reliability compared

to a full ECSS test campaign. Experience from previous test

campaigns and flights have been incorporated to reduce the

risks and increase the reliability of the system substantially.

This results in a system that is drastically less expensive than a

fully ECSS compliant system but that still have a lot of the

reliability that can be expected of such a system for the

intended usage, which is 5 years in LEO.

B. Future work

A first version of the DHS is due for launch on a tech

demonstrator satellite in 2016 and the data obtained from the

system during flight will be analysed and used for

improvements.

Figure 4. Integrated DHS with radio and power unit attached.

A continuous process of improving the design and test

philosophies and making the units even better adapted for

reusability is ongoing. In this process there is a continued

weighting of the cost versus the reliability in a way that a

reliability good enough for most LEO small satellite missions,

including the more critical ones, is achieved, without getting

the costs associated with electronics for a large satellite

designed for long time usage in higher orbits.

REFERENCES

[1] N. Larsson et al,” InnoSat and MATS – An Ingenious

Spacecraft Platform applied to Mesospheric Tomography and

Spectroscopy” 10th IAA Symposium for Earth Observation:

2015

[2] Mehrparvar, Arash, “CubeSat Design Specification”

The CubeSat Program, CalPoly SLO. Retrieved September

2015

[3] Doncaster B and Shulman J, “2016 Nano/Microsatellite

Market Forecast”, SpaceWorks Enterprises, INC.

[4] Rouchaud G., Ilstad J. and Mettendorff F., “LOW

MASS SPACEWIRE”, International SpaceWire Conference

2011

[5] Garcia C, “NASA-DoD COMBINED

ENVIRONMENTS TESTING RESULTS”, SMTA

International conference 2010

[6] Collins P, “Lead Free Plating & Soldering”, Harwin plc

[7] Dellandrea B., Estaves G. and Alison B., “System

Definition of COTS-based computer for on-board systems”,

ESA TEC-SW & TEC-ED final presentation days: 9 th

December 2015.

[8] Tsamsakizoglou M., Löfgren H. and Gunnarsson M.,

“MICROSATELLITE POWER CONTROL AND

DISTRIBUTION UNIT FOR THE INNOSAT PLATFORM”,

11th European Space Power Conference, Thessaloniki, GR, 3-

7 October 2016

 [9] Woodrow T.A and Ledbury E.A., “Evaluation of

Conformal Coatings as a Tin Whisker Mitigation Strategy”,

IPC/JEDEC 8th International Conference on Lead-Free

Electronic Components and Assemblies, San Jose, CA, April

18-20, 2005.

258

Thursday 27 October

259

 Components (Long)

260

Compact, Impedance-matched

SpaceWire Connector Development – “MicroMach

SpaceWire”
SpaceWire Components, Long Paper

Kevin Enouf

Axocom Space Products Division

Axon’ Cable SAS

Montmirail, France

k.enouf@axon-cable.com

Stéphane Hermant

Axocom Space Products Division

Axon’ Cable SAS

Montmirail, France

s.hermant@axon-cable.com

Index Terms—Connector new design, high data rate (HDR).

I. INTRODUCTION

Axon’ Cable was selected to carry out the

development of a new, compact impedance-matched

SpaceWire (abbreviated herein to “SpW”) connector under

an ESA Technology Research Project. The classic existing

SpW connector, the 9 way micro-D, whilst having the

advantages of being both small and common to many

projects, is not electrically optimized to the SpW needs, nor

is it particularly efficient when it comes to EMC protection.

As high data rate applications are booming, there is, a

pressing need to develop an improved connector interface.

The design phase of the project under ESA

supervision is nearing completion. In one hand Axon’ has

carried out a user survey to assess the needs from users and

their priorities for such a connector. In the other hand Axon’

has also conducted a connector survey to identify and

evaluate potential candidates already on the high data rate

connector market from different manufacturers.

From the original scope of the project, Axon’ has

already gone the extra mile with the design and manufacture

of a number of different cable constructions in order to

evaluate whether the existing four shielded twisted pairs

configuration is indeed the best option for SpW L.V.D.S.

transmission.

Axon’ will present the main results and conclusions of

these surveys, along with a detailed presentation of the

prototype of the compact, impedance-matched connector,

and a description of the trade-off made in order to achieve a

desirable size coupled with significantly improved electrical

and EMC performances.

Note: To avoid repeating the lengthy phrase

“compact impedance-matched SpaceWire connector”

throughout this paper and elsewhere, Axon’ has adopted the

working name “MicroMach SpW” for this connector family,

drawing on its twin heritages of micro-D and AxoMach®

(‘mach’ meaning high speed) technologies.

II. SURVEYS AND CHARACTERIZATION

A. Existing Market Connectors Survey

Among a variety of existing connectors on the market

dedicated to interconnect high speed links, only a few

appear to meet the required electrical performance levels,

but those tend to be much larger in size than the 9 way

micro-D solution (see example in fig.1). Other than its

compact size, however, the micro-D offers the least

electrically compliant results of the study - unsurprising in

that it was originally chosen for its size and robustness

rather than its HDR capability. Put another way, typically

when a connector is of a desirable size, the electrical

parameters tend to be compromised - particularly in terms of

EMC performance. Additionally, the various available

connectors on the market, along with their contacts and

accessories, are not always well matched to the cable size

and can therefore create a degree of electrical mismatching,

generally manifested by deviations in characteristic

impedance and shielding efficiency.

Fig.1. Size comparison between classic 9 way micro-

D connector and one of the top HDR performers in the

connector survey

261

Fig.2. Shielded twisted pair (top) versus

shielded parallel pair (bottom)

Fig.3. shielded twisted quad cable

As no connector on the market currently meets both the

electrical performances and the dimensional aspirations of the

study, the development of a dedicated connector was

commenced, focusing on the twin targets of remaining as

close as possible to the size of the 9 way micro-D whilst

significantly improving the overall electrical performances.

B. Cable survey and trials: first results

A cable survey was carried out by Axon’ Cable to try to

improve cable features based on skew reduction and size. The

approach has been to consider a manufacturing process of

shielded parallel pairs using the same low loss A-PTFE®

dielectric material as used in the current low mass SpW cable

ESCC3902/004. The intention is to scale up the data rate

capability of a shielded parallel pair cable whilst ensuring an

intra pair skew and insertion losses reduction.

With shielded parallel pairs, the skew is better managed

due to low variation of the wires length along the cable (a twist

adds an extra length per wire compared to a parallel pair). This

parallel wire layout leads to a fair reduction of the insertion

losses of the cable. Moreover from a mechanical point of view,

the overall diameter of the wires assembly is smaller in a

parallel construction than in a twisted one because no filler

material is required between wires.

In an attempt to reduce the cable dimensions even further, a

shielded twisted quad cable configuration (fig.3) has been

investigated. The wire baseline is equivalent to parallel or

twisted pair but matched to offer 100 Ohms differential

impedance between opposite wires. This cable requires a

dedicated connector with four pins within the same contact

(quadrax) to achieve the required electrical performances.

C. Electrical characterization test and report

Electrical features both for time domain and frequency

domain have been selected with ESA to characterize the future

SpW connector and link. Based on this selection, Axon’ has

built prototype assemblies using existing high data rate

connectors and its low mass SpW cable. Crucial electrical

parameters like scattering parameters, characteristic impedance

and crosstalk have been measured as well as new parameters,

such as differential mode to common mode conversion,

characterizing the symmetry of the differential transmission

line.

III. NEW CONNECTOR DESIGN

The shape of the proposed new connector was rapidly

chosen in accordance with customers’ needs to be a

rectangular design with four separate cavities. Each cavity is

separated by a metallic wall to improve crosstalk performance.

The four ways are designed to all be fully 100 Ω adapted

throughout the complete transmission line.

To secure the mating sequence, two special guide pins are

used which, as well as securing the backshell to the connector,

help accurately guide the male and female connectors together

during the mating operation.

The electrical contacts are assured by the very well-known

and reliable Twist Pin technology used on micro-D

connectors, which can boast decades of successful flight

heritage. These contacts are inserted by first fitting them into

dielectrics which are then press-fitted into the connector shell.

This design prevents the contacts moving backwards or

forwards within the connector.

A SpW cable consists of four inner shields (around the

twisted pairs) and one overall shield. One of the main

challenges of this new development, therefore, was to design a

connector with four effective inner shield terminations in an

overall size as close as possible to that of a 9 way micro-D.

The choice, made jointly with ESA and STAR-Dundee, was to

work on a connector with “good-but-not-360°” inner shield

termination (as illustrated in fig.4) in order to make it more

compact. The purpose of this design is to guarantee sufficient

electrical contact between the braided shield of each pair and

the metallic shell of the connector whilst saving space and

significantly reducing crosstalk.

Fig.4. 3D cross-section of the in-line male

MicroMach SpW connector

262

The contact of all four inner shields is achieved using

a metallic ‘nano’ band tightened around a special

feedthrough insert with the four shielded pair in situ (fig.5).

The cruciform shape at the rear of this inner shield insert

ensures a solid electrical contact by maintaining a degree of

pressure over the 4 cable braids. This Axon-designed insert

has been dubbed internally, “aXiform”

The overall (outer) shield of the cable is then crimped

over the backshell funnel with an axoclamp® (or equivalent)

banding adaptor.

Fig.5. twisted pair shield connection demonstration

with “aXiform” inner shield feedthrough insert

The MicroMach SpW connector is currently designed

for both AWG26 and AWG28 SpW cable variants with a

specific “aXiform” insert for each size. Other cable

constructions could be achieved simply by adapting the

insert as required.

Finite Element Simulation

To identify the best compromise between the

hardware design and the resulting electrical performance,

Axon’ carried out Finite Element simulation on 3D models

using CST software. These analyses were principally

focused on characteristic impedance (Zc) in order to

determine the optimum size of all the inner connector

elements.

As can be seen in fig. 6, the main mismatching is

where the cable is terminated to the contacts (peaks of Zc).

Just before the crimped contact interface the Zc variation

may be around 20 Ω for AWG28 and 15 Ω for AWG26

cable.

Impact of wires diverted towards the contact positions inside

the connector

Fig.6. CST simulation with Finite Element Model

IV. PROTOTYPING

A. Assembly steps description

A cross-section view of the prototype CAD model

(fig.7) illustrates the final product showing its different piece

parts put together.

Fig.7. Cross-section view of mated connectors

The next page shows the main stages of the

manufacturing sequence carried out by Axon’ Cable on a

prototype to link cable with newly designed connector and

accessories.

263

Stage 1: Cable cut to length and wires end stripped.

Crimped contact to wires and use of makeshift inner

shields protection with blue tape.

Stage 2: Crimped wires insertion (from left to right in

the picture) through metallic backshell, continuity ring and

through EMI gasket.

Stage 3: Contacts insertion into the flexible plastic

dielectric (press-fit)

Stage 4: Dielectrics insertion into the connector shell

(press-fit)

Stage 5: Final connector assembly and connection of

the external braided shield of the cable to backshell by

clamping

B. MicroMach SpW main physical properties

The connector flange (rectangular) dimensions are

21.4 x 9.3 mm. The largest cross-section is 32% bigger than

the existing 9 way micro-D but a comparative view showing

side-by-side connectors in fig.8 indicates how similar size-

wise the connectors really are.

The mass of the MicroMach SpW female connector

including backshell and screwlocks is only 6 grams and the

male version mass sits at 7.5 grams. The masses have been

estimated from CAD models and need to be confirmed at the

end of the project.

Fig.8. 9 way micro-D connector (left) and MicroMach

SpW connector (right)

C. Preliminary electrical measurements

Static measurements:

Contact bonding resistance (between male & female)

< 5 mΩ.

Frequency domain:

Crosstalk Next/Fext < -50 dB up to 1 GHz.

Return loss < -20 dB up to 1 GHz.

Time domain:

The following characteristic impedance Zc (fig.9) is

measured on a 9 way micro-D connector couple (male and

264

female) connected to ESCC 3902.004.01 low mass SpW

cable.

Fig.9. Zc on 9 way micro-D connector

Zc varies between 86 and 116 Ω (with 150 ps rise time

filter, green plot) & from 76 to 140 Ω (in full band, white plot)

The following characteristic impedance (fig.10) is

measured on a MicroMach SpW connector couple (male and

female) connected to ESCC 3902.003.02 SpW cable

Fig.10. Zc on MicroMach SpW connector

Zc varies between 99 and 104 Ω (with 150pS rise time

filter, green plot) & from 94 to 109 Ω (in full band, white

plot).

Eye pattern / SpW mask compliancy:

The following eye pattern (fig.11) is measured on a 1-

metre link using ESCC 3902.004.01 low mass SpW cable

connected to 2 connector couples and run at 4 Gb/s.

Fig.11. Eye pattern test result (mask with purple

colour)

Fig.11 shows compliancy of the vehicle under test to

the requirement (measured eye remains outside the mask

representation).

D. Presentation of MicroMach SpW Range

Axon’ has also worked on a number of different

possible connector variants as presented briefly below.

Some additional PCB connectors will be developed

according to the need.

Fig.12. Inline Male

This connector (fig.12) will be used mainly for

normal links between various equipment or between

equipment and router.

Fig.13. Inline panel mount

This variant (fig.13) will be used to add a break point

in a link. It could be fixed to a dedicated bracket or on a

panel.

265

Fig.14. Board Straight PCB

Basic PCB connector (fig.14) can be used to connect to a

board with limited mismatching and crosstalk.

Fig.15. Flex PCB panel mount

This connector assembly (fig.15) allows a good mechanical

decoupling between PCB and equipment panel while

maintaining impedance matching and crosstalk reduction. The

skew is also very low.

Fig.16. Edge PCB SMT

This variant (fig.16) saves a lot of space on the PCB and allows a

significant crosstalk reduction between the two connection sides.

Fig.17. Edge PCB SMT panel mount

The connector (fig.17) adds the possibility of mounting the

connector on a panel (rear mount)

Fig.18. Wired PCB panel mount

This variant (fig.18) allows a panel mount while

maintaining impedance matching. Offering easy to solder

connection to PCB.

Fig.19. Saver (front and rear view)

Savers (fig.19) are often needed during the Assembly,

Integration and Test phase.

V. CONCLUSION

Trade-off had to be made with regards to the cable

shield termination to the connector backshell (not full 360°

screening) to minimize the size. But the new MicroMach

SpW connector range, planned to be available by end 2017

offers, in a size only slightly larger than the current 9 way

micro-D, significantly improved performances in data rate,

EMC and crosstalk compared to any of the current market

solutions.

The Axon’ internal cable survey, still in progress, will

also propose new possibilities for cabling. Parallel pairs are

already showing promising results and could be used with

the MicroMach SpW connector to achieve high data rates

where other restrictions, such as limited available space,

may apply.

An important outcome of this project will be the

creation of a generic harness specification for high data rate

links plus a new ESCC detail specification characterizing

these new SpW in-line and PCB connectors. At the same

time the latest revision of the SpW standard, ECSS-Q-ST-

50-12 has been issued incorporating the possibility to use

this new “MicroMach SpW” connector as a type B.

266

Radiation-Tolerant 18x SpaceWire Router

Design and Qualification for space application –
GR718B

Components, Long Paper

Sandi Habinc, Fredrik Johansson, Francisco
Hernandez, Fredrik Sturesson, Felix Siege

Cobham Gaisler
Kungsgatan 12, SE-411 91, Göteborg, Sweden

info@gaisler.com

Martin Suess, Rok Dittrich
European Space Agency

Keplerlaan 1, PO box 299, NL-2220AG Noordwjik,
The Netherlands

martin.suess@esa.int
rok.dittrich@esa.int

Abstract— The GR718B is a standalone, radiation tolerant,
18x-port SpaceWire router, enhanced with support for 64
interrupts, SpaceWire-D and SpaceWire standard revision 1. A
brief overview of the design background of this device is
provided herein. The main design features of the GR718B are
also described in this paper. A short summary of the screening
and qualification flows for space qualification of the GR718B is
given herein. GR718B prototypes have already passed functional
and electrical verification and the first flight lot of GR718B is
now in its final stage of space qualification. The main outcome
the Single Event Effects testing of the GR718B are given here and
support the choice of radiation hardening features selected for
the design of this device.

Index Terms—SpaceWire, SpaceWire standard revision 1,
SpaceWire-D, Networking, Spacecraft Electronics, Router,
Radiation, Single event effects,

I. INTRODUCTION

GR718B is a radiation tolerant 18 port standalone
SpaceWire router component developed by Cobham Gaisler
AB in an activity initiated by the European Space Agency
(ESA). The GR718B is currently being qualified for space
following an ESCC9000 lot validation approach. The GR718B
SpaceWire router has been updated to the latest SpaceWire
standard for 64 interrupts codes. The GR718B SpaceWire
router use on-chip LVDS (Low Voltage Differential Signaling)
transceivers and LVTLL (Low voltage Transistor-Transistor
Logic) ports, which have been proven to be operational above
200 Mbit/s. UART and JTAG interfaces, that give access to the
on-chip AMBA AHB bus, are provided for configuration and
debugging. SPI and GPIO interfaces are accessible through the
configuration port, which allows SPI devices to be accessed
and general purpose signaling to be performed through RMAP
commands. In addition to the mandatory features in the current
ECSS SpaceWire standard, GR718B supports group adaptive
routing for path addresses and packet distribution. It also
includes support for the SpaceWire standard revision 1 (ECSS-

E-ST-50-12C Rev.1), the SpaceWire-D protocol, and the
updated SpaceWire Plug-and-Play protocol.

The technology selected for the manufacturing of the
GR718B is CMOS 180nm, using the DARE+ library from
imec(Belgium). The GR718B is currently provided in a 256
pin CQFP package. A prototype board for evaluation and
software development for the GR718B has been designed and
manufactured. This board can be ordered directly from
Cobham Gaisler [1].

Fig. 1. GR718 device mounted on printed circuit board (PCB)

II. BACKGROUND

Both ESA and several companies in the space industry have
indicated 16 as the most viable number of Space-Wire ports for
routers in the near future. Cobham Gaisler's intentions with the
GR718B development was to provide this key component. The
design is based on the GRSPWROUTER configurable
SpaceWire router IP core. The IP core supports from 2 to 31
ports of three different types: SpaceWire, AMBA and FIFO.
The SpaceWire ports implement an encoder-decoder compliant
to ECSS-E-ST-50-12C [2] and provides an external SpaceWire
interface. FIFO ports provide 9-bit parallel interfaces with
control signals in each direction (read/write), which can be

267

used to interface external units or to cascade two or more
routers without any glue logic. The AMBA ports interface to
an AMBA AHB bus using DMA on the bus. All three port
types connect to the switch matrix of the IP core using identical
FIFO based interfaces. There is no way to distinguish the three
ports on the SpaceWire packet level and upwards. The
configurability provided by the IP core makes it usable in many
different applications. It has already been used in several
standard radiation-hardened components such as Actel’s
RTAX2000SL and RTProASIC3 FPGAs, and is also used in
the Next Generation Micro Processor, the GR740 [3], system-
on-chip activity funded by the European Space Agency.

Fig. 2. GR718B architecture overview

During the development phase, two configurations of the IP

core were identified as potential candidates for the final ASIC:
one with 16 SpaceWire ports with on-chip LVDS transceivers,
and two additional ports, either SpaceWire LVTTL ports or
FIFO ports; and the other with 16 SpaceWire ports and two
internal AMBA ports connected to a PCI interface. Both
configurations were evaluated in detail to determine which one
would eventually be used for manufacturing. The final choice
fell on the configuration with 16 LVDS SpaceWire ports and
two LVTTL SpaceWire ports, where the only difference
between the two different SpaceWire port types is the I/O type
of the pads.

III. FUNCTIONAL OVERVIEW

The full GR718B architecture, shown in Figure 2, includes
the following modules: SpaceWire Router, SPI Controller,
UART Interface, JTAG Interface, General Purpose I/O
Interface, SpaceWire In-System Test (SIST), System Level
Test Configuration, AMBA AHB controller and AMBA APB
controller.

The SpaceWire router implements a SpaceWire routing
switch as defined in ECSS-E-ST-50-12C. Among the features
supported by the router are: group adaptive routing, packet
distribution, system time-distribution, distributed interrupts,
port timers to recover from deadlock situations, and
SpaceWire-D packet truncation based time-slot violations.

A total of 20 ports is provided, where port 0 is the
mandatory configuration port, ports 1-18 are SpaceWire ports,
and port 19 is a custom port called the SIST port. Each
SpaceWire port contains a SpaceWire codec, and provides an
external SpaceWire interface. The SIST port provides a FIFO
interface which is internally connected to a SpaceWire In-
System Test module (described later). The configuration port
provides a target for the Remote Memory Access Protocol
(RMAP) defined by ECSS-E-ST-50-52C [4], and an AMBA
AHB slave interface, both used for accessing internal
configuration and status registers. The configuration port also
provides a SpaceWire Plug-and-Play interface, allowing device
identification. The ports which are allowed for configuration
access can be restricted if needed using several configuration
options.

For diagnostic and test purposes, UART and JTAG
interfaces are provided. These low pin count interfaces are
suitable for small packages but at the same time have sufficient
bandwidth. Both the UART and JTAG interfaces act as masters
on the internal AMBA AHB bus and give access to the
complete set of registers. The SPI and General purpose I/O
interfaces are accessible through the router's configuration port,
which allows SPI devices to be accessed, and general purpose
signaling to be performed directly through RMAP commands,
or through the UART and JTAG interfaces. An auxiliary time-
/ interrupt-code interface is present, for sending and receiving
time- / interrupt-codes through external pins. Parts of the
interface use dedicated pins, while the rest are multiplexed on
the general purpose I/O pins. For more information, see the
advanced datasheet for the GR718 [5].

IV. PACKET ROUTING FEATURES

The router's switch matrix can connect any input port to
any output port. Access to each output port is arbitrated using a
round-robin arbitration scheme based on the address of the
incoming packet. A single routing-table is used for the whole
router, where access to the table is arbitrated using a round-
robin scheme based on the input port number. Both addresses
and input port can be assigned either high or low priority.

All the addressing modes, such as path, logical, and
regional logical addressing are supported. Group adaptive
routing is fully supported, meaning that both path and logical
addresses can be individually configured to use one or more
output ports. A unique feature is the support for packet

268

distribution, which can be used to implement multicast and
broadcast addressing. Also packet distribution can be enabled
for any address. Each router port is equipped with a timer
which can be individually enabled/disabled. The timer can be
used to recover from potential deadlock situations resulting
from either a stalling source node or stalling destination node.

V. SPACEWIRE STANDARD REVISION 1 SUPPORT

Three changes were identified as having a technical impact
on the GR718B development. The first one is the addition of
timers in routers. The GRSPWROUTER IP core already
contained programmable packet timers for each port, which
meant that no changes were required. However, an addition to
the functionality was made in order to be able to distinguish
between overrun and underrun timeouts. The second change is
a modification of the link interface FSM. Two requirements
have been identified that potentially can cause the SpaceWire
codec to make unwanted transitions. These are unlikely corner
cases and very few if any problems have been seen in practice.
This modification will probably not affect backward
compatibility with older SpaceWire codecs, so the risk of
including this modification in GR718B was estimated to be
very low.

The final and most complicated change was the addition of
distributed interrupts. The distributed interrupt scheme
introduced two new control codes, called interrupt-code and
interrupt-acknowledge-code, which uses one of the reserved
control bit combinations of Time-Codes. It must therefore be
made sure that they cannot interfere with the normal Time-
Code facilities. All existing devices might not be forward-
compatible with revision 1 compliant devices due to the
interrupt- / interrupt-acknowledge-codes.

The distributed interrupt scheme was identified as part of
revision 1 that caused the highest implementation risk if
included in GR718B. Therefore, the router was made flexible
enough to allow ports' handling of the new control codes to be
configured individually. In this way the router can be used as a
device that enables old and new equipment to be used in the
same SpaceWire network.

The distributed interrupt scheme has been defined by [6],
and GR718B supports all of the requirements put on routers, as
well as some optional features to minimize the effects of errors
such as a “babbling idiot”. Due to the uncertainty regarding
some details in the specification, GR718B was given a high
degree of configurability on how to handle the distribution of
interrupt- / interrupt-acknowledge-codes.

VI. SPACEWIRE-D SUPPORT

There is a new emerging protocol called SpaceWire-D,
where D stands for deterministic [7]. This is anticipated to be
widely used in the future to provide deterministic and low-
latency transfer of control and command information while still
preserving the high bandwidth of SpaceWire. It basically
consists of a time-slotting table replicated in each unit (node or
router) in the SpaceWire network. Therefore, a router needs to

have support for SpaceWire-D if it is to be used in a network
utilizing that protocol. GR718B implements support for
SpaceWire-D by monitoring packet transfers. In the case of a
packet being transferred while a Time-Code is received, the
packet is truncated and an EEP is inserted at the end of the
packet. The truncation can be individually enabled/disabled per
port, and there is a programmable Time-Code filter per port as
well. The filter allows for each port to have different Time-
Code values or ranges that truncates packets. The
programmable filters also allow distributed interrupt-codes to
truncate packets.

GR718B implements status bits that inform software if a
packet has been truncated due to a received Time-Code. There
is also an option to automatically send an interrupt-code when
the truncation occurs

VII. SPACEWIRE PLUG-N-PLAY SUPPORT

SpaceWire Plug-and-Play allows SpaceWire routers and
nodes in a network to be identified and configured. This is
defined by [8]. The standard uses RMAP commands and
replies for communication, but with a different protocol ID.

GR718B includes basic support for SpaceWire Plug-and-
Play, which covers device identification and support for
network discovery. Extended capabilities, such as routing table
configuration, and port configuration through SpaceWire Plug-
and-Play, were not included due to the fact that the standard
was not considered mature enough at the time of
implementation. The SpaceWire Plug-and-Play functionality
can be disabled by means of a configuration pin.

VIII. SPACEWIRE IN-SYSTEM TEST

A built-in self-test is provided for the verification of the
SpaceWire router and codec functionality. The SpaceWire In-
System Test (SIST) protocol provides the means for verifying
larger part of the designs' functionality without the need to
generate high speed test patterns and observe results at high
frequencies.

The internal SIST module is connected to the router via a
dedicated FIFO port. The external side of the SIST module is
connected to the AMBA APB bus, which is only accessible
through the JTAG and UART (debug-) interfaces. Thus it is
not possible to configure the SIST module via a SpaceWire
link.

The SIST module can generate and send SpaceWire
packets via the internal FIFO port. It can also receive
SpaceWire packets via the FIFO port and check their contents.
The packets are generated deterministically and can therefore
also be easily checked on reception.

269

IX. POWER-SAVING FEATURES

The GR718B incorporates the following power saving
functions:

 Disabling of unused on-chip LVDS
receivers/transmitter

 Disabling of unused off-chip LVDS
receivers/transmitter or repeater devices

 Clock-gating of unused SpaceWire ports

The existing power-down functionality provided for the

LVDS I/O cells in the DARE+ library are utilized for this
purpose. Signals for disabling the off-chip LVDS devices are
shared with the external pins provided for general purpose I/O.
It is, therefore, possible to control up to 18 external LVDS
devices, with one external pin per device.

X. TECHNICAL OVERVIEW

The GR718B has been designed for operation over the full
military temperature range -55°C to +125°C and it is powered
with a nominal supply of 1.8V (Core) and 3.3V (I/O). The
GR718B is available in a 256 pin CQFP package. The system
clock domain can operate at a maximum frequency of 50MHz,
while the SpaceWire clock domain can operate up to 200MHz.
This is possible as the GR718B includes a radiation hardened-
by-design PLL. The PLL allows the use of either an external
input clock to the SpaceWire clock domain or the system clock
itself. Further details are provided in the product datasheet and
user manual [5]

XI. QUALIFICATION AND TESTING

The GR718B has undergone an extensive validation
process which included RTL simulations, electrical and
functional testing at high operational frequencies. The
production test program developed for this component includes
over 5000 different electrical tests to guarantee that each flight
device is compliant with the information provided in the
datasheet.

The GR718B is currently being qualified for space
applications following a lot validation approach. The first flight
units are expected to be available in January 2017. Prototype
devices are already available now. The screening and
qualification flows selected for the flight units are based on test
methods 5004 and 5005 of the MIL-STD-883K standard for
class level S components. These flows cover all of the tests
required by ESA’s generic specification ESCC9000. With the
use of the GR718B’s in-built SIST protocol, flight devices will
undergo dynamic burn-in as part of the screening flow, i.e. the
devices will be fully exercised during testing. The same
approach will be utilized during high temperature operational
life test, which will be done as part of the qualification
program.

A prototype board has been developed together with Pender
Electronic Design (Switzerland). The board, shown in Figure 3,
comprises a custom designed PCB in a 6U Compact PCI
format, making the board suitable for stand-alone bench top

development, or if required, to be mounted in a 6U CPCI Rack.
The purpose of this board is to provide developers with a
convenient hardware platform for the evaluation and
development of software for the GR718. The principle
interfaces and functions are accessible on the front and back
edges of the board. Secondary interfaces are accessible via
headers on the board.

XII. RADIATION TOLERANCE

The technology used for the development of the GR718B
has been hardened-by-design against the impact of ionising
radiation. The designed Total Ionising Dose tolerance for the
GR718B is 300 krad(Si). This tolerance is suitable for most
space missions. Results recently obtained on a test vehicle built
with the same library support this design tolerance. Additional
Total Ionising Dose testing of the GR718B is currently
scheduled as part of the qualification flow.

Fig. 3. GR718B prototype board

The technology used for the development of the GR718B
has been proven to have a high Single Event Latch-up
tolerance, with a minimum LET value of 118MeV.cm2/mg.
Furthermore, the SpaceWire router has been almost entirely
implemented using Single Event Upset hardened-by-design
flip-flops. Only the signal routing functions of the SpaceWire
port receivers have been implemented with much faster,
unhardened, FFs. However, a parity protection scheme has
been implemented on these unhardened FFs to deal with any
undesired effects from the radiation environment.

Static and dynamic Single Event Effect testing of the
GR718B SpaceWire router has been performed using one of
the prototype boards as shown in figure 4. This board allowed
to: remotely configure the device under test; link all SpW ports
in a single Daisy chain (to fully exercise the device during
testing); to access the SIST port to send data via the SpW ports
(dynamic testing) and to monitor for any possible radiation
induced errors.

270

Fig. 4. GR718B Single Event Effects testing

XIII. SPI CONTROLLER AND INTERFACE

The SPI controller provides a link from the router
configuration port to an external Serial Peripheral Interface
(SPI) bus. The SPI bus parameters are highly configurable via
registers. The SPI controller features configurable word length,
bit ordering, clock gap insertion, and automatic slave select.

The external SPI bus can be used for connecting to external
components using the SPI interface. Typical user scenario can
be to remotely monitor the temperature close to where the
GR718B is mounted.

XIV. GENERAL PURPOSE INTERFACE

The GR718B is equipped with 24 general purpose inputs
and outputs accessible from the router configuration port. The
general purpose interface can be programmed to have one of
the following functions:

 Individual general purpose inputs or outputs
 Distribution of time-codes to companion devices
 Extended state or error signaling to companion devices
 SpaceWire transceiver enable per port for off-chip

transceiver support
 Extend number of SPI slave select signals supported

XV. DEBUG AND INTEGRATION

GRMON2 [9] is a debug monitor used for develop and
debug GRLIB systems. The debug monitor GRMON2 has
extended support for the GR718B and has built-in commands
for configuring and debugging the SpaceWire router core. The
GR718B configuration and its peripherals are accessed on the
AMBA bus through a JTAG or UART debug-link.

Connection via SpaceWire RMAP interface is supported as
long as the SpaceWire has RMAP and automatic link start. An
Ethernet to SpaceWire Bridge [10] is required to tunnel
SpaceWire packets from the Ethernet over to SpaceWire.

XVI. RESULTS

Although the targeted speed in the design of the SpaceWire

links was 200 Mbit/s, during functional testing and validation
of the prototype devices, it has been found that these ports are
able to operate successfully well above 200 Mbit/s. The typical
power consumption has been found to be below 3W, when
running all of the 18 SpaceWire ports at 200 Mbit/s.

Assembly of the first GR718B flight lot has now been
successfully completed and the screening as well as
qualification tests are under way. The first flight units are
expected to be available in January 2017. Electrically verified
prototypes can be ordered directly from Cobham Gaisler [1].

Single Event Testing of the SpaceWire router has
demonstrated its suitability for Space. The data collected has
confirmed the Single Event Latch-up insensitivity of the device
and the suitability of the radiation hardened PLL. The
extensive data collected has also shown that the device is
compliant with the SPW standard of having a bit error rate
(BER) below 1E-12, when operated under a worst case
configuration (i.e. minimum supply and maximum operational
frequency) in a GEO environment. Furthermore, the majority
of Single Event Upsets induced errors detected during testing
may be handled either by the SPW protocol or by
implementing a CRC scheme.

XVII. CONCLUSION

The high number of ports, together with the wide range of
supported functions and the high configurability of the GR718
should make the device suitable for most current and future
SpaceWire networks. The first lot of space qualified GR718B
are expected to be available in January 2017.

 During the GR718B development, Cobham Gaisler has
participated and contributed to the ongoing standardization
work of the distributed interrupt scheme that will be part of the
SpaceWire standard revision 1, as well as the upcoming
SpaceWire Plug-and-Play standard. These extra efforts are
expected to pay off with an advanced multi-port SpaceWire
router ASIC which enables coexisting of older and newer
equipment in the same network.

The currently available radiation results support the
selection of hardened-by-design features implemented in the
SpaceWire router and confirm its suitability for space
applications.

XVIII. ACKNOWLEDGEMENT

We would like to thank the support of European Space
Agency in the development and radiation testing of the
GR718B SpaceWire router. More specifically, we would like
to thank: M. Suess and R. Dittrich, and for their technical
support.

271

REFERENCES

[1] GR718-BOARD – GR718 Development Board User’s Manual,
2016 User’s Manual, April 2016

[2] ECSS - Space Engineering, SpaceWire - Links, nodes, routers
and networks, ECSS-E-ST-50-12C, July 2008

[3] GR740 – Quad Core LEON4 SPARC V8 Processor, 2016
Preliminary Data Sheet and User’s Manual, June 2016

[4] ECSS - Space Engineering, SpaceWire - Remote memory access
protocol, ECSS-E- ST-50-52C, February 2010

[5] GR718B – Radiation-Tolerant 18x SpaceWire Router, 2016
Preliminary Data Sheet and User’s Manual, April 2016

[6] Yuriy Sheynin, Distributed Interrupts in SpaceWire
Interconnections, International SpaceWire Conference, Nara,
November 2008 (outdated)

[7] SpaceWire-D - Deterministic Control and Data Delivery over
SpaceWire Networks, Draft B, April 2010, ESA Contract
Number 220774-07-NL/LvH

[8] ECSS - Space Engineering, SpaceWire Plug-and-Play protocol,
ECSS-E-ST-50-54C Draft, March 2013.

[9] GRMON2 – Debug Monitor for LEON-based computer systems
and SOC design based upon GRLIB IP library, 2016 User’s
Manual, June 2016.

[10] GRESB – SpaceWire/Ethernet Bridge with routing capabilities,
2016 User’s Manual, April 2016.

272

SpaceWire Components, Long Paper

An IP Core for the SpW family of protocols

Antonis Tavoularis, Vassilis Vlagkoulis & Fotis

Kostopoulos

TELETEL S.A., Athens, Greece

{A.Tavoularis, V.Vlagkoulis, F.Kostopoulos}@teletel.eu

Brice Dellandrea

Thales Alenia Space, competence Center Platform

Integration

Brice.Dellandrea@thalesaleniaspace.com

Tam Le Ngoc

Airbus Defence and Space, BU Electronics, Elancourt, France

Tam.Lengoc@airbus.com

Luca Fossati, Jorgen Ilstad, David Jameux

European Space Agency,

ESTEC, Noordwijk, Netherlands

{Luca.Fossati, Jorgen.Ilstad, David.Jameux}@esa.int

Abstract—This paper presents the architecture, functionality,

and performance of the SpW Interface Node IP which constitutes

a configurable IP Core from which non-SpW experts can tailor a

customized SpW interface for integration into their

developments. The IP core offers numerous configurability

options and is also expandable to include additional blocks as the

SpW protocol family evolves.

Index: SpaceWire, RMAP, SpW-D, NDCP, CPTP, TDP, SpW

Router, Distributed Interrupts, AMBA.

I. INTRODUCTION

TELETEL S.A., together with Thales Alenia Space and

Airbus Defence and Space, have been working on the

development of an IP Core under ESA contract 4000113046

(SpaceWire Node Interface IP Core) aiming at providing a

solution helping non-SpW experts to integrate advanced

SpaceWire functionality in their flight equipment. The IP Core

contains RMAP ([2]), NDCP [5], CPTP ([3], [4]) and TDP

([7]) protocol engines and can be provided as a single SpW

Port Node or a Node with an integrated SpW Switch. Each

protocol block can be independently configured allowing the

user to customize the implementation to its own requirements

(size of memory blocks, maximum number of RMAP pending

transactions etc.). In addition, the IP Core allows the user to

include its own technology primitives for implementation on

different target ASIC technologies.

The design has been validated on TELETEL’s SpW Xilinx-

based SpW G2 board and also on SkyLab’s PicoSky

development board for ProASIC3 meeting all the functional

and performance requirements.

The rest of the paper focuses on RMAP/NDCP and CPTP

and does not present design issues related to the SpW Switch

design which was a readily available block or the TDP which is

a third-party IP-Core integrated in the Node IP ([6]).

Nevertheless, the results presented herein, related to timing and

resources utilization, include all blocks.

II. DESIGN SOLUTION

The IP Core is based on the AMBA AHB bus specification

([9]), allowing seamless core integration to AMBA based

systems (e.g. LEON SoCs). All protocol engines are connected

to TELETEL’s AHB DMA engine which offers user

configurable number of DMA clients and minimum burst size

of 8 cycles. TELETEL’s RMAP core (developed in ESA

contract 4000105444/12/NL/CBI) is being used, providing a

response time in the range of one microsecond. The RMAP

core has been extended to support NDCP, in order to reuse

most of the logic resources and minimize utilization.

SpW Switch Core

AHB/APB Bridge

T
im

e

D
is

tr
ib

u
ti

o
n

P
ro

to
c

o
l

E
n

d
 N

o
d

e

P
n

P

R
e

g
b

a
n

k

RMAP/

NDCP/

SpW-D

SpW Switch

part

Port 1

D
is

tr
ib

u
te

d

In
te

rr
u

p
ts

R
e

g
b

a
n

k

(E
n

d
 N

o
d

e
)

Switch/CODEC(s)
configuration

AMBA AHB 2.0

End Node APB

Peripherals

SpW CODEC

Port 0

Port 2 Port N

Time-Codes/

Interrupts Handler

(Switch)

S
w

it
c

h
 P

n
P

R
e

g
b

a
n

k

CPTP/

Raw

SpW

Protocol MUX/DEMUX

RMAP/

NDCP/

SpW-D

AHB Master with DMA

Signaling Codes
interface

End Node Protocols

D
is

tr
ib

u
te

d

In
te

rr
u

p
ts

R
e

g
b

a
n

k

(S
w

it
c

h
)

Time-Codes/

Interrupts Handler

(End Node)

Signaling Codes
interface

Switch APB

Peripherals

SpW CODEC

SpW NODE INTERFACE IP CORE

Block present only when the switch is
instantiated

Fig. 1: Node IP overall architecture

 For CPTP, a newly developed block has been integrated

which offloads the user from time-consuming operations such

as CRC/PEC calculation/verification and packet length

verification.

The TDP block developed by COBHAM Gaisler [6] is

integrated in the IP for SpaceWire Time-Distribution.

Depending on the user needs, the IP Core can instantiate a

SpW Switch core with user configurable number of ports and

RMAP/NDCP support for SpW Switch configuration.

273

mailto:Brice.Dellandrea@thalesaleniaspace.com
mailto:Tam.Lengoc@airbus.com

Finally, the core can be delivered with TELETEL’s

SpaceWire CODEC and also provides the de-facto standard 9-

bits FIFO SpaceWire CODEC interface allowing the user to

instantiate its own or third-party SpaceWire CODEC.

A. Architecture

The Node IP has different configurations spanning from

SpW node with a single link to multiple links with a SpW

Switch instantiated, having or not having support for NDCP,

TDP etc. The top level architecture of the Node IP core

consists of the following blocks (shown in Fig. 1):

 One or more SpW CODECs

 A non-blocking SpW Switch which switches packets

and signaling codes among the external SpW interfaces

and between the external interfaces and internal ports.

 A protocol MUX/DEMUX block which discriminates

received packets, dispatches them to the appropriate

protocol engine (receive direction) and multiplexes

them (transmit direction).

 A RMAP block instantiated as Initiator, Target or both,

used to handle RMAP transactions and execute RMAP

commands. The RMAP Target is available from a

previous study and has been designed with

performances meeting the strict timing requirements

for SpW-D. Within the study the core was extended to

handle NDCP commands. Two such blocks are

currently instantiated; one for the Switch and one for

the End Node, which can have different parameters

(verify buffer size, RMW logic, authorization keys

etc.).

 The CPTP/Raw SpW block which handles CPTP and

Raw SpW packets (packets not handled by any

instantiated protocol engine).

 The Time Distribution block which handles SpW-TDP

protocol which is implemented as an APB peripheral.

 The SpW Time Codes/Interrupts Handler block(s)

which handles the Signaling Codes at both the End

Node and the Switch.

 A single AHB Master which is responsible for DMA

read/write operations to/from the system memory. The

engine supports ATOMIC transactions required for

RMAP RMW and NDCP CAS. A single AHB Master

is implemented, which has a configurable number of

channels and handles the requests for both the End

Node and the Switch.

 APB peripherals which host the NDCP, CPTP, RMAP,

Switch configuration registers, SpW Interrupts

configuration & status registers as well as the NDCP

address translation block.

B. User configuration options

The core supports various options, configured either

through VHDL generics or IP-XACT, e.g. number of SpW

ports, data bus width, target technology etc. and also supports

configuration options separately for each block such as the

implementation of NDCP translation and RAM or ROM,

maximum SpW packet size, RMAP memory map etc. The only

technology dependent primitives required are for the SpW

LVDS transceivers and the asynchronous FIFOs, both of which

constitute part of the SpW CODEC. A non-exhaustive list of

the core’s configuration options follows:

 Overall Core: target technology, number of SpW ports,

NDCP support, TDP support, SpW Switch

instantiation, Switch NDCP support, data bus width.

 RMAP: Initiator/Target support, Initiator/Target DMA

length, Verify buffer size, Target supported commands

and parameters all independent for the End Node and

the Switch, maximum number of Initiator pending

transactions (End Node only).

 NDCP: Vendor/Device IDs, versions, RAM/ROM

based address translation, address translation table

depth, base transmit rate/range/divider etc. independent

for the End Node and the Switch.

 CPTP: Tx/Rx descriptors width/depth, maximum

packet/DMA size, discard Rx packet on memory

buffer unavailable (End Node only).

C. CPTP Block architecture

CPTP operation supports transmission/reception of multiple

packets without occupying the user (e.g. host processor), other

than for initializing the memory structures as described below.

The application
passes the initial
address of the Rx
Descriptors region
and also passes the
number of stored
descriptors for
reception

CPTP Packet
Handler

CPTP Packet
Decoder

cp
tp

_r
xf

ifo
 (f

w
ft)

ptp_rx_decriptor_tbl_empty

delete_ptp_descriptor

ptp_rx_descriptor

cp
tp

_h
ea

de
r

AHB Master
dm

a_
re

qu
es

t

dm
a_

gr
an

t

dm
a_

w
rd

at
a

cp
tp

_p
kt

ra
w

_p
kt

di
sc

r_
re

ad

di
sc

r_
da

ta

hd
r_

re
ad

y

pk
t_

st
or

ed

CRC/PEC
calculation

Packet
Formatter

in
se

rt_
sy

nd
ro

m
e

Commands
controller

pt
p_

tx
_f

ifo

start_tx

Descriptors
Register ptp_tx_decriptor_tbl_empty

delete_ptp_descriptor

ptp_tx_descriptor

dm
a_

re
qu

es
t

dm
a_

gr
an

t

rd
_d

at
a

To Protocol MUX

Descriptors
Register

Memory

Tx Pkt HDR

Tx Pkt Payload

Rx Pkt HDR region

Rx Pkt Payload region

A

B

C

D

AMBA AHB BUS

1
The application allocates buffers for the packet to

be received. One buffer is allocated for the
header and one for the payload

Rx Descriptors

Tx Descriptors

E

F

The application stores the HDR/PAYLOAD buffer pointers in the Rx Descriptors buffer 2

3

4The application stores the packet header and payload sections
in the respective buffers

The application stores the HDR/PAYLOAD buffer pointers in the Tx Descriptors buffer 5

6

The application passes the initial
address of the Tx Descriptors
region and also passes the
number of stored descriptors for
reception

7

The transmitter uses the Tx
descriptor and fetches from the
memory the packet header and
payload

8

According to the information on
the packet header the packet is
formatted (e.g. CRC is
appended) and sent to the SpW
CODEC

9

The Receiver decodes
the packet, stores the
packet header and the
payload to the TxFIFO
and appends Control
information (e.g.
detected errors) at the
end.

From Protocol DEMUX

10
The Receiver gets the
descriptor from the
Descriptors register, stores
the packet header, the
payload and at the end it
appends the control
information at the start of
the Header region

Fig. 2: CPTP block architecture & operation

Packet headers and payloads can be stored at different

memory locations and separate areas exist for storing the Tx

and Rx descriptors. In the transmit direction, the user stores the

packets for transmission in the memory and it then writes to the

Tx Descriptors memory area the pointers to the Tx packets.

Finally the user writes to the CPTP block the number of Tx

pointers and from the packets are automatically transmitted by

the block without any user occupation. In the receive direction

274

the approach is similar, with the user allocating the required

memory areas and pointers and downloading the number of

available buffers to the CPTP block as shown in Fig. 2.

Update of the descriptors can be done during initialization,

or even after transmission has started. In the latter case, after

storing the header and payload segments of the packets in

memory the application updates the descriptors area and the

passes to the CPTP block the number of additional descriptors.

Update of the location of the Descriptors area is not required as

this is a circular buffer in the memory and the block simply

fetches the next transmission descriptor when the user informs

the block that additional N descriptors have been added.

CRC/PEC
calculation

AHB Master

Packet
Formatter

en
ab

le
_c

al
cu

la
tio

n

in
se

rt_
sy

nd
ro

m
e

Commands
controller

pt
p_

tx
_f

ifo

start_tx

Descriptors
Register ptp_tx_decriptor_tbl_empty

delete_ptp_descriptor

ptp_tx_descriptor

dm
a_

re
qu

es
t

dm
a_

gr
an

t

dm
a_

de
sc

rip
to

r

AHB/APB
Bridge

To SpW CODEC
Fig. 3: CPTP Block Transmitter

The architecture of the transmitter is shown in Fig. 3. It

consists of the following modules:

 The Descriptors Register: Block which contains the

current address to be accessed in the Descriptors Area

in order to fetch the header/payload pointers for the

next packet. The module contains the number of

currently available transmission descriptors. It is

programmed by the user through the AHB/APB

bridge.

 The Commands controller: Module which fetches the

packet header and payload from the memory for

transmission. It stores the fetched data in the

transmission FIFO (cptp_txfifo).

 The Packet formatter: Module which reads header and

payload from the transmission FIFO, converts the

FIFO words to 9-bit SpW CODEC interface words,

enables the CRC/PEC calculation block when required

and appends the calculated CRC/PEC to the CPTP

packet. If the packet under transmission is a Raw SpW

packet (information contained in the packet header) no

CRC/PEC is appended.

 The CRC/PEC calculation block: Module fed by the

Packet Formatter with data to be transmitted and

calculates the CRC/PEC to be appended to the end of

the SpW packet.

The Receiver handles both CPTP and Raw SpW packets. It

consists of the following blocks (shown in Fig. 4):

 The Descriptors Register: Block which holds the

pointers for the packet header and payload. It is the

same block as the one used for the CPTP transmitter

 CPTP Packet Decoder: Block which captures the

packet header, stores the payload in a FIFO (CPTP Rx

FIFO), truncates packets which are longer than the

programmed size, identifies packet errors (e.g. CPTP

length, CRC/PEC error), discards or stalls reception

(programmable function) if no Rx descriptors exist.

 CPTP Packets Handler: Block which is responsible for

requesting ownership of the system bus (through the

AHB Master) in order to store the received packets in

the system memory. The Handler, acquires the

descriptors from the Descriptors Register, stores the

payload in the memory, stores the header and finally,

informs the CPTP Packet Decoder that the packet has

been stored in the memory and a subsequent packet

can be received.

CPTP Packet Handler

CPTP Packet Decoder

cp
tp

_r
xf

ifo
 (f

w
ft)

Descriptors
Register ptp_rx_decriptor_tbl_empty

delete_ptp_descriptor

ptp_rx_descriptor

cp
tp

_h
ea

de
r

dm
a_

re
qu

es
t

dm
a_

gr
an

t

dm
a_

w
rd

at
a

cp
tp

_p
kt

ra
w

_p
kt

di
sc

r_
re

ad

di
sc

r_
da

ta

hd
r_

re
ad

y

pk
t_

st
or

ed

eo
p_

ex
is

ts da
ta

_c
ou

nt

dm
a_

le
ng

th

w
or

ds
_x

fe
rre

d

la
st

_t
ra

ns
ac

tio
n

AHB Master

Fig. 4: CPTP Block Receiver

The block supports user notification upon programmable

events as for example when a programmable number of

packets have been received or upon time-out.

D. NDCP Address Translation

The architecture and operation of TELETEL’s RMAP Core

has been previously presented and herein only the extensions

required for NDCP support are presented.

The NDCP specification specifies a protocol based on

RMAP syntax (with different semantics) and a Network

Management Service which enables a peripheral device to

expose its capabilities in order to allow for discovery and

configuration by a control device. The latter, includes a set of

resources which allow controlling a peripheral device in a

275

standardized way in order to permit for interoperability

between devices.

If directly mapped to memory addresses, NDCP field

identifiers would result in a highly fragmented memory space.

In order to support a contiguous memory space, the NDCP

block contains an “Address Translation” block which receives

the Application Index, Protocol Index, FieldSet ID and Field

ID from the received NDCP packet and returns the address to

be accessed in the memory space. The Address Translation

block performs translation between the fragmented memory

space created by the NDCP field identifiers to a more flat

memory space in order to ease implementations and offer

better memory usage by the Node IP.

The Address Translation block consists of three entities:

 The Translation Table, which contains the

relationships from the NDCP field identifiers to the

Node IP memory space. It can be implemented either

in RAM or ROM with the RAM version being able to

be programmed through the AMBA from a host

processor and the ROM version being targeted for

simple End Nodes or Switches.

 The Translation Logic block which receives NDCP

packet header fields and searches in the table for a

matching entry. Upon match, the translated address is

returned to the RMAP Target logic in order to

write/read the addressed field(s).

 The Device Ownership logic which assesses whether

the received packet was sent by the peripheral owner

or not for write transactions.

The Address Translation Table contains entries which are

used to map the fields of an incoming NDCP packet to the

physical address which shall be accessed. Specifically, each

line contains the following fields:

 The address parameters: Contains the address

parameters of a set of fields which can be an entire

FieldSet or a subset of a FieldSet. It contains the

following fields:

 Application Index: Application Index for this

entry

 Protocol Index Protocol Index for this entry

 FieldSet ID: FieldSet ID for this entry

 Field ID: Field ID number of the “lowest” Field

Identifier for this entry. It is used to identify

whether the requested access is performed outside

the FieldSet’s boundaries (e.g. if the NDCP packet

contains a Field ID of value which is less than the

table entry, the access is considered as outside the

boundaries).

 The Access Parameters:

 FieldSet length: Length of the FieldSet (or length

of the FieldSet subset). It is used to identify

whether the requested access is performed outside

the FieldSet’ s boundaries (e.g. if the NDCP

packet contains a Field ID of value which is more

than the table Field ID value and FieldSet length

added together, the access is considered as outside

the FieldSet boundaries).

 CAS FL/RO FL: CAS/RO FL is set to 1 if this

region is followed by a CAS modifiable/Read-

only region. The CAS FL and RO FL fields are

applicable to writable regions only and required

for the following reason: assuming that a Write

operation starts in the region and spans more than

its upper boundary then this shall be allowed if the

region above is non-existent (write data is

discarded) but shall generate an error (Read-Only

Field or Field Not Writable) in case the region that

follows is Read Only or CAS modifiable

 RO: Used in case of successful match. It indicates

that the respective FieldSet is Read-Only.

 RSV: Used in case of successful match. It

indicates that the respective FieldSet is reserved.

This is used 1) in the case of the Vendor String

FieldSet (to allow for the FieldSet to be left

unimplemented) and 2) for the reserved region of

any other FieldSet at the FieldSet end. It is used

by the RMAP/NDCP protocol engine so that all

zeros are returned in the Reply packet.

 The Physical Address: Contains the Physical Address

of the entry. This is the address of the FieldSet/Field

within the node’s memory map and will be returned to

the RMAP/NDCP block in order to perform the access.

Translation Table

Stage 1 Stage 2

ndcp_header

C
O

M
PA

R
AT

O
R

S

DATA
PIPELINE

ADDRESS
PIPELINE

Address

Parameters

(AppID, ProtID,
FieldSet)

FieldSet Match

B > A

A

B
field_id

Stage 3

AD
D

ER

A > B

A

B
Fi

el
d

W
ith

in
 F

ie
ld

Se
t

Fi
el

d
H

ig
he

r t
ha

n
Lo

w
 b

ou
nd

ar
y

match_foundfield_id

FieldSet
Boundary

CE

+1

CE

match_found

1

0

Stage 0

search_in_progress

field_id

Fig. 5: NDCP Translation Logic architecture

The Address Translation Logic block operates in two

stages. Upon the reception of a NDCP packet it first searches

the table for a matching entry and, upon a successful match, it

checks the access rights in order to determine whether the

requested operation shall be performed or not (e.g. a write is

requested to a Read-Only FieldSet). Since it is the block that

will either authorize or not the requested operation, it also

checks the protocol fields such as Target Logical Address,

Key, Data Length etc. It scans the table and performs

comparison of the NDCP packet fields with each table entry

fields for matching entry. When a matching entry is found, the

address of this entry is latched in the Translation Table Read

276

Address vector so that the access rights and the Physical

address of the matching entry appear on the table output.

Comparisons are performed on large vectors which would

introduce combinational delays and reduce the Core’s

operation frequency if they were done in a single clock cycle.

Alternatively, searching and matching the access rights for

each entry may require several clock cycles and for a large

number of entries this will reduce the overall performance. To

this respect, the search logic is implemented in pipelined

fashion as shown in Fig. 5 and in the timing diagram of Fig. 6

CLK

0

ACCESS_

REQUEST

1 2 3 4 5 6 2

SEARCH_IN_

PROGRESS

TABLE_RD_

ADDRESS

Matching Entry in

ADDRESS = 2

STAGE 1

COMPARATORS

FIELDSET_

MATCH

TABLE_RD_ DATA D0 D1 D2 D3 D4 D5 D6

HIGHER THAN

LOW BOUNDARY

LOWER THAN

HIGH BOUNDARY

MATCH_FOUND

0 1 2 3

0 1 2

STAGE 2

ADDRESS

STAGE 3

ADDRESS

PHYSICAL

ADDRESS
D0 PH0 PH2 PH3 PH4 PH5 PH6 PH2

4 5 6

2

FIELDSET match, but the Field

ID in the received packet is

less than the Table Field ID

FIELDSET matches

table entry. Comparator

outputs asserted

All conditions satisfied. MATCH_ FOUND is asserted

MATCH_ FOUND freezes ADDRESS PIPELINE STAGE 3

MATCH_ FOUND freezes

ADDRESS PIPELINE

STAGE 3

1

2

3

4

5

0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

Fig. 6: NDCP Translation Logic operation

The following paragraphs explain the way in which the

Translation Table shall be programmed for proper NDCP block

operation.

The example in Fig. 7 shows a FieldSet which spans from

Field O to Field U and the rest (Field U+1 up to Field V) is

non-exiting fields (reserved fields).

The table is scanned sequentially and when the first

matching entry is found the respective physical address and

grant/deny signal is returned to the RMAP/NDCP block. In

addition, when FieldSet is matched, the logic checks whether

the Field_ID of the received command is within the boundaries

of the region found in the table and if they are found to be

outside the command is not granted.

The order in which entries are inserted in the translation

table is important for the correct operation of the logic. In the

example shown in Fig. 7 if the RO region was the first entry in

the translation table then all write to regions 1 to 4 would be

denied. To this respect the user shall insert all writable regions

first and RO regions at the end of the table.

In addition, the NDCP specification ([5]) mandates that a

write to a reserved region shall be accepted but no write shall

be performed. If we program only regions 1 to 3 in the table, a

write to the reserved space (command G in the example) will

not produce a match and a reply status FieldSet reserved will

be returned in the NDCP reply. To this respect for each

FieldSet the table shall have as its first entry the reserved

region which lies at the end of the FieldSet which shall also be

marked as reserved (RSV field shown in Fig. 7).

Region 4 is also programmed as read-only region for the

following reason. If a write access is performed to this reserved

region then the access will be authorized since a match will be

found in the first table entry. If a read however is performed

then the command will not be matched with the first entry

since the RO field is not set. Consequently there must be an

entry which defined that the region is also readable which is

the fifth entry in the table.

Expected Response according

to NDCP specification:

A: Grant
B: Deny, Read-Only
C: Grant
D: Deny, Read-Only
E: Grant
F: Deny, Read-Only
G: Grant

FieldSet N

Region 1

Region 2

Region 3

Writable
Regions

A: Read

B: Write

C: Write

D: Write

F: Write

G: Read/Write

Translation Table

Region 1

Region 2

Region 3

Field O – Field U RO

WR

WR

WR

Region 4 (RESERVED)

Region 4 WR

Field O

Field P

Field Q

Field R

Field S

Field T

Field Y

Field U

Field V

E: Write

Region 4 RO RSV

RSV

Fig. 7: NDCP Translation Table example

Finally, each FieldSet is readable to its entirety (actual size)

by all devices. This means that the table shall have an entry

which corresponds to the actual FieldSet extents. This region is

marked in the table as Read-Only section and is programmed

as the last one in the table (Field O to Field U). This region is

marked as RO. The reason that the last two entries are not

merged to one entry (entire FieldSet) is that in case a read

crosses the boundary of the reserved region, the block shall

have a way to inform that zeros shall be returned as mandated

in the NDCP specification for reserved regions.

E. SoC Integration & Reliability

The design of the core has taken into account issues like its

integration in SoCs as well as reliability issues. As such it

supports different interrupts to the host processor, time-outs on

receive and transmit direction, packet truncation, selectable

consumption of received packets in case receive descriptors are

not available etc. A non-exhaustive list of these features is:

 Interrupts on illegal conditions: NDCP. RMAP illegal

field identifier, NDCP non-owner attempt, write

attempt to CAS, RO NDCP fields, RMAP Reply TID

not found, RMAP Reply timeout, RMAP Reply

rejected, RMAP error received (Header CRC, illegal

command, Early EoP etc.), CPTP CRC/PEC or Length

error, Tx/Rx time-out etc.

 Interrupts on nominal conditions: CPTP/SpW packet

group transmitted/received, RMAP/NDCP command

executed, RMAP Reply received, expected SpW

Interrupt(s)/Acknowledgement(s) received.

 Reliability options: discard CPTP/SpW packet if no

pointers exist, Flush packet and append EEP if max

length is exceeded or Rx/Tx timeout occurs, support

for statistics (packet/NCHARs received and their rate).

F. Core extensibility

The core has been designed with the requirement to be

easily extensible in order to support additional protocols as the

family of SpW protocols evolves. In order to add a new

protocol engine the user shall add its implementation between

277

the protocol MUX/DEMUX and the AHB DMA engine. All

these blocks support programmable number of channels,

through VHDL generics or IP-XACT, and the DEMUX block

also supports mapping of PID to the newly added channels for

dispatching of received packets to the added protocol engines.

III. VALIDATION APPROACH

The IP core was implemented on two different

technologies, Virtex 6 and ProASIC3. The boards in which the

IP core instances were deployed were respectively TELETEL’s

SpW G2 board and SkyLabs PicoSky board.

Three IP core instances were implemented in the Virtex 6

target: one instance with a six-port SpW Switch (four ports

external to the SpW Node IP core) and two minimal

implementations with no SpW Switch. An external DDR2

memory was attached to the AHB bus, through a memory

controller, to support read/write access through RMAP and

NDCP (e.g. Vendor String). The system clock frequency was

125 MHz.

In the ProASIC3 target a single instance of the IP was

implemented, with 4-Ports SpW Switch instantiated, since the

board offers only two SpW connectors. An external SRAM

memory was attached to the AHB bus and the system clock

frequency was 20 MHz. Both implementations were tested at

SpW link speeds up to 200 Mbps.

Switch

Sp
W

Sp
W

Sp
W

Sp
W

TDP

Sp
W

Sp
W

TDP

iSAFT RecorderiSAFT Simulator

MUX/ DEMUX

LINK MONITORING

TELETEL SpW G2 Board (Virtex)

Node 4

(Full Configuration)

IN
TE

R
R

U
PT

S

IN
TE

R
R

U
PT

S

MUX/ DEMUX

Sp
W

Nodes 2 & 3

(minimum configuration)

Link 1
Link 2
Link 3

Li
nk

 4

Switch

MUX/ DEMUX

ACTEL ProAsic3 Board

Node 1

(Full Configuration)

CPTPRMAPRaw
SpW PnP RMAPRaw

SpW CPTPRMAPRaw
SpW PnP

Fig. 8: Topology used for validation/demonstration

Validation was based on the iSAFT tool chain which is an

integrated solution for validation of on-board protocols and

devices. For the purposes of the project, the SpaceWire

simulator part of iSAFT is being used which supports

transmission/reception of SpaceWire packets to the connected

Unit Under Test (UUT) and assessment of the UUT’s response.

At the same time, it allows the user to examine all exchanged

transactions by decoding them through the WireShark protocol

analyser. The tests covered both functional and performance

validation as well as injection of errors for all protocols to

assess design’s robustness.

During all tests the traffic was also captured by an iSAFT

Recorder whose accurate time-stamping protocol decoding

capabilities helped towards both the functional and

performance evaluation of the IP under test. The scenarios

included stress tests with continuous back-to-back traffic and

duration up to 22 hours and validation was performed through

sample windows to validate the correct response is returned

from the UUT and through the Recorder’s statistics capability

(total packets/bytes transmitted/received) to validate that no

information was lost.

Ports used as
“iSAFT

Simulator” ports

SpW Node 2
SpW Node 3

SpW Node 1

Fig. 9: TELETEL’s SpW G2 board used for Node IP

validation

Functional validation was performed incrementally. Tests

started with the validation of the NDCP implementation on a

Node IP instance with no SpW Switch through a point to point

connection between the iSAFT Simulator and the Node IP

instance. The IP core instance was configured through NDCP

commands after the iSAFT simulator got ownership of the

device, and the configured values were read back through

RMAP. All NDCP fields were read and all writable fields were

configured. Error injection at NDCP level and repetition of the

nominal tests right after validated the robustness of the core.

SpW port 1

SpW port 0

SpW Clock

System
Clock

“Link

Connected”

LEDS

SpW Link
Speed

selection

External
Memory

Fig. 10: SkyLab’s PicoSky board used for Node IP validation

Validation of the SpW Switch’s NDCP block was

performed in a similar way. Tests included configuration of the

switching matrix, GAR, self-addressing, time-outs etc. Stress

tests with the traffic generation capability of the iSAFT

Simulator followed. A series of mixed RMAP/NDCP

commands were transmitted back-to-back to both the End

Node and the SpW Switch in order to validate the robustness

under heavy load and assess the performance.

Validation of the CPTP block was also performed through

RMAP. Download/upload of packet header and payloads,

Tx/Rx descriptors and access to the descriptors registers was

performed through RMAP. The tests included transmission of

278

SpW and CPTP packets from the iSAFT Simulator to a Node

IP instance with Switch, transmissions in the opposite direction

and transmission/reception between IP instances. Once again,

the traffic generation capability of the iSAFT simulator was

exploited in order to periodically stimulate the IPs and validate

the block under the presence of continuous traffic.

IV. PERFORMANCE RESULTS

A. Latency

Performance tests were performed on IPs with and without

the SpW Switch instantiated on both Virtex and ProASIC3

targets (results shown are with 100 Mbps link speed) and

included the latency measurement from:

 The reception of a RMAP command, transmitted from

the iSAFT Simulator, to the time the response was

transmitted by the UUT (RMAP Target Latency)

 The stimulation (through a RMAP command) of the

RMAP Initiator, to the time the RMAP command

transmitted was transmitted (RMAP Initiator latency,

currently measured on Virtex target only)

 The reception of a NDCP command, transmitted from

the iSAFT Simulator, to the time the response was

transmitted by the UUT (NDCP Latency)

 The stimulation (through a RMAP command) of the

CPTP Transmitter, to the time the CPTP/Raw SpW

Packet was transmitted by the UUT (CPTP latency)

TABLE I. MEASURED LATENCIES ON VIRTEX 6 TARGET

 With Switch (us) Without Switch (us)

RMAP Target
1.58 us (SDRAM read)

1.24 us (reg. Write, RMW)

1.30 us (SDRAM read)
1.0 us (reg. Write,

RMW)

RMAP
Initiator

2 us (incl. SDRAM access)
1.76 us (incl. SDRAM

access)

NDCP target
1.35 us (Read/Write)

1.4 us (CAS)

1.10 us (Read/Write)

1.15 us (CAS)

CPTP
3.25 us (incl. SDRAM

access)

3 us (incl. SDRAM

access)

TABLE II. MEASURED LATENCIES ON PROASIC3 TARGET

 With Switch (us) Without Switch (us)

RMAP Target 6.4 us (SRAM Read/Write)
4.96 us (SRAM

Read/Write)

NDCP target
6.6 us (reg. Read),

7.3 us (reg. Write, CAS)

5.1 us (reg. Read),

5.8 us (reg. Write, CAS)

CPTP 12.4 us (incl. SRAM access)
10.9 us (incl. SRAM

access)

B. Synthesis results

The tables below present the synthesis results for both

Virtex 5 and ProASIC3 targets synthesized with Synplify

2015.9. The tables that follow present the results for RMAP

with NDCP support, for the CPTP block and for the overall IP.

In addition, the results for the NDCP address translation are

presented separately for various translation table depths for the

End Node (RAM implementation) and for various numbers of

ports, for the SpW Switch (ROM implementation).

TABLE III. RMAP WITH NDCP SUPPORT, VIRTEX 5 RESULTS

RMAP with NDCP support, Verify buffer size 4K, Max

DMA length 128 Bytes, Virtex 5 FX target

 LUTs Registers BRAMs

RMAP Block 2072 1775 3

RMAP Initiator 941 831 1

RMAP Target 767 647 1

RMAP Packet

Validator
342 242 1

Statistics Block 22 55 -

TABLE IV. RMAP WITH NDCP SUPPORT, PROASIC3 RESULTS

RMAP with NDCP support, Verify buffer size 4K, Max

DMA length 128 Bytes, ProASIC3 target

 Core Cells Registers BRAMs

RMAP Block 8564 1851 21

RMAP Initiator 3842 703 11

RMAP Target 3614 738 2

RMAP Packet

Validator
1415 351 8

Statistics Block 127 60 -

TABLE V. NDCP ADDRESS TRANSLATION, END NODE, VIRTEX 5 FX

RESULTS

 NDCP Address Translation, Virtex 5 FX target

Translation

table Depth
LUTs Registers BRAMs

64 348 209 5

128 347 211 5

256 349 213 5

TABLE VI. NDCP ADDRESS TRANSLATION, SPW SWITCH (ROM

IMPLEMENTATION), VIRTEX 5 FX RESULTS

 NDCP Address Translation, Virtex 5 FX target

Number of

SpW Ports
LUTs Registers BRAMs

4 344 209 5

8 344 209 5

16 344 209 5

32 344 209 5

TABLE VII. NDCP ADDRESS TRANSLATION, END NODE, PROASIC3

RESULTS

 NDCP Address Translation, ProASIC3 target

Translation

table Depth
Core Cells Registers BRAMs

64 1452 245 -

128 1472 249 -

256 1575 267 -

TABLE VIII. NDCP ADDRESS TRANSLATION, SPW SWITCH (ROM

IMPLEMENTATION), PROASIC3 RESULTS

279

 NDCP Address Translation, ProASIC3 target

Number of

SpW Ports
Core Cells Registers BRAMs

4 1506 257 -

8 1506 257 -

16 1506 257 -

32 1506 257 -

TABLE IX. CPTP, VIRTEX 5 RESULTS

CPTP, Max packet size 64K, Max Tx/Rx descriptors 16,

Max DMA length 128 Bytes, Virtex 5 FX target

 LUTs Registers BRAMs

CPTP Block 1177 838 2

Descriptors

Register
98 72 -

Command

Controller
193 174 -

Packet

Formatter
199 120 -

Packet Decoder 252 147 -

Packet handler 227 125 -

CPTP CRC 26 17 -

CPTP PEC 77 18 -

CPTP Rx FIFO 81 102 1

CPTP Tx FIFO 29 26 1

TABLE X. CPTP, PROASIC3 RESULTS

CPTP, Max packet size 64K, Max Tx/Rx descriptors 16,

Max DMA length 128 Bytes, ProASIC3 target

 Core Cells Registers BRAMs

CPTP Block 3989 869 4

Descriptors

Register
396 76 -

Command

Controller
857 184 -

Packet

Formatter
746 152 -

Packet Decoder 793 136 -

Packet handler 820 135 -

CPTP CRC 86 18 -

CPTP PEC 218 34 -

CPTP Rx FIFO 337 104 2

CPTP Tx FIFO 140 28 2

TABLE XI. OVERALL NODE IP, VIRTEX 5 RESULTS

 Overall Core, Virtex 5 FX target

 LUTs Registers BRAMs

Without Switch 6924 6596 10

With 2 external

ports
12212 10837 19

With 6 external

ports
16389 14098 19

With 14

external ports
24737 20954 19

With 30

external ports
50011 37471 19

TABLE XII. OVERALL NODE IP, PROASIC3 RESULTS

 Overall Core, ProASIC3 target

 Core Cells Registers BRAMs

Without Switch 32478 7215 22

With 2 external

ports
59411 13434 35

With 6 external

ports
75781 17219 47

V. CONCLUSIONS

The designed and developed IP offers fine configurability

options to the user, not only at top level, but offers also

configurability of its constituents, allowing the user to tailor it

according to the performance and utilization needs. Synthesis

results on Virtex 5 and ProASIC3 have shown that the design

fits the targeted devices.

Preliminary synthesis on RTAX2000 has shown that the

Node IP without SpW Switch can also fit within the device as

well as an implementation with 2 external ports if SpW

Interrupts are not supported. The results have shown that the

SpW Interrupt block in the Switch occupies a significant

portion of the device resources, since the implementation

(taken as is from a previous ESA study) implements all timers

in registers instead of the LUT/memory based implementation

followed for the End Node.

Node’s performances meet the set requirements for both the

Virtex and ProASIC3 implementations. The RMAP target

response time of 1.2 us on Virtex 5 (including two times the

SpW Switching latency) exceeds by far the requirements for

SpW-D operation. Experimentation at much lower system

clock frequency (20 MHz on the ProASIC3 implementation)

resulted in a response time of 7 us showing that the

performance requirements can still be met even at low system

clock frequencies.

REFERENCES

[1] ECSS-E-ST-50-12C: SpaceWire-Links, nodes, routers and

networks, 31 July 2008

[2] ECSS-E-ST_50-52C: SpaceWire – Remote Memory Access

Protocol, 5 February 2010

[3] ECSS-E-ST_50-53C: SpaceWire – CCSDS packet transfer

protocol, 5 February 2010

[4] ECSS-E-70-41A: Ground Systems and Operations – Telemetry

and telecommand packet utilization, 30 January 2003

[5] ECSS-E-ST-50-54 Draft 1.7: SpaceWire Network Discovery

and Configuration Protocol, version, 21 May 2015.

[6] SpaceWire – Time Distribution Protocol, VHDL IP Core’s user

manual. Version 1.1, July 2014 Aeroflex-Gaisler

(https://amstel.estec.esa.int/tecedm/ipcores/SPWTDP_um.pdf).

[7] High accuracy Time Synchronization over SpaceWire

Networks, Version 1.1, 29 September 2012, Aeroflex-Gaisler

(https://amstel.estec.esa.int/tecedm/ipcores/time_sync_protocol.

pdf).

[8] ECSS-E-ST-50-12C Rev.1 DIR3: SpaceWire-Links, nodes,

routers and networks, 23 November 2015

[9] AMBA specification Rev 2.0, ARM 1999

280

https://amstel.estec.esa.int/tecedm/ipcores/SPWTDP_um.pdf
https://amstel.estec.esa.int/tecedm/ipcores/time_sync_protocol.pdf
https://amstel.estec.esa.int/tecedm/ipcores/time_sync_protocol.pdf

 Networks & Protocols 2 (Long)

281

A Graphical Method to Configure SpaceWire
Networks

SpaceWire Networks and Protocols, Long Paper

Thomas Bahls and Alin O. Albu-Schäffer
Institute of Robotics and Mechatronics

German Aerospace Center (DLR)
Münchnerstr. 20 82234 Weßling, Germany

Thomas.Bahls@dlr.de

Abstract— Complex robotic systems like the DLR Hand Arm
System integrates a huge amount of sensors and actuators. Hence
system design and especially communication infrastructure
design has to be flexible in a heterogeneous network of different
bus systems. As basis, a modular electronic concept as well as a
well-structured communication concept is necessary [1]-[3].
SpaceWire suites well to these requirements since on one hand it
supports arbitrary topologies from point to point up complex
network structures and on the other hand it is easy to implement
and has a small footprint. Additionally its logical and regional
addressing scheme enables changes in the topology during
runtime simply by reprogramming the routing switches.
However, such changes require expert knowledge. This work
presents a graphical method to setup and configure SpaceWire
network topologies. This enables non-experts to replace or
integrate new components to the system or to set up a test bed to
investigate a specific aspect. The developer provides a GraphML
description [4] specifying the SpaceWire communication
capabilities of each component. Thus the user is able to adapt the
SpaceWire network topology or to set up a new one simply by
merging the different GraphML descriptions of the used
components. A post process is afterwards used to analyze the
GraphML description and to generate the necessary
configuration messages according to the topology. This enables
faster development cycles and rapid prototyping. The approach
is approved and explained using the SpaceWire network topology
of the DLR Hand Arm System.

Index Terms— Graphical Communication Infrastructure
Design, Automatic Configuration, GraphML

I. INTRODUCTION
The DLR Hand Arm System is an anthropomorphic impact

tolerant robot based on variable stiffness actuators. It is
designed to meet the human archetype respective to size,
weight and performance (see Fig. 1). Its communication
infrastructure comprises 52 actuators and 430 sensors of
different types [2], [3]. To guarantee main control loops up to
10kHz a deterministic behavior, low latency, high bandwidth
and mechanisms to synchronize the actuators and sensors are
indispensable. Furthermore their arbitrary physical interfaces
(I2C, SPI, BiSS, PWM) demands flexibility and modularity in
terms of electronic and communication [1]-[3].

SpaceWire provides this flexible communication

infrastructure, since it enables arbitrary network topologies and
is changeable during runtime. It also supports high speed
communication up to 1Gb/s by use of an adapted physical layer
[5] and is deterministic for a given topology. Another
important aspect is the synchronization, of the participants of a
SpaceWire network via timecodes.

This flexibility also has to be introduced to the hardware
abstraction layer to enable the user to change, adapt and
expand the topology according to his purpose. Changes in

Fig. 1. DLR Hand Arm System light weight robot

282

existing systems as well as rapid prototyping of new systems
with hardware out of the shelf can be performed. This
flexibility was, however, not given so far as a standard user.
All changes and adaptions to the system or simply the setup of
a new testbed require a detailed SpaceWire knowledge.

A huge amount of publications exists dealing with different
aspects of network configuration: For example topology
depending configuration algorithms [6], [7], automation
aspects of network configuration [8], [9], configuration
management [10], [11] and network configuration in
virtualized environments [8], [12]. Most of the approaches are
either detached from a specific communication system
described on a higher level of abstraction [6], [11] or are
describing their approaches on standard IP-based systems and
services where hardware and tools are already available and IP-
specific configuration details are abstracted or hidden [7], [8],
[10]-[12]. But so far according to the authors' knowledge there
is no approach neither universal to describe network topologies
for various communication systems taking into account their
specific configuration mechanisms nor SpaceWire specific.

This paper provides a method to graphically setup network
topologies according to user requirements taking the example
of SpaceWire. Since network routing can be described as a
problem of graph theory [13], a graph description of network
topologies is proposed. Hence, the topology description is
stored in the GraphML format (a XML based description of
graph structures) [4] which is used in a post process to
configure the network (routing and connections).

Section II gives a brief overview of SpaceWire and the
DLR protocol suite which is built on top of the standard
SpaceWire stack as well as a brief introduction to GraphML.
Section III deals with the mapping of SpaceWire characteristics
into GraphML attributes. The use of this mapping in the post
process is explained in section IV as well as its application to
the DLR Hand Arm System. Section V concludes the paper
and gives a brief outlook to future fields of applications of the
presented method.

II. BASICS
This chapter gives a brief overview of SpaceWire focused

on its addressing scheme and the associated configuration.
Afterwards a short introduction to GraphML is given by using
a SpaceWire network as an example.

A. SpaceWire
The main intention of SpaceWire is the data exchange

between sensors, processing units, mass-memory units and
downlink telemetry subsystems onboard of a spacecraft [14].
Since SpaceWire's properties also meet the requirements of a
robotic system (high speed, low latency, synchronization etc.)
various systems developed in our institute use SpaceWire as
communication backbone (e.g DLR HAND II, DLR Crawler,
DLR Miro, DLR Mica, DLR Hand Arm System [15]-[18], [1],
[3]). The following brief overview of the SpaceWire network
layer is based on [14] and deals with terms and definitions of

SpaceWire links, nodes, routing switches and networks.
Furthermore the different addressing schemes are presented.

A SpaceWire network consists of an arbitrary number of
three components:

• Nodes are start or end points of a SpaceWire network.
They are connected via links directly to another node
or to a routing switch.

• Routing Switches connect various nodes together via
links and also provide routing capabilities. The
maximal number of connections is limited to 31.

• Links provide the capability to exchange packets
between nodes and routing switches in any
combination (node ↔ routing switch, node ↔ node
and routing switch ↔ routing switch).

Each packet to exchange has the following structure
<destination address><cargo><end of packet marker>. The
destination address describes the destination to route the packet
to. Depending on the addressing scheme and the network
topology the length varies from 1 to n bytes. The cargo
contains an arbitrary number of bytes. The end of packet
marker can be either a normal end of packet (EOP) or an error
end of packet (EEP). The SpaceWire standard does not dictate
a maximum packet length. Nevertheless, to achieve a
deterministic behavior in our systems a limitation is necessary
(our implementation limits the packet size to 1024 Bytes).

SpaceWire offers three different ways of describing the
destination address. The first addressing scheme is "path
addressing". Here the address section of the packets contains
the physical path through the network. For example an address
of <4, 4> routes the packet via port 4 of the first routing switch
to a node connected to port 4 of the second routing switch. In
"path addressing" the routing switch always performs header
deletion which is necessary for the correct path through the
network. In "path addressing" the number of bytes is arbitrary
but the address range is limited to the range from 1 to 31 which
represents the number of possible connections to a router.
Address 0 is a special case used for configuration of the lookup
table of the routing switch.

The second scheme is "logical addressing". Here the
address section of the packet contains exactly one byte in the
range of 32 to 254 (255 is reserved for future use). The route
through the network is determined by the lookup tables of the
routing switches. The lookup table can be preconfigured or
configured at startup. Header deletion is optional but makes
only sense when reaching the final link to the destination node.

The third addressing scheme is "regional addressing". Here
the destination address contains an arbitrary number of bytes in
the range of 32 to 254. This scheme is used if a packet has to
be exchanged between different regions. Regions are necessary
if the logical address space from 32 to 254 is insufficient or if a
systematic separation makes sense. Each logical address except
the last one represents a gateway to another region. Due to this
leaving a region always requires header deletion of the actual
first address. Finally in the last region there is no difference to
any other packet using “logical address” in between this region.

Since all three addressing schemes can be used in parallel
in SpaceWire networks, preferring "logical" and "regional

283

<graphml>

 <key attr.name="type" attr.type="string"
 for="node" id="d0">
 <default>node/routingSwitch</default>

 <graph edgedefault="undirected">
 <desc>GraphML description of a simple
 SpaceWire network</desc>

 <node id="n0">
 <data key="d0">routingSwitch<data/>
 <node/>
 <node id="n1"/>
 <data key="d0">node<data/>
 <node/>
 <node id="n2"/>
 <data key="d0">node<data/>
 <node/>
 <node id="n3"/>
 <data key="d0">node<data/>
 <node/>

 <edge id="e0" source="n0" target="n1" />
 <edge id="e1" source="n0" target="n2" />
 <edge id="e2" source="n0" target="n3" />

 </graph>

</graphml>

addressing" makes sense to keep the addressing overhead as
small as possible. In our implementation path addressing is
exclusively used for configuration of the lookup tables of the
routing switches.

The SpaceWire standard does not define a transport layer.
Since the control of a robot demands for reliable (connection
oriented, request/response) and non-reliable (connectionless,
datagram) mechanisms, a transport protocol was developed [3].
It is built on top of the existing SpaceWire packet and network
layer. The transport protocol is wrapped in the cargo of a
normal SpaceWire packet and uses the SpaceWire's address
schemes. Since participants in a SpaceWire network have no
knowledge about the network topology the transport protocol
includes a configuration process. Here the destination address
of the peer node is set. Therefore two specific nodes are able to
set up a channel to exchange data by using the transport
protocol.

B. GraphML
GraphML (Graph Markup Language) is a XML based

format to describe graph structures [4]. The language provides
core elements to fully describe graph structures enhanced by a
mechanism to store graph independent application specific data
[4]. Due to this, Brandes et al. [4] especially attach importance
to the following points:

• Simplicity to easily be parsed and interpreted by
humans and machines.

• Generality to support arbitrary graph models.
• Extensibility to provide additional information for

arbitrary applications in a well-defined way.
• Robustness to easily extract additional data by any

target application without the need of understanding or
interpreting the whole graph model.

The following GraphML listing (see listing 1) shows the
core elements of the language. The header part is omitted for
reasons of clarity and comprehensibility (a detailed description
is given at http://graphml.graphdrawing.org). The example
consists of three SpaceWire nodes connected to one SpaceWire
routing switch. Since GraphML only differentiates between
nodes and edges, SpaceWire nodes as well as routing switch
are modeled as GraphML nodes (<node><node/>). The feature
of integrating additional data into the graph data is used to
specify the type of SpaceWire item. By use the GraphML key
<key attr.name="type" attr.type="string"
for="node" id="d0"> (see line 3 and 4) a data attribute of
type string with identifier d0 is defined for the GraphML node
element. By <default>node/routingSwitch</default> the
default values are set here node or routingSwitch (see line 5).
Inside a node statement the defined data can be set by <data
key="d0">routingSwitch<data/>.

In SpaceWire the connection between nodes and routing
switches are called links. The equivalent to a link in GraphML
is the edge statement (<edge></edge>). By setting the source
and the target element to one of the nodes unique identifier
<edge id="e0" source="n0" target="n1" /> the connection
between the GraphML nodes can be determined.

III. PEPRESENTATION AND SPECIFICATION
Chapter II showes that a SpaceWire topology can be

described by the node and edge elements of GraphML.
However, SpaceWire specific characteristics can only be added
by integrating additional information (e.g. type of SpaceWire
item: Node or routing switch). So a fully automatic
configuration process of SpaceWire networks according to the
standard as well as the transport protocol build on top is
possible. To achieve this, the following data set of SpaceWire
characteristics is integrated into the GraphML format.

a) type: (is assigned to the GraphML node tag) It specifies
the kind of SpaceWire item. It could be one of the following
items: node/routingSwitch/link/subnet. In addition to the
already known SpaceWire items node and routingSwitch also
link and subnet are provided. Link is a special case of the
normal SpaceWire links which are described by edge. It
represents a connection of two SpaceWire items (node or
routingSwitch) via an exchange level implementation of the
SpaceWire standard, which is necessary to connect physical
separated parts of a SpaceWire network each with independent
clock domains. It is independent of the configuration
mechanism but already included for the future goal of using
GraphML description as a base for code generation. Subnet
describes the SpaceWire regional address scheme. Each item in
a region is encapsulated by a node of the type subnet using
GraphML nested graph description for hierarchical ordered
nodes [4].

b) numberOfPorts: (is assigned to the GraphML node tag)
Specifies the number of ports in case of a routingSwitch item.
It could be in a range of 1 to 31. The default value is zero

Listing 1. GraphML listing of a simple spaceWire network

284

which is used for all other SpaceWire items except the
routingSwitch.

c) logicalAddress: (is assigned to the GraphML node tag)
Specifies the SpaceWire logical address in case of a node or
the regional address in case of a subnet. It could be in a range
of 32 to 254. The default value is 32. It is ignored for
routingSwitch and link items.

d) peerNodeAddress: (is assigned to the GraphML node
tag) Specifies the logical address or regional address of a peer
node for the transport level implementation, and could be in a
range of 32 to 254. The default value is 33. It is ignored for all
other items except a SpaceWire node.

e) port: (is assigned to the GraphML edge tag) Specifies
the port on which edge is connected to a routingSwitch.

Furthermore, some additional data are helpful to improve
the readability as well as for the future goal of using GraphML
description as a base for code generation.

f) subsystem: (is assigned to the GraphML node tag)
Specifies the physical subsystem of the item to show its
membership for example in case of robot "joint1". That could
also be useful for the application level to identify functional
groups (e.g. "housekeeping" to read out all sensors of this
group).

g) Label: (is assigned to the GraphML node tag) Specifies
the name of an item. For example "I2CTemperatureBridge".

IV. METHODS AND EXAMPLES
To enable a configuration of SpaceWire networks in an

automatic process a GraphML description of subcomponents
(e.g. PCBs) according to the specification presented in chapter
III is required. Therefore, every component which can be
integrated into a SpaceWire network must provide a GraphML
description of its interconnection possibilities. Starting from
this the user can modify the description according to his
requirements within the function range of the component. By
putting all GraphML descriptions of the various components
together the whole network topology can be set up.

Since one of the design goals of developing GraphML was
simplicity in terms of interpretation and parsing [4], the
GraphML file describing a component can easily be written by
hand. A much more practical solution is to use a graphical
editor as yEd (https://www.yworks.com/). yEd provides full
GraphML language support including the feature of integrating
additional data. The graphical solution even makes the learning
of the GraphML syntax needless and for the user the
configuration process is reduced to assembling various
predefined graphical components.

The depicted electronic component (Fig. 2). shows the
SpaceWire-to-controller PCB as well as its associated
GraphML graphical representation described with yEd. The
PCB uses FPGA technology to implement the SpaceWire stack
and the transport level build on top. Its purpose is to connect
arbitrary standard buses (I2C, SPI, SSI etc.) or non-standard
buses (processor bus, PWM, etc.) to the SpaceWire network.
The data exchange is carried out by a dual-clock, dual-ported
RAM interface (port 5 SpWControllerRAMNode in graphical
representation). Additionally, it offers two 1Gb/s SpaceWire
links for external connections (connected to port 1 and 4).
Furthermore it also provides housekeeping (temperature,
current measurement) functionality via I2C (port 3
SpWControllerI2CNode) and access to a SPI-Flash to
reprogram the FPGAs content during runtime (port 2
SpWControllerSpiFlashNode).

This initial graphical description which provides all
available features of the PCB can be adapted according to
application specific requirements. Thus, a whole SpaceWire
network can be set up by merging different components
together into one single graphical description. The so generated
final GraphML description serves as the starting point for the
post process. The post process is implemented in python and
contains the following steps:

1. The GraphML file is parsed to discover all nodes
(<node><node/>). Their unique id as well as the
embedded SpaceWire specific data are extracted to
python dictionaries and saved in a list. The edges
(<edge></edge>)are proceeded in the same manner.

2. All SpaceWire routing switches are filtered out of that
generated GraphML node list by interpreting the
SpaceWire specific data. Afterwards the unique
GraphML node id of each discovered SpaceWire
routing switch is used to search for matches in the
source/target items of the generated GraphML edge
list. Thus the GraphML node id and the port number of
the counterparts connected to each SpaceWire routing
switch can be extracted and saved in separate list
associated to each SpaceWire routing switch. In this
way all SpaceWire routing switches know their locally
connected items.

3. Each SpaceWire routing switch's list of locally
connected items is analyzed and in case of a
SpaceWire node extended by the associated logical
address. This is done by a repeated iteration through
the GraphML node list to discover all unique
GraphML node ids of the locally connected items. In

Fig. 2. FPGA based SpaceWire interfacing electronic overlayed with its
graphical GraphML representation.

285

this manner a local LUT (lookup table) of logical
address to port mapping is built.

4. All SpaceWire routing switches exchange their routing
information (LUT of logical address to port mapping)
to set up a global LUT associated to each routing
switch. The used mechanism is similar to the reliable
flooding process described in [13] with the difference
that the network topology is known. The starting point
of each global LUT associated to a SpaceWire routing
switch is its own local routing table. This global LUT
is exchanged among all SpaceWire routing switches
found in the formerly generated list of all locally
connected items of each routing switch. While doing
that the received logical address to port mapping of the
received global LUT has always to be changed in:
logical address / port of the SpaceWire routing switch
where the global LUT comes from. This has to be done
for about n-1 times where n is the number of
SpaceWire routing switches in the network. Since in a
worst case scenario the topology of the connected
SpaceWire routing switches is a line structure where
each routing switch is connected to only two bordering
routing switches.

5. The starting point to build SpaceWire configuration
packets for set up the LUT in each SpaceWire routing
switch is a specific node within the SpaceWire
network. With the unique GraphML node id of this
SpaceWire node the directly connected SpaceWire
routing switch can be found inside the former
generated GraphML node list. The only addressing
scheme which can be used to set up the LUT inside the
SpaceWire routing switches is path addressing. Due to
this for the directly connected SpaceWire routing
switch the destination address equals zero for
accessing its internal LUT. Based on the locally
connected items list of this SpaceWire routing switch
directly connected routing switches and their
associated port number are searched for. Their
destination address is built by simply inserting the
outgoing port number at initial position of the
destination address of the previous SpaceWire routing
switch. This has to be done in each new stage of
connected SpaceWire routing switches until all routing
switches are reached.

6. Since all SpaceWire routing switches of the network
are configured at this point the logical addressing
scheme can be used for the transport protocol built on
top of the SpaceWire stack. By discovering all
SpaceWire nodes out of the former generated
GraphML node list their logical address and peer node
address can be extracted which are necessary to build
the transport protocol configuration packet. Since
logical addressing is used the transport protocol
configuration is independent from the SpaceWire node
which performs the configuration.

The post process also supports the handling of different
SpaceWire networks and the associated regional addressing
scheme. Here, the exchange of the LUT is performed in each
subnet separately. An adjacent subnet is treated as a normal
SpaceWire node with a logical address. The GraphML nested
graph approach is used for describing hierarchical graphs [4].
The unique id of each GraphML element is extended by a
leading id describing the parent node (<node
id=”n0::n1”><node/>). Hence, it is simple to identify the
membership of each SpaceWire item to a subnet.

The presented method is applied to the DLR Hand Arm
System's SpaceWire network topology. As an example the
SpaceWire topology of the HASy hand is used. The GraphML
description of the SpaceWire topology is built by use of the
graphical editor yEd (see Fig. 3).

The SpaceWire topology of the HASy hand is spread over
five FPGAs located on three different PCBs. This is
recognizable in the five vertical branches which have their
orign at the horizontal structure at the bottom (see Fig. 3). The
horizontal structure at the bottom is the backbone which
connects all physically separated parts of the SpaceWire
network. The depicted SpaceWire topology comprises in total
61 SpaceWire nodes (square shape) and seven SpaceWire
routing switches (octagon shape). 61 SpaceWire nodes
correspond to 61 logical addresses to be set up in the seven
routing switches' LUTs. This leads to 427 configuration
packets exclusively to use the logical address scheme. This is
exactly the result of the python post process of the GraphML
representation of the hand's SpaceWire topology. The number
of SpaceWire packets necessary for the configuration of the
transport protocol built on top is variable since some nodes
share their peer nodes. In our case 14 nodes are unused, since
they are reserved for optimizing latency by efficient packing.
From the remaining 47 nodes one is used as a shared peer node
for all others. This leads to 46 configuration packets associated
with the transport protocol which are also the result of the
python post process.

Fig. 3. DLR Hand Arm System's SpaceWire network topology of the hand

286

The additional data embedded in the GraphML format is
not only limited to network and transport layer depending data.
The post process also generates configuration files for our
hardware abstraction layer approach "robotkernel" as well as
our middleware approach "links and nodes". The "robotkernel"
is a runtime-configurable robotic hardware abstraction
framework. It is designed as a cross platform software
component with reusable dynamical loadable device drivers
encapsulated in modules. It provides an intra-module
communication, a module synchronization mechanism and
access to the cyclic and acyclic hardware data. It also supplies
modules with generic interfaces to control applications, written
in C, python, Simulink, etc. At DLR most of the robotic
hardware components work with the "robotkernel" by simply
writing a bunch of configuration files. As middleware between
different processes we use our own hard-realtime capable
middleware called "links and nodes". It provides a realtime
communication mechanism for cyclic process data, acyclic
service calls and process management across IP networks.

V. CONCLUSION AND OUTLOOK
This paper presents a graphical method for communication

infrastructure design. Since network topologies can be
described by graph theory the system's network topologies are
modeled by using graphs. To store the graph information the
XML based GraphML format is used. It is easy to read and
interpret by humans and machines and provides a mechanism
to store arbitrary additional data. Thus, specific information
depending on the used communication standard as well as
detailed information from other abstraction layers can be
integrated. By use of a graphical editor (e.g. yEd) the usability
can be further enhanced. By providing a graphical model of
each component describing its network depending capabilities
the system's topology can be adapted easily to user needs
without expert knowledge. Complexity can be clearly
described with the GraphML approach and detailed
configuration knowledge can be hidden in the post processing
stage. The method was applied to the SpaceWire topology used
in the DLR Hand Arm System with promising results. The
system can be fully configured by use of the method.
Additional application specific information (also integrated in
the GraphML format) can also be processed to configure the
hardware abstraction layer.

Future work will include the modeling of all SpaceWire
network components used in the DLR systems (e.g. DLR Miro,
DLR Mica). Thus components can be used out of the shelf to
easily build new testbeds or systems. Another possibility is to
go a step further by using the GraphML description not only
for configuration but also for code generation. Since a full
SpaceWire stack as well as the transport protocol built on top
and various communication bridges to physical interfaces (I2C,
SPI, BiSS, PWM, etc.) are available in VHDL in our institute
the whole component configurations could be generated online.

REFERENCES
[1] M. Grebenstein, A. Albu-Schäffer, T. Bahls, M. Chalon, O.

Eiberger et al., “The dlr hand arm system,” in Robotics and
Automation (ICRA), 2011 IEEE International Conference on.
IEEE, 2011, pp. 3175–3182.

[2] S. Jörg, M. Nickl, A. Nothhelfer, T. Bahls, and G. Hirzinger,
“The computing and communication architecture of the dlr hand
arm system,” in Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on. IEEE, 2011, pp. 1055–
1062.

[3] M. Nickl, S. Jörg, T. Bahls, A. Nothhelfer, and S. Strasser,
“Spacewire, backbone for humanoid robotic systems,” in
Proceedings of the 4th International SpaceWire Conference,
2011, pp. 356–359.

[4] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S.
Marshall, “Graphml progress report structural layer proposal,”
in Graph Drawing. Springer, 2002, pp. 501–512.

[5] M. Nickl, S. Jörg, T. Bahls and B. M. Cook “Towards high-
speed spacewire links,” in Proceedings of the 5th International
SpaceWire Conference, 2013, pp. 263–266.

[6] J. Kim and S. Lee, “Spanning tree based topology configuration
for multiple-sink wireless sensor networks,” in Ubiquitous and
Future Networks, 2009. ICUFN 2009. First International
Conference on. IEEE, 2009, pp. 122–125.

[7] R. Emiliano and A. Mario, “Automatic network configuration in
virtualized environment using gns3,” in Computer Science &
Education (ICCSE 2015), Proceedings of 10th International
Conference on. IEEE, 2015, pp. 25–30.

[8] S. Lee, T. Wong, and H. S. Kim, “To automate or not to
automate: on the complexity of network configuration,” in
Communications, 2008. ICC’08. IEEE International Conference
on. IEEE, 2008, pp. 5726–5731.

[9] K. A. Weinstein, W. Wang, K. M. Peters, D. P. Gelman, and J.
Dimarogonas, “A domain-level data model for automating
network configuration,” in Military Communications
Conference, 2010-MILCOM 2010. IEEE, 2010, pp. 1337–1342.

[10] K. Elbadawi and J. Yu, “Improving network services
configuration management,” in Computer Communications and
Networks (ICCCN), 2011 Proceedings of 20th International
Conference on. IEEE, 2011, pp. 1–6.

[11] Z. Ismail, R. Hassan, A. Patel, and R. Razali, “A study of
routing protocol for topology configuration management in
mobile ad hoc network,” in Electrical Engineering and
Informatics, 2009. ICEEI’09. International Conference on, vol.
2. IEEE, 2009, pp. 412–417.

[12] X. Ge, H. Jin, S. Wu, X. Shi, and W. Gao, “A method of
multivm automatic network configuration,” in Intelligent
Computing and Intelligent Systems, 2009. ICIS 2009. IEEE
International Conference on, vol. 3. IEEE, 2009, pp. 309–313.

[13] L. L. Peterson and B. S. Davie, Computer networks: a systems
approach 5th edition. Elsevier, 2012.

[14] E. Secretariat, “Spacewire-links, nodes, routers and networks,”
ECSSE-ST-50-12C, Noordwijk, The Netherlands, July, Tech.
Rep., 2008.

[15] S. Haidacher, J. Buttefass, M. Fischer, M. Grebenstein, K. Jöhl,
et al., “DLR hand ii: Hard-and software architecture for
information processing. In: Robotics and Automation, 2003.
Proceedings. ICRA'03. IEEE International Conference on.
IEEE, 2003. pp. 684-689.

287

[16] M. Görner, T. Wimböck, A. Baumann, M. Fuchs, T. Bahls, et
al., “The dlr-crawler: A testbed for actively compliant hexapod
walking based on the fingers of dlr-hand ii,” in Intelligent
Robots and Systems, 2008. IROS 2008.

[17] U. Hagn, M. Nickl, S. Jörg, G. Passig, T. Bahls, et al., “The dlr
miro: A versatile lightweight robot for surgical applications,”

Industrial Robot: An International Journal, vol. 35, no. 4, pp.
324–336, August 2008.

[18] S. Thielmann, U. Seibold, R. Haslinger, G. Passig, T. Bahls, et
al., “Mica - a new generation of versatile instruments in robotic
surgery,” in IROS 2010, IEEE International Conference on
Intelligent Robots and Systems, October 2010.

288

Multichannel Adaptive Routing for Intensive Data
Packet Flows Transmission
SpaceWire networks and protocols, Long Paper

Elena Suvorova, Yuriy Sheynin, Valentin Olenev, Irina Lavrovskaya
Saint-Petersburg State University of Aerospace Instrumentation

Saint-Petersburg, Russia
{suvorova, sheynin}@aanet.ru, {valentin.olenev, irina.lavrovskaya}@guap.ru

Abstract—In many networks there is a necessity to transmit
data packets flows, the intensity of which exceeds the throughput
of one channel SpaceWire, GigaSpaceWire, SpaceFibre. This
flow can be a packet flow from a single source to a single
destination, for example, from a camera to a monitor. Also, a
packet flow can include packets from different sources to
different destinations that goes via two neighboring routers. An
example is transmission of packets between two routers located
on the boundaries of neighboring regions. The packets, belonging
to one flow can have almost same length (transmission of
uncompressed video), or quite different length (transmission of
compressed video, transmission of packets with different content
between two regions).

The adaptive routing can be used for transmission of such
packet flows. This mechanism includes in SpaceWire standard. A
set of alternative output ports (a group of ports) can be
determined in routing table for the logical (or regional address).
Any output port from this group (if connection for this port is
established and port is not occupied by other packet) may be
used for transmission of packet with this address.

Thus, the summary throughput of all ports belongs to the
group can be used for transmission of data packets with this
address. However, the possibility of parallel transmission of
packets from this flow to different output ports belongs to the
group is required for effective utilization of this summary
throughput.

If the length of packets may be different or if the quantity of
input ports for considered flows is not equal to the quantity of
output ports in the group, the router should include special
mechanisms to ensure efficient parallel transmission of packets to
all ports belongs to the group.

Adaptive routing for intensive data flows transmission can be
implemented not only in SpaceWire/GigaSpaceWire networks,
but also in SpaceFibre networks. We consider the specific of its
implementation taking into account the features of data link
layer (virtual channels with a fairly large buffers, retry
mechanism)

In this paper we discuss possible implementations of these
mechanisms for SpaceWire, GigaSpaceWire and SpaceFibre,
estimate achievable bandwidth utilization of port’s group, the
overhead of the implementation of these mechanisms for packets
flows with different characteristics.

A side effect of adaptive routing is a possible mismatch of the
order in which packets are sent to the network form the source

and the order of their receipt by destination. We evaluate the
packet’s window size that required in the destination node for
recovery order of packets and the associated delays.

The ports of router belonging to the same group may be
connected to one or several different routers (according to the
standard). In the first case all packets from the flow will be
transmitted via one chain of routers (via one path via network).
In the second case, they will be transmitted through the network
in different ways. The reordering of packets is possible in both
cases. However, in the first case, the mechanisms, that prevent
the packets reordering, can be implement in routers. But its
implementation can lead to decrease of throughput utilization, to
additional hardware costs and to increase of packet’s
transmission time. In the paper we estimate these overheads for
data packets flows with different parameters.

Index Terms—SpaceWire, GigaSpaceWire, SpaceFibre,
Adaptive routing

I. INTRODUCTION

This paper discusses group adaptive routing mechanisms
and their facilities in SpaceWire, SpaceFibre and
GigaSpaceWire networks. We chose several case studies which
find applications in different networks. The first case study
considers high intensity data flow transmission (high resolution
video) between source and destination. The second case
discusses possibilities of several data flows transmission from
different independent sources and destinations between two
routers which are situated on borders of network regions. The
third case study refers to group adaptive routing abilities for
bypassing overloaded network parts. Finally, the fourth case
study discusses group adaptive routing for bypassing failed
links and routers.

II. SPACEWIRE GROUP ADAPTIVE ROUTING

Group adaptive routing is defined in the SpaceWire
standard [1,2]. In this switching mode, a routing table defines a
set of output ports that correspond to one logical address. A
packet with a particular logical address can be potentially
passed to any of output ports in the defined group. Any port
from the group with established connection and which is not
occupied by transmission of another packet can be chosen for
transmission of the subsequent packet. If all ports from the
group are in the Run state and are occupied by transmission of
other packets, the current packet will wait for one of these ports

289

to be free and ready for transmission. Output ports from one
group can be connected either to the same or to different
network devices. In the first case, packets transferred by means
of group adaptive routing will be always transmitted via the
same path i.e. via the same sequence of routers (see Fig. 1). In
the latter case, packets will be transmitted via different paths,
i.e. via different sequences of routers (see Fig. 2).

Fig. 1. An example of a network structure with group adaptive routing for
connection with the same device

Fig. 2. An example of a network structure with group adaptive routing for
connection with different devices

Group adaptive routing can be used [3, 4, 5, 6, 7, 8, 9, 10]:
• for co-utilisation of bandwidth of several links;
• for keeping a possibility to transmit data in case of link

disconnection for one or several links.
In the next sections of the paper we consider several typical

case studies of the group adaptive routing use and estimate its
efficiency by the following criteria:

• Objective function, which is defined in the statement
of the problem for each case study;

• Necessity and size of additional buffers;
• In-order packet transmission (if necessary).
Group adaptive routing can be also used in GigaSpaceWire

[11] and SpaceFibre [12] networks, consequently, we will
make estimation for these standards as well.

III. CASE STUDY 1. HIGH INTENSITY DATA FLOW

TRANSMISSION BETWEEN SOURCE AND DESTINATION

A. Statement of the Problem

Let us consider the case when there are source and
destination nodes in a network and data intensity between them
is higher than the bandwidth of physical links between them.
For example, this can occur for a source and destination of high
resolution video traffic. From the structural point of view, it is

possible to organize a path comprising several physical links.
Examples of such paths are given in Fig. 3. At the logical level
we can use the group adaptive routing for packets distribution
between physical links. Packets in a data flow can have either
of equal length (e.g. uncompressed video) or unequal length
(e.g. compressed video). Such kind of applications may require
in-order packets delivery. These nodes can exchange other
types of traffic, e.g. command data, in addition to the high
intensity traffic.

Destination NodeSource Node

Router 2

Adaptive routing group

Router 1

Router 1

Terminal node
(Destination)

Terminal node
(Source)

High speed port

Src Dest

Fig. 3. Examples of terminal nodes connection for transmission of high
intensity data traffic

Data generation rate in the source and data reception rate in
the destination can be several times greater than data
transmission rate over a single physical link.

B. Estimation of Characteristics for SpaceWire

Using of the group adaptive routing can lead to inefficient
use of links bandwidth. This case can be shown for the receiver
terminal node with embedded router with 4 external and one
internal ports. Let us assume that the functional part of the
receiver node can accept data 4 times faster than data rate in
external ports of the terminal node. These external ports are
used for reception of the traffic. If data packets are transmitted
directly from external ports to the receiver, we will get the
situation shown in Fig 4.

Data transmission between external ports and the functional
part of the receiver is performed by packets. Until the current
packet from the external port is not fully transmitted to the
functional part via the internal port, the subsequent packet from
another external port cannot start its transmission. Data
character reception in the external port takes significantly more
time than it takes for its transmission to the functional part. In
the given example, there is a difference by 4 times.
Consequently, there is a standby of a link to the functional part
for a long time, which is ¾ of all operational time. In this case,
group adaptive routing cannot increase the link bandwidth.

290

Fig. 4. Data transmission without buffering

This problem can be solved by adding buffers to the low
data rate ports. The high data rate link’s bandwidth can be
fully utilized if a packet starts its transmission from the

external port to the functional part just after it is fully stored in
the buffer (see Fig. 5).

Fig. 5. Data transmission with buffering

The size of transmitted packets should be not more than the
buffer size. Such a scheme with buffering requires an
additional arbitration mode for data transfer to the high data
rate port. An arbiter should choose a low data rate port for
transmission in the following cases:

• A buffer of a low data rate port contains an entire
packet;

• A buffer of a low data rate port is full (i.e. packet’s
length is more than the buffer’s size).

If packet’s length is more than the buffer’s size, then the
part of the packet that was not stored into the buffer will be
transmitted to the functional part at a low data rate. This will
result in decreasing of the link bandwidth.

For the reason described above, the transmitting terminal
node should also implement buffers in its external ports. A
generalized scheme which shows the place of buffers in
receiver and transmitter is given in Fig. 6.

Fig. 6. Place of buffers in receiver and transmitter

However, this buffers mechanism can be insufficient.
Packets flow can contain packets which have the size equal or

less than the buffer’s size. Consequently, the following
situation can occur: the buffer contain a packet or its fragment
and still has some free space. The next packet from the
functional part can start to be stored in this buffer. And yet,
there are no enough space in the buffer to store the whole
packet. As a result, a part of this packet, which was stored to
the buffer, is transmitted at a high data rate, while the other part
is transmitted to the buffer at a low data rate of the external
port. During this time, subsequent packets from the high data
rate link cannot be transmitter to other external links.
Therefore, there is a significant decrease of the high data rate
link bandwidth.

As an example of a packets flow with different sizes let us
consider a compressed video flow. Video frames compressed
using MPEG, H.263, H.264 and other standards can vary by in
sizes by several times (even by ten times) [13, 14]. Let us
consider data transmission from a compressed video source
with the following sequence of frames: IBPBPBPBP (see
Fig. 7), where:

• I-frame – intra pictures;
• P-frame – corresponds to the frame compressed using

a reference to one image (P - predicred);
• B-frame – corresponds to the frame compressed using

a reference to two images (B - bidirection).

Fig. 7. Compressed video frames

291

In the discussed example a node has three external ports
with buffers. Size of these buffers corresponds to the maximal
size of I-frame in a system. A possible sequence of packets
transmission is shown in Fig. 8. Dotted lines show buffers
bounds.

Fig. 8. Example of packets sequence transmission to output ports

The first packet with I-frame can be stored into the Port 1
buffer. This I-frame is followed by 4 groups of BP-frames.
Each such frame is significantly smaller than the I-frame.
Assume that they were stored into the Port 2 buffer and still left
free space in this buffer. The next frame is an I-frame, which
can be passed to any buffer:

• Port 1 has already send some of data and freed free
space;

• Port 2 has free space because 4 BP-frames are smaller
than the buffer size;

• Port 3 buffer is empty.
According to the rules of group adaptive routing a packet

can be passed to any of these ports. Assume that it will be
passed to the port 2 buffer. The bigger part of the packet could
not be stored in the buffer so it will be stored in the buffer at a
data rate of the external port. Consequently, the high data rate
link bandwidth can decrease by 1,5-2 times depending on sizes
of packets and port arbitration choice.

A similar problem can occur with packets of the same size
which is equal the buffer size. For example, in a terminal node
with three external ports the first packet was sent to the port 1
buffer, the second – to the port 2 buffer. At the time of starting
transmission of the third packet, a part of the first packet was
send, so there is again free space in the port 1 buffer. The port
3 buffer is empty but according to the rules of the group
adaptive routing the third packet can be passed to the port 1.

In some applications it can be essential to preserve at
reception the packets order the same to the order they were sent
by the source. However group adaptive routing cannot
guarantee in-order delivery. An example of packets reordering
is shown in Fig. 9.

Fig. 9. Example of packets sequence transmission to output ports

In this case we did not loose the high data rate link
bandwidth but the shorter packet P3 was fully stored in the
receiver buffer before the longer one P2 was received.
Therefore, the packet reordering occurred.

Link disconnection in one of the parallel links of the
adaptive group can result in:

• loss of one or more packets;
• packets reordering while their transmission from high

data rate link to the low data rate port.
These cases are illustrated in Fig. 10.

Fig. 10. Example of system behavior in case of link disconnection in one port

In this case we can observe a link disconnection in Port 3
which results in the loss of packet P2. The receiving side needs
some time to detect the disconnection. Meanwhile, ports SpW3
and SpW4 can receive packets P3 and P4 correspondently. The
order in which these packets will be passed to the high data rate
link is random. Thus, the packets P3 and P4 can be passed in
wrong order.

The more buffer size in ports is, the more data can be lost in
case of link disconnection. According to the SpaceWire
standard, the tail of a transmitted packet will be automatically
spilled if a link disconnect occurs. If a transmit buffer contains
other packets or their fragments, they will be:

• either transmitted in case of successful link
reinitialisation;

• or they will be deleted in case of link disable flag is set
to 1.

This time can be rather long (not less than 19,2 μs) and
other ports can transmit a large number of packets. In the first
case it can lead to significant reordering of packets on a sender
side. Assume the situation when a packet was not fully written
to the external port buffer because there was not enough free
space and a link disconnection occurred. All next packets from
the sender will be blocked for a long time (until the link is

292

reinitialized or link disables flag is set to 1) and could not be
passed to other ports with established connection.

The discussed above cases show that smaller buffers can
cause smaller losses of data and packet reordering in case of
link disconnection. Disconnection results in loss of all data in
transmit buffers together with packets’ tails which were not
stored in a buffer. However, buffer size should be defined in
accordance with sizes of packets in a system. The smaller
packets size is, the bigger transmission overhead is (see
Fig. 11). The graphs of dependency between maximal packet
size (header|overheads + data payload) and throughput
utilization are represented in this figure. Here we can observe a
contradiction between these requirements that should be
balanced in practical engineering design.

Fig. 11. Throughput utilization

Therefore, we can formulate the following summary:
• The objective achieving requires implementation of

additional buffers, which size is not less than the size
of transmitted packets, and an additional arbitration
mechanism.

• The objective cannot be fully achieved even with these
additional mechanisms: packets reordering and long
delays are possible.

C. Estimation of characteristics for GigaSpaceWire

GigaSpaceWire standard has much in common with
SpaceWire standard: layers over Exchange layer are the same,
link disconnection and link re-initialization cause similar
actions. Buffering in GigaSpaceWire is organized in the same
way, as in SpaceWire. Consequently, if we use GigaSpaceWire
in the first case study, we need additional buffering and
arbitration mechanisms.

However, this also cannot solve all stated problems:
packets reordering and long delays in some cases.

D. Estimation of characteristics for SpaceFibre

In contrast to the previous standards, in SpaceFibre there
are output and input buffers (not less than 256 bytes) for each
virtual channel and data retransmission in case of errors in a
link. If these buffers are large enough to store an entire packet,
than there is no need to use additional buffers for group
adaptive routing.

Data retransmission mechanism allows significantly reduce
data transmission delay in case of single errors in a link.
However, the same problems as in SpaceWire arise if link
disconnection lasts for a longer time: packets reordering and
long delays.

IV. CASE STUDY 2. TRANSMISSION OF BIG DATA

BETWEEN DIFFERENT SENDERS AND INITIATORS

VIA TWO ROUTERS

A. Statement of the problem

A network can contain two routers which exchange an
amount of data bigger than it can be transmitted via one
physical link. For example, such routers can be situated on
borders of regions. At a structural level such routers can be
connected via several links in order to provide the required
bandwidth. An example of such a network is given in Fig. 12.
This pair of routers can transmit data packets flows between
different pairs of sources and destinations. Packets flows can
have different characteristics, such as different length of
packets, different intensity. Data transmission rates in different
ports can also vary. Generally, there is no need of preserving of
the packets order between different packets flows in such
adaptive routing application. However, in some cases it may be
necessary to preserve an order for the packets between one pair
of source and destination.

Fig. 12. An example of network structure

Assume that the system is designed correctly and an
aggregate throughput of physical links between two discussed
routers (hereinafter, adaptive group ports) is sufficient for
transmission of all existing packets flows. In addition, the
number if others ports in each of these routers can be equal or
not to the number of ports in adaptive group ports. Data traffic
coming via ports, which are not in the adaptive group, can be
transferred either only to the adaptive group ports or not to this
group. Transmission data rates can vary for different ports.

293

B. Estimation of characteristics for SpaceWire

As it has already been shown in the first case study, it is
necessary to use additional buffers in low data rate ports if data
rates vary in different ports.

If packets from several input ports can be transmitted to
one output, then we can use buffers in the input ports in order
to store the packets waiting for their transmission to an output
port.

Let us consider the simplest case from the estimation
characteristics point of view:

• number of ports in the adaptive group is equal to a
number of ports which are not in the adaptive group;

• data rates are the same for all ports (buffers can not be
used).

If there is a packet which should be transmitted to the
adaptive group ports, then there always will be a free port in
the group for transmission. If there is a packet from the
adaptive group ports which should be transferred via a port not
in the group, this port can be occupied by transmission of the
other packet. In this case, packet transmission delay depends
on the occupancy of an output port and packets length.

If transmission delay in one of output ports (includes in
alternative group) occur, it does not affect to data flows (from
other sources) that are transmitted via other ports

For example, if in the network shown in Fig. 12 delay occur
for a packet transmitted from the router 3 to th router 6 via the
port 5 of the router 1, it does not affect to transmission of data
from the router 4 to the terminal node 2 via the port 6 of the
router 1.

This can lead to much less decrease of link bandwidth in
the adaptive group ports in contrast to the Case Study 1
(see Fig. 13). The example shows that Router 4 cannot be
ready for some time to receive a data packet from Router 1
transmitted via a link from an adaptive group. During this time,
data from the terminal node 1 can be transmitted to the
terminal node 2 via another link between the routers without
any loss of link bandwidth. However, if the terminal node 1
needs to send packet to the Router 3, then this packet and all
subsequent packets will wait until the current packet is
transmitted from Router 1.

Fig. 13. Example of data transmission delay via adaptive group link

The same can be referred to a link disconnection case in
one of alternative ports.

Let us consider a more complex case when a number of
ports in the adaptive group is less than the number of ports out
of this group. In this case, it is recommended to use buffers in
order to store packets while waiting for output port is free. For
example, assume that a router has 12 ports:

• 4 ports in the adaptive group;
• 8 ports can transmit packets addressed to the adaptive

group.
Packets from 4 ports, which are not included to the adaptive

group, can be transmitted to 4 ports from the adaptive group
when a new packet arrives and needs to be passed to the
adaptive group. This packet will wait until one of the ports
from the adaptive group is free. If this packet does not fit in the
buffer, then its tail will occupy one or several previous routers,

If data transmission rate is the same for all links then there
is no need for additional buffers in output ports. As it was
shown in Case Study 1, it allows to loose minimal amount of
data in case of link disconnection in one of group adaptive
ports.In this case, inefficient distribution of packets between
ports and decrease bandwidth of adaptive group ports is
impossible. Distribution of packets between the ports can
influence transmission delays only.

However, if data transmission rates in ports vary, then we
need additional buffers in low data rate ports. In this case, the
problems from the Case Study 1 arise: decrease of link
bandwidth in case of unsuccessful port arbitration, large
amount of lost data in case of link disconnection.

Therefore, this case study requires additional buffers only
in case of different data rated in links. The objective is
successfully achieved.

The objective function is also successfully achieved in case
of GigaSpaceWire and SpaceFibre use.

V. CASE STUDY 3. GROUP ADAPTIVE ROUTING FOR

BYPASSING OVERLOADED NETWORK PARTS

A. Statement of the problem

There are several paths for data transmission between the
source and destination. Besides the discussed traffic, another
traffic can be transmitted via these paths also. Transmission
paths can be loaded in different ways at different moments of
time. Potentially, group adaptive routing can be used for
packets redirection to the less loaded path at a particular
moment of time.

B. Estimation of characteristics for SpaceWire

Fig. 14 presents a fragment of a network structure with two
alternative paths between the source and destination. Each
alternative path comprises several routers, each of which can
transmit additional traffic (see Fig. 14).

Router
1

Router
2

Router
5

Router
3

Router
6

Router
4

Router
7

Src Router
8 Dst

Adaptive routing

2

3

Fig. 14. Example of a network with two alternative paths

294

Packets from the source node Src arriving at Router 1 can
be transmitted either to the Router 2 (path 1) or to the Router 5
(path 2) by means of group adaptive routing defined for ports 2
and 3. Router 1 arbitrates packet transmission from Src to the
Router 2 via port 3 or to the Router 5 via port 2. If port 3 is
occupied by transmission of another packet while port 2 is free,
then the packet will be transmitted via port 2. If both ports are
occupied, then the packet will wait them to become free.

If there is another traffic transferred to Router 5, then the
discussed packet will be transmitted to the Router 5, if port 3 is
not occupied. In this case group adaptive routing allows to
effectively redirect packets to the free port.

However, this mechanism works only if an overload
occurred in a router which divides further path into two
alternatives. Assume that an overload occurred in Router 4 (see
Fig 15) and, consequently, packets transmission from Src to
Router 8 will be delayed. Although SpaceWire standard uses
wormhole routing there are buffers of a particular size in
routers. These can be credit buffers and any additional buffers.

R1

R2

R5

R3

R6

R4

R7

Src

FULL FULL FULL

1 Suspended
transmission in R4Full packet

passed

2

3 Alternative packet
transmission path

Fig. 15. Example of packet transmission via alternative path

Depending on packets length and buffers sizes the
discussed packet can be either fully stored in Router 4 or its
parts will be stores in Routers 3 and 2. In addition, if the
Router 2 has still more space in buffers to accept the next
packet, then Router 1 cannot predict that there is an overload
somewhere further in this transmission path.

SpaceWire standard does not define any mechanisms for
monitoring such kind of overloads in remote routers.
SpaceWire flow control mechanism operate in a data link and
can be used for detection of overloads in neighbor routers only.
If there are no FCTs received, then ports can be considered as
overloaded.

As a result, several subsequent packets can be transferred to
Router 2 until all buffers on a transmission path are full.
Consequently, an overload area will reach Router 1. There are
two possible cases:
1. the next packet will be fully transferred to Router 2;
2. the next packet will be partly transferred to Router 2.

In the first case next packets from Src can be transferred to
Router 5 (see Fig 15).

Packets transmitted via alternative path can arrive at
Destination earlier than packets which were blocked while
transferrin through Router 4. If there is a need of in-order
packets delivery, then the destination node should have big
enough memory in order to recover an initial packets order at a

Transport and Application layers. The memory area should not
be less than total buffers sizes in each existing alternative path
between the source and destination.

R1

R2

R5

R3

R6

R4

R7

Src

FULL FULL FULL

1 Suspended
transmission in R4Packet partly

passed to R2

2

3 Packets from Src wait
for transmission
resume in R4

Fig. 16. Example of packets waiting for data transmission recovery in
Router 4

In the second case, packets transmission from the source in
Router 1 will be stopped until data transfer through Router 4 is
recovered. This is shown in Fig. 16.

New revision of the SpaceWire standard proposes a
mechanism of port time-outs in routers in order to detect a
packet that has become stuck. This time-out controls the time
since the last data character was sent from the input port to the
output port. This mechanism can be used for discarding
packets which have become stuck. However, it cannot improve
anything in packets delivery avoiding overloaded parts of
network.

This case shows that group adaptive routing use combined
with such network structure does not give ability to
dynamically control overloads and redirect packets from
overloaded parts of network. This is because each router knows
only about ports overloads in neighbor routers while it does not
anything about remote routers n a network. This can result in
inefficient use of the group adaptive routing is adaptive paths
includes several routers.

Let us consider a subcase with branching adaptive paths in
each router. Each router can choose one of alternative
directions in dependence on neighbor routers state. An example
of such network structure is given in Fig. 17.

Router
1

Router
2

Router
5

Router
3

Router
6

Router
4

Router
7

Src Router
8 Dst

Fig. 17. Example of a network with adaptive connections between all
routers in adaptive paths.

In this example, a packet in each router can be transferred
via two paths. For example, a packet from Router 2 can be
transferred to Router 3 or to Router 6. Let us consider the case
when a packet from source to destination becomes stuck in

295

Router 4 as a result of an overload. Similarly to the previous
case, two cases are possible:
1. A packet was fully sent by one of the previous routers;
2. Part of a packet was not sent.

In the first case all subsequent packets can be transmitted
bypassing an overloaded network part. In the second case, the
tail of unsent packet will block this opportunity. Therefore, the
problem will be solved partly. According to SpaceWire
standard, it is impossible to completely eliminate a possibility
of keeping a packet tail in a router. As it was mentioned above,
the only mechanism that can help in overload detection is a
flow control in SpaceWire. Flow control is performed in terms
of flits, which do not correlate with packets sizes. One flit can
contain parts of several packets. Moreover, packet is unlimited
in size. Even though it is limited and conforms to buffers in
routers, the problem cannot be fully solved.

Moreover, it should be mentioned, that such network
design causes a large number of additional communication
paths between routers and, consequently, additional router
ports which are necessary for adaptive path construction. This,
in turn, will lead to increase of number of routers in the
network.

The objective function is reached without additional
mechanisms in routers, but alternative data path via each router
should be implemented for this sample. Data packets sequence
between the source and the destination nodes can be reordered
in the network.

C. Estimation of characteristics for GigaSpaceWire

A GigaSpaceWire router likewise a SpaceWire router can
determine load of only neighbour routers (using of the credit
mechanism). Therefore all problems of SpaceWire standard
shown for this use case are actual for GigaSpaceWire also.

D. Estimation of characteristics for SpaceFibre

A SpaceFibre router also can determine the state of only
neighbour routers. It follows same problems as for SpaceWire
and GigaSpaceWire standards. Due buffers of large size used
in the data link layer of this standard, the overload of the
neighbour routers will be determined very late, and more data
will be stalled in buffers. Therefore data packets flow
reordering will be more essential in comparisson with
SpaceWire and GigaSpaceWire standard.

VI. CASE STUDY 4. GROUP ADAPTIVE ROUTING FOR

BYPASSING FAILED NETWORK PARTS

A. Statement of the problem

Some devices and communication lines can be failed in the
network operation. The network can include spare routers and
interconnection lines. Group adaptive routing can potentially
be used for automatic (witout reconfiguration of the network)
redirection of data packets flows bypassing failure equipment.

B. Estimation of characteristics for SpaceWire

The SpaceWire standard does not support guaranteed
packets delivery. If failure occur in an interconnection line
when data packet is transmitted, only the primary part of the

packet (transmitted before the failure) with EEP will be
forvarded farther via network. The rare part of the packet will
be lost.

Every SpaceWire router can determine disconnections in its
ports (in lines, connected this router with neighbours). Failure
in a router that be accompanied with disconnection looks like
link failure with this router for its neighbours.

A router has not any information about state of others (not
neighbour) routers and interconnections. Therefore, the group
adaptive routing is not suitable for network structure, shown in
Fig. 14.

For example, if disconnection error occur between the
router 4 and the router 8, the secuence of packets that wait for
transmission will be placed in the routers 4, 3, 2. These packets
will be never transmitted to destination if connectionbetween
the router 4 and the router 8 will not restore.

As indicated above, if in the router 1 stalls the rare part of a
packet, it will block transmission of next packets for long time.
(These packets will be not transmitted via the router 5 until the
rare part of the previous packets block the router 1.)

The mechanism of transmission timeouts in the SpaceWire
standard next version allows to solve this problem by deletion
of the untransmitted rare part of the packet in case of timeout.

But next packets can be transmitted to the router 2 (not to
router 5) due to connection with router 2 is valid (available).
These packets will not reach the destination due to
disconnection between the router 4 and the router 8.

More suitable for this use case is network structure
represented in Fig. 17. If in this structure disconnection
between two routers occurs, the alternative path (that exist in
every router) will be used for data packets transmission. For
example if disconnection between the router3 and the router 4
occurs, next packets will be transmitted from the router 3 to the
router 7, bypass failure connection. There are three alternative
pathes between source and destination in this network:

(1) the router 1 – the router 2 – the router 3 - the router 6 –
the router 7 – the router 8

(2) the router 1 – the router 2 - the router 6 – the router 7 –
the router 8

(3) the router 1 – the router 5 – the router 6 – the router 7 –
the router 8

Packet order is not guaranteed when packets transmited via
different pathes.

So for this use case the objective is reached without any
additional mechanisms in routers, but alternative data pathes
should be determined for every router.

C. Estimation of characteristics for GigaSpaceWire

GigaSpaceWire router likevise SpaceWire router has
information only about state of connections with neighbour
routers. Correspondingly, all problems shown for this use case
when SpaceWire standard is used are actual for
GigaSpaceWire standard.

D. Estimation of characteristics for SpaceFibre

A SpaceFibre router also can determine the state of
connections with neighbour routers only. On data link layer of
SpaceFibre standard the data frames retransmission is

296

implemented. The quantity of retransmission or retransmission
time is unconstrained. Therefore for detection of permanent
failures we need to add retransmission timeout. If this timeout
expired, the port (and the data link) will be marked as unable to
work, and alternative ports will be used for data transmission.

CONCLUSION

In this paper group adaptive routing in SpaceWire,
GigaSpacWire andSpaceFibre networks were considered. We
evaluated objectives and requirements of additional
mechanisms for their realization in these standards for four
case studies:

- Using of group adaptive routing for high intensity data
flow transmission (between one source and one destination) is
not effective due to possibility of unsuccessful selection the
output port (decreasing of useful bandwidth), due to loss of big
amount of data in case of disconnection in one of links, and
due to possible packet reordering.

- Using of the group adaptive routing for transmission of
several data flows between different independent sources and
destinations via two routers (for example, which are suitated on
boards of network regions) when all ports of these routers
works on same speed. It showed to be efficient.

- Using of group adaptive routing for bypassing overloaded
network paths is not effective if pathes between sources and
destinations includes more than one router.

- Using of group adaptive routing for bypassing failed links
and routers is possible when lose of packets and packets
reordering is allowable. But alternative pathes should be
determined for every router.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the Ministry of Education and Science of the Russian
Federation according to the base part of the state funding
assignment in 2016, project № 1810.

REFERENCES

[1] ECSS-E-50-12С. SpaceWire - Links, nodes, routers and
networks. - European Cooperation for Space Standardization
(ECSS), 31 July 2008

[2] ECSS-E-50-12С Rev.1 DIR3. SpaceWire - Links, nodes, routers
and networks. 30 January 2016/

[3] SpaceWire Router. International SpaceWire Seminar (ISWS
2003). Steve Parkes, Chris McClements, Gerald Kempf, Stephan
Fischer, Agustin Leon. 4-5 November 2003, ESTEC Noordwijk,
The Netherlands.

[4] Steve Parkes. SpaceWire User’s Guide. ISBN: 978-0-9573408-
0-0. Published by STAR-Dundee Limited, 2012.

[5] Steve Parkes. SpaceWire for Adaptive Systems. Adaptive
Hardware and Systems, 2008. AHS '08. NASA/ESA. 22-25 June
2008.

[6] FDIR Techniques for Payload Streaming Applications using
SpaceWire-based Networks. Felix Siegle, Tanya Vladimirova,
Jørgen Ilstad, Omar Emam. SpaceWire 2014.

[7] F. Siegle, T. Vladimirova, O. Emar, and J. Ilstad, “Adaptive
FDIR Framework for Payload Data Processing Systems using
Reconfigurable FPGAs,” in NASA/ESA Conference on
Adaptive Hardware and Systems, 2013.

[8] B. Osterloh, H. Michalik, B. Fiethe, and K. Kotarowski,
“SoCWire: A Network-on-Chip Approach for Reconfigurable
System-on-Chip Designs in Space Applications,” in NASA/ESA
Conference on Adaptive Hardware and Systems, 2008, pp. 51 –
56.

[9] INTEGRATED ONBOARD NETWORKING FOR IMA2G.
Yuriy Sheynin, Elena Suvorova, Valentin Bukov, Vladimir
Shurman. ICAS 2014.

[10] S. M. Parkes and P. Armbruster, “SpaceWire: a spacecraft
onboard network for real-time communications.” Proceedings of
the 14th IEEE-NPSS conference on Real time, 2005.

[11] Evgeny Yablokov, Yuriy Sheynin, Elena Suvorova, Alexander
Stepanov, Tatiana Solokhina, Yaroslav Petrichcovitch,
Alexander Glushkov, Ilia Alekseev, “GigaSpaceWire – Gigabit
Links for SpaceWire Networks”, SpaceWire-2013. Proceedings
of the 5th International SpaceWire Conference, Gothenburg
2013. Editors Steve Parkes and Carole Carrie. ISBN 978-0-
9557196-4-6, Space Technology Centre, University of Dundee,
Dundee, 2013, pp. 28-34.

[12] S. Parkes, A. Ferrer, A. Gonzalez, C. McClements. SpaceFibre
Specification. Draft H4, February 2016.

[13] ISO/IEC JTC 1/SC 29 (2009-10-30). "Programme of Work —
Allocated to SC 29/WG 11, MPEG-1 (Coding of moving
pictures and associated audio for digital storage media at up to
about 1,5 Mbit/s)".

[14] H.264/MPEG-4 Part 10 Tutorials (Richardson).

297

SpaceWire-D Prototype and Demonstration System
Networks & Protocols, Long Paper

David Gibson, Steve Parkes

Space Technology Centre

University of Dundee

Dundee, UK

d.z.gibson@dundee.ac.uk

Chris McClements, Stuart Mills

STAR-Dundee Ltd

Dundee, UK

Abstract—SpaceWire-D is an extension to the SpaceWire

protocol that provides deterministic capabilities over existing

SpaceWire equipment. The network is divided into segments using

a virtual bus abstraction, where a virtual bus consists of a single

RMAP initiator, one or more RMAP targets and the SpaceWire

links that make up the paths between the initiator and the targets.

Time-codes are broadcast periodically to provide time-division

multiplexing, and a network schedule is defined by the allocation

of virtual buses to time-slots. If a virtual bus has been allocated a

time-slot, it is allowed to execute transactions to any of the targets

within the virtual bus as long as the transactions complete their

execution before the end of the time-slot. If the schedule is designed

so that no virtual buses sharing a link are allocated the same time-

slot, packets are no longer affected by blocking which allows the

transaction execution times to be calculated and real-time

constraints to be satisfied.

The SpaceWire-D demonstration system has been designed to

facilitate the verification of the draft standard. It consists of two

RMAP initiators, twelve RMAP targets, a network manager

device, a host PC and a routed SpaceWire network to connect the

devices together. The LEON2-FT based initiator boards each

contain an embedded SpaceWire-D software layer and an

automated test scripting system, built on top of the RTEMS real-

time operating system. The target boards respond to RMAP

commands and provide event notification functionality on the

backplane to allow for network activity monitoring. The network

manager receives statistics and error information at the end of

each schedule epoch, reported by the initiators, and informs the

host PC so that it can be read, parsed and displayed to the user.

Finally, the host PC runs a suite of software programs to

configure, control and monitor the other devices in the

demonstration system.

This paper provides an overview of the SpaceWire-D protocol

and describes the design and features of the SpaceWire-D

demonstration system.

Index Terms— SpaceWire, SpaceWire-D, Deterministic

Networks, Demonstration System

I. INTRODUCTION

SpaceWire is a data-handling network used on-board

spacecraft to provide communication between scientific

instruments, mass-memory storage devices, on-board

computers, downlink telemetry and other subsystems [1].

SpaceWire enabled devices are connected by full-duplex data

links, providing bi-directional data-flow at variable transmission

rates of between 2 Mbit/s and 200 Mbit/s. The simplest

SpaceWire network can consist of two nodes with a point-to-

point link between them. If more complex network topologies

are required, routing switches can be used to direct traffic

between nodes.

SpaceWire networks can suffer from blocking caused by

wormhole routing if a packet is delayed because of another

packet currently using one of the links in the packet’s path from

its source to its destination. The packet will be held within one

or more router’s buffers until the links are freed and the packet

can complete its journey through the network. Due to

SpaceWire’s arbitrary length packets, this may cause

unpredictable packet propagation times which means that a

regular SpaceWire network is not suitable for real-time

applications such as command and control traffic because these

delays could cause a critical deadline to be violated.

The aim of SpaceWire-D is to solve this problem by

providing deterministic features in order to ensure that blocking

does not cause deadlines to be missed, as well as allowing

deterministic and non-deterministic traffic to share the same

network. If these goals can be achieved, then cable mass will be

reduced as the spacecraft now only requires one network to

handle both payload data and control traffic which in turn will

reduce complexity and cost.

II. SPACEWIRE-D

SpaceWire-D is a deterministic extension to SpaceWire

designed by the Space Technology Centre at the University of

Dundee for ESA [2].

SpaceWire-D operates by controlling which parts of the

network are allowed to operate at specific times. Network time

is divided into isochronous time-slots which are controlled by

the distribution of consecutive SpaceWire time-codes. The

network is divided into segments called virtual buses where all

traffic, encapsulated within Remote Memory Access Protocol

(RMAP) [3] transactions, is controlled by a single initiator. Each

initiator has a schedule which describes which time-slots are

allocated to its virtual buses. If some rules are adhered to when

creating the schedules, the possibility of blocking can be

removed and the deterministic requirements of a command and

control network can be satisfied.

298

A. Time-Slots

A SpaceWire-D time-slot is a period of time that begins

when an initiator receives a time-code and ends when the

initiator receives the next time-code. SpaceWire time-codes

contain a 6-bit time-value so there are 64 time-slots. This is

illustrated in Figure 1.

Figure 1: Time-Slots

In Figure 1, there is a timeline going left to right on the

horizontal axis showing when time-codes are received by an

initiator. At the start of the illustration, time-slot 63 is currently

active. When time-code 0 is received by the initiator, this

terminates time-slot 63 and signals the beginning of time-slot

0. The same process is repeated for another two time-codes.

The generation of time-codes is synchronised by using a

single time-code master responsible for sending out time-codes

at fixed-length intervals, typically at a rate of 1-1024 Hz,

allowing for between 1 and 16 schedule epochs per second.

Each initiator listens for time-codes being received by, for

example, installing an interrupt service routine (ISR) that is

called whenever a time-code interrupt is raised, or polling a

time-code status flag if interrupts are discouraged. The initiator

can then inform its SpaceWire-D layer that a new time-slot

should be executed, which will in turn execute any scheduled

transactions for the virtual bus allocated to the time-slot.

B. Virtual Buses

Virtual buses are segments of the overall network that have

a specific structure. They consist of a single RMAP initiator,

one or more RMAP targets and the SpaceWire links that make

up the paths between the initiator and the targets. For example,

take the network architecture illustrated in Figure 2.

INI

INI

TAR TAR
TAR

TAR

TAR
TAR

RTR

RTR

RTR

Figure 2: Overall Network Architecture

In Figure 2, there is a network containing two initiators, six

targets, three routers and some links to connect the different

nodes and routers. Two possible virtual bus configurations are

shown in Figure 3.

INI

INI

TAR TAR
TAR

TAR

TAR
TAR

RTR

RTR

RTR

Figure 3: Example Virtual Buses

As shown in Figure 3, there are two virtual buses, each

consisting of one initiator, three targets and the links between

the nodes. In this example, the two virtual buses have no shared

links so they can be thought of as independent i.e. they can

operate at the same time without RMAP transactions on one

virtual bus interfering with transactions on the other.

Virtual buses have four different functions: an initiator

opens a bus, defining its configuration and allocating its time-

slots; loads it with transactions, transaction groups or packet

transfer requests; executes it during an allocated time-slot; and

closes it when it’s no longer required. There are four different

types of virtual bus, each with their own implementations of the

load and execute functions which provide features related to

different classes of traffic which exist on a data-handling or

command and control network.

1) Static Bus

The Static Bus is the simplest type of virtual bus. It is

allocated a single time-slot in which it executes a repeating or

single-shot transaction group.

2) Dynamic Bus

The Dynamic Bus can be allocated multiple time-slots and

loaded with transaction groups. When it is loaded with a

transaction group, the group is executed within the next

allocated time-slot that occurs.

3) Asynchronous Bus

The Asynchronous Bus can be allocated multiple time-slots

and loaded with prioritised transactions. These transactions are

held in a queue and in the time-slot preceding one of the

allocated time-slots, a subset of transactions is pulled from the

head of the queue until no more will fit in the time-slot or the

queue is empty. This transaction group is then executed in the

allocated time-slot.

4) Packet Bus

The Packet Bus can be allocated multiple time-slots and

loaded with requests to transfer a packet between the initiator

and a target. The packet transfer operation takes place in three

stages: firstly, the initiator checks the status of a packet channel

within the target to make sure the target is ready to receive or

send a packet; secondly, the packet is transferred in one or more

segments via RMAP read or write transactions depending on if

299

the initiator is receiving or sending a packet; lastly, the initiator

executes an EOP transaction with the target to inform it that the

packet has been transferred and that the packet channel may be

used to transfer another packet.

III. DEMONSTRATION SYSTEM

The SpaceWire-D demonstration system consists of two

LEON2-FT based PXI processor boards, acting as the initiators

and controlling the execution of all RMAP transactions; three

STAR-Dundee PXI RMAP interface boards [4], each containing

four individual RMAP targets with separate memory regions,

resulting in a total of 12 RMAP targets; one STAR-Dundee PXI

RMAP interface board acting as the network manager, used to

receive and store statistics and error information reported by the

initiators; two STAR-Dundee PXI 8-port SpaceWire routers,

providing the network connecting the devices; and one PXI

system controller, running Windows 7, acting as the host PC and

running a suite of software used to configure, control and

monitor the other devices on the network. A photograph of the

SpaceWire-D demonstration system is shown in Figure 4.

Figure 4: SpaceWire-D Demonstration System

In Figure 4, the PXI rack contains the following boards,

from left to right: initiator 0, initiator 1, router 0, router 1, the

network manager, target interface 0, target interface 1 and target

interface 2. To the left of initiator 0, partially in shot, is the host

PC.

There are 11 SpaceWire 0.5m cables providing the network

between the initiators, targets, routers and network manager.

The network architecture and logical addressing has been

designed so that both initiators can communicate with targets

on the same target interface board without sharing links. This

allows, for example, Initiator 0 to communicate with two

targets in Target Interface 0 and Initiator 1 to communicate with

the other two targets within the same time-slot, without

violating the rules of SpaceWire-D. A network architecture

diagram for the SpaceWire-D demonstration system is shown

in Figure 5.

Figure 5: Network Architecture

In Figure 5, the network architecture diagram shows that

initiator 0 is connected to router 0 and initiator 1 is connected

to router 1. If initiator 0 wants to send an RMAP command to a

target, the command is routed from router 0 to SpaceWire port

1 of the relevant target interface board and if initiator 1 wants

to do the same, the command is routed from router 1 to

SpaceWire port 2 of the target interface board. Commands sent

to the network manager from the initiators are routed in a

similar manner.

Each of the target interface boards contains four individual

RMAP targets with their own logical address and region of

memory. Targets 0-3, 4-7 and 8-11 are contained within

interface 0, interface 1 and interface 2, respectively. The

network manager uses two of its targets; the first is allocated to

receive initiator 0’s statistics and error reports and the second is

allocated to receive reports from initiator 1.

The SpaceWire-D demonstration system uses logical

addressing throughout the network to route packets between

nodes. The logical addresses and the available memory regions

of each device in the network are listed in Table 1.

Table 1: Logical Addresses and Memory Regions

Device LA Memory (Start) Memory (End)

Initiator 0 (I) 0x30 N/A N/A

Initiator 0 (T) 0x90 0x60000000 0x61000000

Initiator 1 (I) 0x31 N/A N/A

Initiator 1 (T) 0x91 0x60000000 0x61000000

Target 0 0x40 0x00000000 0x10000000

Target 1 0x41 0x00000000 0x10000000

Target 2 0x42 0x00000000 0x10000000

Target 3 0x43 0x00000000 0x10000000

Target 4 0x50 0x00000000 0x10000000

Target 5 0x51 0x00000000 0x10000000

Target 6 0x52 0x00000000 0x10000000

Target 7 0x53 0x00000000 0x10000000

Target 8 0x60 0x00000000 0x10000000

Target 9 0x61 0x00000000 0x10000000

300

Target 10 0x62 0x00000000 0x10000000

Target 11 0x63 0x00000000 0x10000000

As listed in Table 1, each node has a logical address and, if

the node is a target, a memory region. Each initiator device also

contains an RMAP target with a 16 Mbyte region of memory

starting at address 0x60000000 and each of the targets within

the target interface boards has a 256 Mbyte region of memory

starting at address 0x00000000. The target within the initiator

devices is used to contain the transaction read and write buffers

and to allow the host PC to write data to them before executing

a test.

Figure 5 shows that the target interface boards, the network

manager and the host PC are connected to the backplane PXI

bus. The backplane is used by the host PC to read and write to

target memory and receive RMAP command notifications from

the targets, as described in Section E.

The interactions between the different devices are

illustrated in Figure 6.

Figure 6: Device Interactions

As shown in Figure 6, each device interacts with one or

more other devices in the SpaceWire-D demonstration system.

The initiators send RMAP commands to the targets and the

targets send RMAP replies back. The initiators report statistics

and error information to the network manager, which is then

read by the host PC. The host PC configures the initiators using

RMAP commands and uploads automated test scripts to control

their operation. The targets are configured by the host PC using

a combination of RMAP commands and reading/writing to

memory on the backplane.

A. Initiators

The initiators are LEON2-FT based PXI processor boards

with extensive SpaceWire support. The boards have a

SpaceWire router with eight external ports and three internal

ports, each connected to independent SpaceWire protocol

engines containing three DMA controllers, an RMAP initiator

and an RMAP target.

In addition to the embedded SpaceWire-D software layer

running on the initiators, which is built on top of the RTEMS

real-time operating system [5], there is a demonstrator

application. The application is responsible for interpreting

scripted commands which are uploaded to the initiators by the

Host PC in order to automate test scenarios.

The automated test scripting system allows the user to

describe transactions, transaction groups, packet bus operations

and time-triggered commands as a text file which is parsed,

compiled and uploaded to the initiators by the host PC software.

For example, an automated test script could be created that

describes 10 transactions encapsulated within 2 transaction

groups and a packet bus operation to send a packet from an

initiator to a target. The script could then list commands to open

two static buses and a packet bus at the start of the test and load

them with the transaction groups and packet bus operation at

specific times during the execution of the schedule. The

automated test scripting system was used to implement all test

scenarios during the SpaceWire-D verification activity.

B. Targets

The targets are STAR-Dundee PXI RMAP interface boards

which contain a SpaceWire router with four external ports and

four internal ports, each connected to an individual RMAP

target. The boards have 1 Gbyte of DDR3 memory which can be

divided between the four targets as configured by the user. In the

case of the SpaceWire-D demonstration system, the targets are

configured so that they each have access to 256 Mbytes of

memory.

The target boards have the ability to notify a host application

whenever certain events occur such as the execution of an

RMAP command or a request for command authorisation. The

notifications are sent as data structures contained within

SpaceWire packets to STAR-System channel 1 on the backplane

and can be received using the STAR-System API [6].

Each RMAP comment notification contains the command

header parameters as well as the value of the current time-code

value in the target board’s router so that the time-slot in which

the command was executed can be identified. In the SpaceWire-

D demonstration system, this information is extracted from the

SpaceWire packets by the host PC’s software so that it can be

used to record and display the activity between the initiators and

targets as described in Section E.

C. Routers

The routers are STAR-Dundee PXI routers [4] containing

eight external ports and they provide the network for the

SpaceWire-D demonstration system, allowing each initiator to

be routed to each interface board without sharing any links.

D. Network Manager

The network manager is another STAR-Dundee PXI RMAP

interface board. It is controlled by the host PC software to act as

the time-code master for the SpaceWire-D network and it also

receives statistics and error information reported by the initiators

via RMAP write commands to two of the targets within the

board.

Each initiator is assigned a separate RMAP target and

memory address to write its statistics and error information into

at the end of each schedule epoch. Initiator 0 is assigned address

0x00000000 within target 0 and initiator 1 is assigned the same

address within target 1.

The host PC’s Network Manager software is used to listen

for RMAP event notifications coming from the board, which it

301

parses and uses to read the statistics and error information from

address 0x00000000 in the corresponding target. The

information is then read from the target by the software and

displayed in the Network Manager program running on the host

PC. The statistics include the number of completed transactions,

incomplete transactions, RMAP errors and early, late and

missing time-code errors. Further error information is provided

in the error list which describes the time-slot, the virtual bus

related to the error and the class and type of error.

Errors are detected at three stages: firstly, if an RMAP

command has incorrect header parameters or an error occurs on

the initiator where the command cannot be sent, it is reported as

an encoder error; secondly, if an RMAP reply is returned to the

initiator with an error or if an error occurs on the initiator where

the reply cannot be processed, it is reported as a decoder error;

lastly, if an RMAP transaction is outstanding at the end of its

allocated time-slot, it is cancelled and reported as an incomplete

transaction error. The initiators are responsible for detecting and

reporting the errors and the network manager is responsible for

receiving the error list and informing the host PC, but no further

action is taken. It is the responsibility of a higher-level protocol

or the application to handle the errors.

E. Host PC

The host PC is an ADLINK PXI-3950 system controller with

an Intel Core2 Duo T7500 2.2 GHz processor and 4 GBytes of

667 MHz DDR2 running Windows 7 32-bit. It is responsible for

initialising the other devices within the SpaceWire-D

demonstration system and running a suite of Qt4.8 based C++

applications used to configure and control the initiators, targets

and network manager; and display network activity reported to

the network manager via RMAP commands by the initiators,

and across the backplane by the targets.

1) Initiator Configuration

The Initiator Configuration program is used to configure and

control each of the LEON2-FT processor boards acting as the

initiators. It has the ability to read and write the network and

target parameters, used by the initiators to calculate RMAP

execution times; create different types of virtual buses and

assign them to the initiator’s schedule; parse, compile and write

automated test scripts to the initiators; and send commands to

the initiators to enable and disable the schedule and other

features like local-timer synchronisation.

2) Target Configuration

The Target Configuration program is used to configure and

control each of the RMAP targets in the three PXI interface

boards. It has the ability to read and write the RMAP command

authorisation parameters; set the packet channel buffer locations

and lengths; write data to, and read data from, the target

memory; and enable the target interface board as a babbling

node. A screenshot of the Target Configuration program is

shown in Figure 7.

Figure 7: Target Configuration Program

In Figure 7, the top section allows the user to select which

target they would like to configure. In the middle section, the

authorisation parameters can be set to define the valid key

range, valid target logical address range, accessible memory

region and permitted commands. In the bottom section is a tab

layout with three separate tabs. The first tab contains a menu to

select a packet channel and fields to set the location and length

of the receive and transmit buffers used by the packet bus to

transfer packets between an initiator and the selected packet

channel. The second and third tabs allow the user to write data

to, and read data from, the target’s memory. Finally, in the

second main tab, the user can enable target interface boards as

babbling nodes, which send out randomised RMAP commands

on the network.

3) Network Manager

The Network Manager program is used to configure the

time-code master and receive and display statistics and error

information reported to the network manager by the initiators. It

has the ability to set the time-code rate and enable or disable the

time-code master; display the statistics reported by the initiator

in a table, divided by type and time-slot; and display the error

information as a list. A screenshot of the error list is shown in

Figure 8.

Figure 8: Network Manager Error List

In Figure 8, the screenshot shows a list of errors reported by

the initiator during a test in which a STAR-Dundee Link

Analyser Mk2 is periodically injecting disconnect errors in the

link between router 0 and target interface 0. The columns are:

302

virtual bus ID, target index, virtual bus type, transaction ID,

error category and error type. In this example, two types of

errors are detected and reported: firstly, if the disconnect causes

the command packet to be truncated, it will not have a

corresponding reply so at the end of the allocated time-slot, the

transaction is cancelled and reported as an incomplete

transaction; and secondly, if the disconnect causes the reply

packet to be truncated in its data section, it is reported as a data

EEP decoder error.

When the Network Manager program is initialised, it starts

to listen for RMAP event notifications from the Network

Manager RMAP interface board by receiving SpaceWire

packets on the backplane through STAR-System channel 1.

When a notification is received, the software checks that the

parameters of the RMAP command match those expected by an

initiator statistics and error report. If so, the report is read from

the target memory and the statistics table for the relevant

initiator is updated and any errors detected during the last

schedule epoch are added to the initiator’s error list.

4) Target Monitor

The Target Monitor program is used to display the network

activity visually and statistically through a series of views. It has

the ability to display activity in real-time, by updating a grid that

shows if any of the targets were read from or written to during

each time-slot. It shows the number of completed transactions,

bytes read from and written to the target in total and per second,

and it also breaks this information up for each time-slot. Finally,

it shows a list of detailed information about all RMAP

transactions taking place across all targets. There are three views

in the Target Monitor program: the schedule view, the target

statistics view and the command list view.

A screenshot of the Target Monitor schedule view, which

shows network activity as a grid, is shown in Figure 9.

Figure 9: Target Monitor Schedule View

In Figure 9, the screenshot shows the Schedule View during

the execution of a test where each initiator is executing two

static buses and one dynamic, asynchronous and packet bus.

The virtual buses in initiator 0 are executing transactions with

targets 0x40-0x43 and 0x50-0x51, taking up the left side of the

diagram. Initiator 1’s virtual buses are executing transactions

with targets 0x52-0x53 and 0x60-0x63, shown on the right side

of the diagram. There are two static buses executed by each

initiator, shown as dark blue cells, and allocated to time-slots 0

and 2. The dynamic bus executed by each initiator, shown as

green cells, are allocated time-slots 8, 10 and 12. The

asynchronous bus executed by each initiator, shown as magenta

cells, is allocated time-slot 16. Finally, the packet bus executed

by each initiator, shown as cyan cells, is allocated time-slots 32,

34 and 36.

The target statistics view lists the number of errors,

commands and bytes read/written in total, per second and

divided by time-slot. Figure 10 shows an image of the Target

Statistics View section for target 0x40.

Figure 10: Target Monitor Target Statistics View

In Figure 10, the screenshot shows the Target Statistics

View for target 0x40 during the execution of a schedule

containing network activity in time-slots 0 and 8. The total and

per second statistics are shown in the top section and the per

time-slot statistics are shown in the scrollable table.

The final section of the Target Monitor program is the

Command List View, which displays a detailed description of

every RMAP command received on all targets. An image of the

Command List View is shown in Figure 11.

Figure 11: Target Monitor Command List View

In Figure 11, the screenshot shows the start of the Command

List View during the execution of a schedule containing at least

three static buses. The columns are: virtual bus ID, target

logical address, target index, initiator logical address,

transaction ID, RMAP key, command type, memory address,

data length and status. In this case, there are nine transactions

executed by static buses 0, 8 and 16. The first three, to targets

303

0x40, 0x50 and 0x60, and the last three, to targets 0x41, 0x51

and 0x61 are executed by initiator 0x30. The middle three, to

targets 0x40, 0x50 and 0x60, are executed by static bus 8 in

initiator 0x31.

IV. CONCLUSIONS

SpaceWire-D is an extension to the SpaceWire protocol that

provides deterministic capabilities over existing equipment. It

does this by using time-division multiplexing and a virtual bus

system to schedule traffic on the network so that no blocking can

occur, resulting in reliable RMAP transaction execution times.

The SpaceWire-D demonstration system was designed to

verify the SpaceWire-D standard and demonstrate its

capabilities. It consists of a PXI rack containing two initiators,

twelve targets, a network manager, a host PC and a routed

SpaceWire network to connect the devices together. An

embedded SpaceWire-D layer and automated test scripting

system was designed, built on top of the RTEMS real-time

operating system; and a software suite, running on the host PC,

was designed to configure, control and monitor the other devices

on the network.

ACKNOWLEDGEMENTS

The research leading to these results has received funding

from the European Space Agency under ESA contact number

4000107346/12/NL/LvH/fe. We would also like to thank David

Jameux, the ESA project manager for the SpaceWire-D related

activity.

REFERENCES

[1] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire – Links, nodes,

routers and networks”, Issue 2, European Cooperation for Space

Standardization, 31 July 2008, available from http://www.ecss.nl

[2] S. Parkes, D. Gibson, A. Ferrer Florit, “SpaceWire-D Standard

Draft E”, Issue 0.4, Space Technology Centre, University of

Dundee, April 2015

[3] ECSS Standard ECSS-E-ST-50-52C, “SpaceWire – Remote

memory access protocol”, Issue 1, European Cooperation for

Space Standardization, 5 February 2010, available from

http://www.ecss.nl

[4] STAR-Dundee, “SpaceWire PXI”, https://www.star-

dundee.com/products/spacewire-pxi

[5] The RTEMS Project, “RTEMS Real Time Operating System

(RTOS)”, https://www.rtems.org/

[6] S. Mills, S. Parkes, “A Software Suite for Testing SpaceWire

Devices and Networks”, DASIA International Space System

Engineering Conference, Barcelona, Spain, August 2016

304

http://www.ecss.nl/
http://www.ecss.nl/
https://www.star-dundee.com/products/spacewire-pxi
https://www.star-dundee.com/products/spacewire-pxi
https://www.rtems.org/

QoS mechanisms in SpaceFibre and RapidIO
SpaceWire networks and protocols, Long Paper

Nadezhda Matveeva, Elena Suvorova, Yuriy Sheynin

Saint-Petersburg State University of Aerospace Instrumentation

SUAI

Saint-Petersburg, Russia

nadezhda.matveeva@guap.ru, {suvorova, sheynin}@aanet.ru

Abstract—The paper presents analysis and comparison of Quality

of Service (QoS) mechanisms in SpaceFibre draft H4 and in RapidIO

rev 4.0. SpaceFibre and RapidIO standards are currently used in

aerospace instrumentation field. SpaceFibre standard is developed by

ESA, JAXA, NASA, ROSCOSMOS agencies for aerospace industry in

accordance to different requirements and limitations such as a high

speed data transmission, a low data transmission time, a guaranteed

packet delivery, a guaranteed throughput, a possibility to establish

real-time systems in conjunction with compact VLSI design and low

energy consumption. RapidIO standard is developed for a high

performance computing systems with a globally shared distributed

memory (GSM) model. At the present time NASA applies this standard

as a main standard for aerospace field.

These standards provide data transmission with different QoS. In

these standards there is a feature of guaranteed packet delivery, they

support several priority levels. Also they provide a mechanism of

virtual channels allowing to distribute throughput between different

data streams. In this paper authors have presented the information

about comparison QoS mechanisms of SpaceFibre draft H4 and

RapidIO rev 4.0. Moreover similarities and differences of supported

technologies are demonstrated. Also author have evaluated the

reachable characteristics of data transmission and overheads for each

standard. Advantages and effective range of application of SpaceFibre

QoS are shown.

Index Terms—SpaceWire, SpaceFibre, RapidIO, Quality of

Service.

I. INTRODUCTION

In this paper we compare QoS mechanisms of SpaceFibre

[1] and RapidIO [2] standards. We provide information about

overheads for payload transmission using these standards. We

analyse payload with different size. Also main features of QoS

mechanisms are presented in this paper. Authors consider their

advantages and disadvantages.

The rest of this paper is organized as follows: the second

section presents the main features of SpaceFibre and RapidIO

standards. In the third section, we show how overheads are

changed according to different operation modes of the

considered standards. The fourth section delivers some

conclusion remarks.

II. FEATURES OF SPACEFIBRE AND RAPIDIO STANDARDS

In this paper, we consider of SpaceFibre and RapidIO

standards. They are used in modern onboard data transmission

systems.

At first, we correlate SpaceFibre and RapidIO standards to

the Open Systems Interconnection model (OSI model). OSI

model is a conceptual model that describes and standardizes the

communication functions of a telecommunication or computing

system without regard to their underlying internal structure and

technology. OSI model introduces 7 layers: application,

presentation, session, transport, network, data and physical. List

of special functions is defined for each layer. Five layers are

presented in SpaceFibre standard specification. These are

Network, Data Link, Multi-Lane, Lane and Physical layers.

Three global layers are presented in RapidIO standard

specification. These are Logical, Transport and Physical layers.

Each global layer consists of several specifications. For

example, Input/Output Logical Specification, Message Passing

Logical Specification, Globally Shared Memory Logical

Specification are part of Logical layer. Correspondence between

OSI model layers, SpaceFibre and RapidIO layers is presented

on Fig.1.

Five SpaceFibre layers correspond to the three lowest OSI

layers. Transport layer is not specified in SpaceFibre standard.

However, it is possible to use transport layer packets of different

transport protocol. For example, Remote memory access

protocol (RMAP) [3] can be used. Three RapidIO global layers

correspond to the four lowest OSI layers. Transport layer is

specified in RapidIO standard. In this paper, we consider QoS

mechanisms which are used in physical, data and network

layers.

SpaceFibre QoS mechanisms are supported on Data Link

layer. RapidIO QoS mechanisms are supported on Physical

layer.

305

Application
layer

Presentation
layer

Session layer

Transport layer

Network layer

Data Link layer

Physical layer

Network layer

Data Link layer

Multi-Lane layer

Lane layer

OSI model

SpaceFibre

Logical layer

Transport layer

Physical layer

RapidIO

Physical layer

Fig. 1. Correspondence between OSI model layers, SpaceFibre and RapidIO
layers

A. SpaceFibre QoS mechanisms

SpaceFibre provides a coherent quality of service

mechanism which is able to support bandwidth reservation,

scheduling, priority based qualities of service and guaranteed

data delivery.

All data packets are transmitted through network using

virtual channels. Maximum 32 virtual channels are supported. In

particular network device implementation quantity of virtual

channels can be less than 32. It is recommended to use virtual

channel 0 for configuration data transmission. It must be

implemented in each network device. Other virtual channels

shall have a unique number in the range from 1 to 31. Each

virtual channel has a priority level, reserved bandwidth and a list

of time-slots during which this virtual channel can be scheduled

to send data.

SpaceFibre packets can be of any size from 1 byte to infinity.

The packets are split into segments before they are transferred

over a data link. Each segment is sent in a data frame. Data frame

consists of Start of Data Frame, data payload and End of Data

Frame. Start of Data Frame and End of Data Frame have size of

4 bytes. Maximum size of data payload is 256 bytes. Data

payload of frame can consist of one or several packets. Also data

payload can possibly include end of one packet and start of

another. Using frame mechanism with fixed maximum data

payload size helps to process packets with unlimited length and

at the same time provide different QoS.

Credit mechanism is used for managing the flow of

information over a SpaceFibre link using one or more virtual

channels with independent flow control. One flow control token

(FCT) corresponds to 256 bytes. Each input virtual channel

buffer contains the counter of FCT according to free buffer

space. Each output virtual channel buffer shall keep track of the

number of data words written into it and the number read out

using an FCT credit counter, which indicates how much more

data it is allowed to send. At the beginning, input virtual channel

buffer sends FCTs which match its buffer space. When output

virtual channel buffer receives FCT, it increments its FCT credit

counter. Output virtual channel buffer can send data within

current FCT credit counter. When a data segment is sent by a

particular virtual channel to the medium access controller, the

number of data words sent shall be subtracted from the FCT

credit counter. An input virtual channel buffer shall request an

FCT to be sent when the network layer reads data words from

the input virtual channel buffer. Usage of this mechanism helps

to avoid data words loss and retransmission of data words

between output and input virtual channel buffers due to the lack

of free space in input virtual channel buffer.

Priority mechanism is associated with virtual channels, not

with packets. A SpaceFibre port shall support N priority levels

numbered 0 to N-1, where 0 is the highest priority level. There

shall be a minimum of four priority levels: 0 to 3, where priority

level 0 has the highest precedence and 3 has the lowest

precedence. Each virtual channel shall be able to be assigned any

of the priority levels. Also it shall be possible to set more than

one virtual channel to the same priority level.

Bandwidth reservation mechanism determines the

precedence of a virtual channel based on the link bandwidth

reserved for that virtual channel and its recent link utilization.

Each virtual channel has the link bandwidth reserved for it.

Virtual channel can utilize a link according to this value. The

standard contains a formula which allows to determine which

one of several ready virtual channels is permitted to send.

Priority level and the link bandwidth reserved for the virtual

channel are taken into account.

Also SpaceFibre supports scheduled quality of service.

Scheduled quality of service provides a means of ensuring fully

deterministic allocation of SpaceFibre network resources.

Schedule mechanism is based on Time Division Multiple

Access (TDMA) principles. Time is separated into a series of

time-slots during which a virtual channel can be scheduled to

send data. Duration of each time-slot is the same. When a time-

slot arrives in which a virtual channel is scheduled, it can send

data based on its precedence. During all the other time-slots,

when the virtual channel is not scheduled to send data, it is not

permitted to send any data even when no other virtual channel

has data to send. It shall be possible for several virtual channels

to be scheduled to send data in the same time-slot.

A virtual channel shall compete with other virtual channels

for sending segments over the link, based on the current

precedence of the virtual channel and its schedule. At first,

among all virtual channels ready to send a data segment the

medium access controller chooses virtual channels that have

permission to send data at current time-slot. Then the precedence

of a virtual channel shall be determined by its quality of service

parameters such as priority level and the link bandwidth

reserved for the virtual channel.

SpaceFibre supports error detection and retransmission to

protect packets against loss or corruption due to transmission

306

errors. This mechanism provides guaranteed data transmission.

All SpaceFibre data types are subject to retransmission. It is not

possible to disable the retry mode. If an error in a frame is

detected, then all frames in all virtual channels of port are

retransmitted.

B. RapidIO QoS mechanisms

RapidIO provides the following quality of service

mechanisms: priority, bandwidth reservation and guaranteed

data delivery.

Data payload is transmitted in packets. RapidIO supports

virtual channel technology. The protocol supports up to nine

virtual channels (VC0-VC8). Virtual Channel 0 (VC0) is always

active. It provides backward compatibility with previous

versions of RapidIO specifications. VC0 shall be supported by

all LP-Serial ports. VCs 1-8 are optional, and if implemented,

may be disabled for backward compatibility. The number of

optional virtual channels for VCs 1-8 may be 0, 1 (VC1), 2

(VC1, VC5), 4 (VC1, VC3, VC5, VC7) and 8 (VC1-VC8).

The LP-Serial protocol defines two methods or modes of

flow control. These are named receiver-controlled flow control

and transmitter-controlled flow control. Every RapidIO LP-

Serial port shall support receiver-controlled flow control. LP-

Serial ports may optionally support transmitter-controlled flow

control.

In the receiver-controlled flow control the receiving port

provides no information to its link partner about the amount of

buffer space it has available for packet reception. If there is

enough buffer space available, the port accepts the packet and

transmits a packet-accepted control symbol to its link partner

that contains the ackID of the accepted packet in its

packet_ackID field. The port optionally acknowledges multiple

packets with a single packet-accepted control symbol.

Transmission of a packet-accepted control symbol informs the

port’s link partner that the packet (or packets) has been received

without detected errors and that it has been accepted by the port.

On receiving the packet-accepted control symbol, the link

partner discards its copy of the accepted packet (or packets)

freeing buffer space in the partner, [2]. In this case transmitter

will repeat packet transmission when buffers space is not

enough. This situation is not possible in SpaceFibre.

In transmitter-controlled flow control, the receiving port

provides information to its link partner about the amount of

buffer space it has available for packet reception. The value of

the amount of buffer space is the number of maximum length

packet buffers currently available for packet reception up to the

limit that can be reported in the field, [2]. If transmitter get status

information from receiver during packet transmission, then

transmitter get not accurate information about free receiver

buffer space. Packets transmitted in excess of the

free_buffer_count are transmitted on a speculative basis and are

subject to retry by the transmitter. That results in a number of

retries and discarded packets can reduce the effective bandwidth

of the link. Also such flow control approach can lead to

ineffective buffer space utilization for series of short packets. In

comparison with RapidIO, SpaceFibre’s credit counter is

measured in bytes. It helps to control available receiver buffer

space precisely and avoid data retransmission due to the lack of

buffer space in a link receiver.

RapidIO supports packet transmission based on priority.

Only packets within VC0 have ordering rules based on priority,

all other virtual channels do not support them. Maximum

number of priorities is 8. Packet priority is formed on LP-Serial

Physical Layer Specification. It is based on the flow identifier

set on Logical Layer. There are tables for mapping flow

identifier (flowID) of the transaction into the priority field (and

optionally the CRF bit) of the packet. Also it is interesting to

notice, that transaction requests that require responses, and their

corresponding responses, must use VC0 with the appropriate

priority.

Bandwidth reservation mechanism is partially provided in

RapidIO. In comparison with SpaceFibre, rules for control

bandwidth reservation in RapidIO are not specified by the

specification. These rules are vendor dependent. According to

Part 6: LP-Serial Physical Layer Specification 3.1 section 6.11

“Transaction and Packet Delivery Ordering Rules” the whole

link bandwidth is uniformly divided into ‘N’ portions and each

portion is 1/N of the whole link bandwidth. Each VC is

configured to have a guaranteed bandwidth. The method of

bandwidth division among VCs is also vendor dependent. But

VC0 may be treated with strict priority, getting whatever

bandwidth is required when it has traffic to transport. In this

condition, the remaining VCs will divide up whatever portion of

bandwidth remains, [2].

As well as SpaceFibre, RapidIO supports error detection and

retransmission to protect packets against loss or corruption due

to transmission errors. In comparison with SpaceFibre, RapidIO

provides unreliable delivery of packets. This means that packets

are not retransmitted and virtual channel operates in continuous

traffic (CT) mode. VC0 should always operate in reliable traffic

(RT) mode. Any of VC1 through VC8 that are implemented

shall support operation in RT mode and may optionally support

and be configured for operation in CT mode, [2]. RT virtual

channels operate as a “RT Group”. It means that when the error

recovery protocol is used to recover a damaged packet, the

unacknowledged packets for all virtual channels in RT mode are

retransmitted.

III. QOS ESTIMATION FOR SPACEFIBRE AND RAPIDIO

STANDARDS

A. Overhead estimation for data transmission

In this section, we present overhead estimation for data

transmission using SpaсeFibre and RapidIO standards. At first

we determine data transmission parameters for these standards.

RapidIO links operate at Baud Rate Class 1. Baud Rate Class 1

is used for lanes running at 1.25 Gbaud, 2.5 Gbaud, 3.125 Gbaud

or 5 Gbaud (1, 2, 2.5, 4 Gbps). 8b/10b encoding scheme is used

for Baud Rate Class 1. Also 8b/10b encoding scheme is used in

SpaceFibre. The overheads occurring due to this encoding

scheme are not considered in this paper. Control Symbol 24 is

used in RapidIO for Baud Rate Class 1. This means that each

control symbol has size of 24 bit. Packet Delimiter Control

Symbol (/PD/) or Start of Control Symbol (/SC/) are used to

delimit a control symbol. They both have the size of 1 byte.

307

Control symbol with additional delimiter has the size of 4 bytes.

Control symbol of SpaceFibre has the size of 4 bytes as well.

We use the following format of packet to compare data

transmission overheads in SpaceFibre and RapidIO standards.

Type 6 (SWRITE transaction) is RapidIO packet (Fig. 2). Write

command (Fig. 3) formed by RMAP transport protocol is used

in SpaceFibre.

We use data payloads of different size in our research. Size

of data payload constitute 16, 32, 64, 256 bytes, 2KB, 20 KB,

1 MB and 2 MB. We analyze two cases. In the first case, we

estimate minimum overhead when all packet’s fields have

minimum size and the packet does not contain optional fields. In

the second case, we estimate maximum overhead when all

packet’s fields have maximum size and the packet includes all

possible optional fields. We analyze data transmission in single

lane mode.

Fig. 2. Format of RapidIO packet

Fig. 3. Format of RMAP write command

On the Fig. 4 and Fig. 5 the relation between overheads and

payload is shown for short (16-64 bytes) data payloads when

overheads have minimum and maximum possible values

correspondingly. From these figures, it can be concluded that for

minimum and maximum overheads the relation between

overheads and payload for RapidIO is less than for SpaceFibre

when operating in the mode of remote memory write. For short

packets (16-64 bytes of data payload) and lowest possible

overheads for RapidIO the overheads constitute from 162% to

40% of the payload, while for SpaceFibre - from 225% to 56%

respectively. For short packets (16 to 64 bytes of data payload)

and maximum possible overheads for RapidIO they constitute

from 225% to 56% of the payload, while for SpaceFibre – from

375% to 93%. In case of bigger payload, the relation decreases

as expected.

Fig. 4. The relation between overheads and payload when the overheads have
minimum possible values

Fig. 5. The relation between overheads and payload when the overheads have

maximum possible values

On the Fig. 6 the overheads for medium (256 bytes, 2KB and

20KB) size data payloads are shown for the cases when the

overheads have minimum and maximum possible values

correspondingly. In accordance to SpaceFibre standard,

considered data payload is transmitted in one RMAP packet.

This packet is divided into frames on Data link for further data

transmission process. Size of each frame payload is 256 bytes.

Also start of frame and end of frame are added. Size of start of

frame and end of frame is 4 bytes accordingly. In accordance to

RapidIO standard, considered data payload is divided into

several packets with maximum size of payload (256 bytes). Each

packet has its own header. From Fig. 6 it can be concluded that

for minimum and maximum overheads the overheads for

SpaceFibre is less than for RapidIO in case when data payload

is 20 KB. On the Fig. 7 and Fig. 8 the relation between overheads

and payload is shown for medium (256 bytes, 2KB and 20KB)

size data payloads when the overheads have minimum and

maximum possible values correspondingly.

0

50

100

150

200

250

16 32 64

R
el

at
io

n
 b

et
w

ee
n

 o
ve

rh
ea

d
s

an
d

p

ay
lo

ad
, %

Payload, byte

The relation between overheads and
payload when the overheads have minimum

possible values

RapidIO_min

SpaceFibre_min

0

50

100

150

200

250

300

350

400

16 32 64

R
el

at
io

n
 b

et
w

ee
n

 o
ve

rh
ea

d
s

an
d

p

ay
lo

ad
, %

Payload, byte

The relation between overheads and payload
when the overheads have maximum possible

values

RapidIO_max

SpaceFibre_max

308

Fig. 6. Overheads for medium size data payload

Fig. 7. The relation between overheads and payload when the overheads have

minimum possible values

Fig. 8. The relation between overheads and payload when the overheads have

maximum possible values

On the Fig. 9 the overheads for large (1MB, 2MB) size data

payloads are shown for the cases when the overheads have

minimum and maximum possible values correspondingly. In

accordance to SpaceFibre standard, considered data payload is

transmitted in one RMAP packet. This packet is divided into

frames on Data link for further data transmission process with

additional overheads as in the previous case. In accordance to

RapidIO standard, considered data payload is divided into

several packets as in the previous case. From Fig. 9 it can be

concluded that for minimum and maximum overheads the

overheads for SpaceFibre is less than for RapidIO in case when

data payload is large. On the Fig. 10 and Fig. 11 the relation

between overheads and payload is shown for large (1 MB, 2MB)

size data payloads when the overheads have minimum and

maximum possible values correspondingly.

Fig. 9. Overheads for large data payload

Fig. 10. The relation between overheads and payload when the overheads

have minimum possible values

Fig. 11. The relation between overheads and payload when the overheads

have maximum possible values

From the previous figures it can be concluded that for large

size data payloads SpaсeFibre standard is more efficient than

RapidIO from the overheads point of view. However, for short

size data payloads RapidIO is more efficient.

Besides RMAP packets, SpaceFibre supports data

transmission in SpaceWire packets. Format of SpaceWire

packet is presented on Fig.12. Each packet contains destination

address, cargo/payload and end of packet. The destination

address shall consist of a list of zero or more destination

identifiers, [3]. The case of zero destination identifiers in the

destination list (i.e. the destination list is empty) is intended to

support a network which is simply a single point-to-point link

0

500

1000

1500

2000

2500

3000

256 2048 20480

O
ve

rh
ea

d
s,

 b
yt

e

Payload, byte

Overheads

RapidIO_min

SpaceFibre_min

RapidIO_max

SpaceFibre_max

0

5

10

15

20

256 2048 20480

R
el

at
io

n
 b

et
w

ee
n

 o
ve

rh
ea

d
s

an
d

 p
ay

lo
ad

, %

Payload, byte

The relation between overheads and payload
when the overheads have minimum possible

values

RapidIO_min

SpaceFibre_min

0

10

20

30

256 2048 20480

R
el

at
io

n
 b

et
w

ee
n

 o
ve

rh
ea

d
s

an
d

 p
ay

lo
ad

, %

Payload, byte

The relation between overheads and
payload when the overheads have maximum

possible values

RapidIO_max

SpaceFibre_max

0

50000

100000

150000

200000

250000

300000

1048576 2097152

O
ve

rh
ea

d
s,

 b
yt

e

Payload, byte

Overheads

RapidIO_min

SpaceFibre_min

RapidIO_max

SpaceFibre_max

0

2

4

6

8

10

1048576 2097152
R

el
at

io
n

 b
et

w
ee

n
 o

ve
rh

ea
d

s
an

d

p
ay

lo
ad

, %

Payload, byte

The relation between overheads and payload
when the overheads have minimum possible

values

RapidIO_min

SpaceFibre_min

0

2

4

6

8

10

12

14

1048576 2097152

R
el

at
io

n
 b

et
w

ee
n

 o
ve

rh
ea

d
s

an
d

p

ay
lo

ad
, %

Payload, byte

The relation between overheads and
payload when the overheads have maximum

possible values

RapidIO_max

SpaceFibre_max

309

from source to destination. We do not consider this case. A

destination identifier shall comprise one byte. The cargo shall

contain one or more bytes. Maximum size of cargo is not

specified by SpaceWire standard. Size of end of packet is 1 byte.

Number of destination identifiers in list depends on routing

rules. When network supports routing table it may be enough to

have only one destination identifier. When path routing is used

in the network, then number of destination identifiers depends

on the length of data transmission path.

Destination address

Cargo

End of packet

Fig. 12. Format of SpaceWire packet

When comparing RapidIO’s and SpaceFibre’s with

SpaceWire packets we use SpaceWire packet which consists of

destination address (1 byte), cargo/payload (from 16 bytes to

20 KB) and end of packet (1byte). Also we take into account

control symbols such as ACK, FCT which are used for data

transmission process in SpaceFibre standard.

Below we present figures where we show overheads for data

payloads when SpaceFibre and RapidIO standards are used.

From Fig. 13 it can be concluded that overheads for SpaceFibre

are 1.4 times less than for RapidIO in case when data payload

has size of 16,32,64 bytes. On the Fig. 14 the relation between

overheads and payload is shown for short (16-64 bytes) size data

payloads when overheads have minimum possible values for

RapidIO and SpaceWire packet is transmitted by SpaceFibre.

From this figure, it can be concluded that the relation between

overheads and payload for RapidIO and SpaceFibre is the same

for payload of 64 bytes.

Fig. 13. Overheads for short data payload

Fig. 14. The relation between overheads and payload when the overheads

have minimum possible values for short data payload

From Fig. 15 it can be concluded that overheads for

SpaceFibre and RapidIO are the same for data payload of 256

and 2048 byte sizes. But overheads for RapidIO are 1.25 times

bigger than overheads for SpaceFibre in case when data payload

has size of 20 KB.

On the Fig. 16 the relation between overheads and payload

is shown for medium (256 bytes-20 KB) size data payloads

when overheads have minimum possible values for RapidIO and

SpaceWire packet which is transmitted by SpaceFibre. From this

figure, it can be concluded that the relation between overheads

and payload for SpaceFibre is less than for RapidIO for payload

which has size of 20 KB and more.

Fig. 15. Overheads for medium data payload

0

10

20

30

16 32 64

O
ve

rh
ea

d
s,

 b
yt

e

Payload, byte

Overheads

RapidIO_min

SpaceFibre_with
outRMAP

0

50

100

150

200

16 32 64

R
el

at
io

n
 b

et
w

ee
n

 o
ve

rh
ea

d
s

an
d

p

ay
lo

ad
, %

Payload, byte

The relation between overheads and payload
when the overheads have minimum possible

values

RapidIO_min

SpaceFibre_with
outRMAP

0

200

400

600

800

1000

1200

1400

1600

1800

256 2048 20480

O
ve

rh
ea

d
s,

 b
yt

e

Payload, byte

Overheads

RapidIO_min

SpaceFibre_with
outRMAP

310

Fig. 16. The relation between overheads and payload when the overheads
have minimum possible values for medium data payload

B. Evaluation of the possibility of several data flows

transmission in one virtual channel

One terminal node can send several data flows in one virtual

channel according to RapidIO standard due to the limited

number of virtual channels. For example, different applications

use one virtual channel (VC0) when it is required to get response

transactions on logical layer of RapidIO. Number of virtual

channels in SpaceFibre is more than in RapidIO. However,

number of virtual channels in SpaceFibre systems is limited due

to hardware costs. Therefore, the situation is possible when

several data flows transmit using the same virtual channel with

the similar QoS characteristics.

In accordance to SpaceFibre and RapidIO standards, the case

is possible when different data flows being transmitted in the

same virtual channel of different output ports, can be merged

into one input port. Example of this situation is presented on the

Fig.17. Maximum size of RapidIO packet is 256 bytes. It helps

to predict the delay of packet transmission in RapidIO network.

Maximum size of SpaceFibre packet is not limited.

Therefore, when we send a long packet, the delay of packet

transmission can hardly be predicted for the situation when

several data flows are merged into one virtual channel. For

example, “orange” data flow and “blue” data flow use virtual

channel 3 for data transmission. These data flows are merged in

port 3. Packet 2 waits until the whole packet 1 is transmitted.

However, developer of SpaceFibre network can take into

account this information and can use packets of optimal size in

accordance to system requirements.

Port 3Input Buffer VC 3

Packet 1

Packet 2Input Buffer VC 3

Output Buffer VC 3

wait

Port 1

Port 2

packet 2 waits until whole packet 1
will be transmitted

Fig. 17. Graphical representation of single packet waiting for transmission

on the background of the another packet transmission in the same
virtual channel

IV. CONCLUSION

TABLE I. COMPARISON SPACEFIBRE AND RAPIDIO

Parameter SpaceFibre RapidIO

Maximum packet size not limited payload 256 bytes

Data flow mechanism Credit mechanism.

One flow control token

(FCT) corresponds to
256 bytes. Input virtual

channel buffer

overflow is impossible.

Supports receiver-

controlled flow control

and transmitter-
controlled flow

control. For the

receiver-controlled
flow control the

receiving port does not
provide information to

its link partner about

the amount of buffer
space it has available

for packet reception.

For transmitter-
controlled flow control

one credit corresponds

one packet with
maximum size.

Input virtual channel
buffer overflow is

possible in both modes.

Support priority

quality of service

yes yes

Minimum number of

priorities

4 1

Maximum number of

priorities

not specified 16

Priorities are

associated with

virtual channel packets which are

transmitted in VC0

Support of virtual

channel mechanism

yes yes

Minimum number of

virtual channels

1 1

Maximum number of

virtual channels

32 9

Suport bandwidth

reservation

yes yes

Standard determines

rules for control
bandwidth reservation

yes no

Support guaranteed
data transmission

yes yes

Is it possible to
transmit data without

guaranteed data

transmission

no yes, it is optional for
VC1-VC9. VC0

supports only

guaranteed data
transmission

Support scheduled
quality of service

yes no

Support CRC yes (16 bit) yes (16 bit)

SpaceFibre supports bigger variety of QoS types than

RapidIO. SpaceFibre is more flexible in regard to the number of

virtual channels supported in each device, their numeration,

opportunities of fine tuning of QoS. For a system developer this

provides additional possibilities for network’s development and

configuration and therefore allows to create a network which fits

precisely to the data flows being transmitted. At the same time

the overheads in case of short packets transmission in

SpaceFibre can appear a little bit bigger than in RapidIO with

standard SpaceWire transport protocols (RMAP for example).

On the other hand, it is important to note that a high speed

0

5

10

15

256 2048 20480

R
el

at
io

n
 b

et
w

ee
n

 o
ve

rh
ea

d
s

an
d

p

ay
lo

ad
, %

Payload, byte

The relation between overheads and
payload when the overheads have minimum

possible values

RapidIO_min

SpaceFibre_with
outRMAP

311

network usually has the biggest load when transmitting data

flows consisting of long packets. In this case the useful

throughput of SpaceFibre appears to be bigger.

The list of drawbacks of SpaceFibre compared to RapidIO

includes mandatory retransmission in data link which cannot be

disabled as well as the necessity of additional mechanism

controlling packets length when several data flows are

transmitted using one virtual channels (RapidIO has such

mechanisms on Logical level). These aspects should be taken

into account when improving SpaceFibre standard.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the Ministry of Education and Science of the Russian

Federation according to the base part of the state funding

assignment in 2016, project № 1810.

REFERENCES

[1] SpaceFibre Specification Draft H4, April 2016

[2] RapidIO™ Interconnect Specification Revision 4.0, June 2016.

[3] ECSS‐E‐ST‐50‐52C SpaceWire - Remote memory access

protocol, February 2010

312

 SpaceFibre 2 (Long)

313

SpaceFibre Multi-lane
SpaceFibre, Long Paper

Albert Ferrer Florit, Alberto Gonzalez Villafranca

STAR-Dundee Ltd

STAR House, 166 Nethergate

 Dundee, DD1 4EE, UK

albert.ferrer@star-dundee.com

Steve Parkes

Space Technology Centre, University of Dundee,

Dundee, DD1 4EE, UK

sparkes@computing.dundee.ac.uk

Abstract— SpaceFibre is a multi-Gbits/s, on-board network

technology for spaceflight applications, which runs over electrical

or fiber-optic cables. SpaceFibre supports multi-lane, thus

allowing data to be sent over several individual physical lanes to

enhance throughput and robustness. This is required by new

generation payloads, such as SAR and multi-spectral imaging

instruments. This paper describes the development of the

multi-lane capabilities of SpaceFibre and its successful hardware

implementation on space-qualified devices. The protocol has been

designed to work with an arbitrary number of bidirectional or

unidirectional lanes. In the event of a lane failing, SpaceFibre

multi-lane mechanism supports hot redundancy and graceful

degradation by automatically spreading traffic over the

remaining working lanes. User data transfer is resumed in just a

few microseconds without any data loss. These advanced

capabilities are not provided in other high-speed link protocols

available for space applications.

Index Terms — SpaceFibre, multi-lane, hot redundancy,

SpaceWire, Networking, Spacecraft Electronics.

I. INTRODUCTION

SpaceFibre is a new technology for use onboard spacecraft

that provides point-to-point and networked interconnections at

Gigabit rates with Quality of Service. SpaceFibre interoperates

seamlessly with a SpaceWire network over virtual channels, as

it uses the same packet definition. It provides broadcast

capabilities and it is able to operate over a copper or fiber-optic

communication medium.

New generation payloads, such as SAR and multi-spectral

imaging instruments, require the use of multiple parallel high-

speed links to fulfil the increasing bandwidth requirements [1].

To accommodate these needs, SpaceFibre supports multi-lane

operation, thus allowing data to be sent over several individual

physical lanes to enhance throughput and robustness.

This paper describes the development of the multi-lane

capabilities specified in the SpaceFibre Standard [2] and its

hardware implementation on radiation hardened

space-qualified FPGAs.

Multi-lane is an optional capability of a SpaceFibre link

defined in the Multi-Lane layer of the SpaceFibre protocol

stack. As shown in Fig. 1, the Multi-Lane layer is defined

between the Data Link layer and the Lane layer implemented

for each available lane.

SERDES 1SERDES 0 SERDES 2

Lane 0 Lane 1 Lane 2

Multi-Lane Layer

Data Link Layer

Figure 1. SpaceFibre Multi-Lane layer

The Data Link layer provides quality of service and flow

control for a SpaceFibre link. It frames the information to be

sent over the link to support QoS and multiple virtual channels.

It also provides error recovery capabilities, detecting any

frames or control words that go missing or arrive containing

errors and resending them.

The Lane Layer establishes a connection across a

SpaceFibre lane using a lane initialization state machine. This

ensures that bit, symbol and word synchronizations are

achieved and that the two ends of the lane are both ready to

send and receive data with a nominal Bit Error Rate. The Lane

Layer also encodes data and control words into 8B/10B

symbols, sends and receives symbols over the lane and decodes

the received symbols into data and control words.

The Multi-lane layer coordinates the operation of multiple

lanes as a single SpaceFibre link, providing higher data

throughput and redundancy. Because the logic that initialize a

lane and monitor its status is located below the multilane layer,

each lane can be initialized and operated independently of each

other.

This architecture also supports the implementation of

graceful degradation, which means that in the event of one or

more lanes failing, traffic is spread over the remaining working

lanes automatically. When combined with Data Link layer

QoS, the bandwidth allocated to lower priority virtual channels

is reduced when required to ensure that most important

information gets through and deterministic traffic is

maintained. Bandwidth overprovision and dynamic power

management is also possible. These capabilities are very useful

for space applications where strict power constrains and a high

level of reliability is required on the harsh space environment.

314

The multi-lane requirements are expanded and consolidated

in section 2. Section 3 describes the protocol analysis and the

design of the SpaceFibre multi-lane capabilities. Section 4

shows the hardware implementation. Finally, conclusions are

made in section 5.

II. MULTI-LANE REQUIREMENTS

The multi-lane capabilities of SpaceFibre have been

designed to meet the following end-user requirements:

 Support an arbitrary number of lanes. This allows

redundancy and graceful degradation without any

restriction on the number of lanes.

 Re-synchronize both ends when the number of lanes

changes, without resetting any lane, and as fast as

possible. This way user data can be easily buffered

when a lane is added or removed, until the link is again

ready.

 Support hot redundancy.

 Support dynamic unidirectional lanes to save power

and mass for asymmetric user data flows.

 Robust against lane errors and misconfiguration.

 Keep the same protocol overhead than single lane

configuration.

 Number of lanes must be independent on the port

width of the end-user interface.

These requirements enable unique capabilities for

SpaceFibre. Other high speed protocols have limitations in the

redundancy mechanisms. For example, in RapidIO [3] when

one lane fails, the link falls back to a single lane. PCI Express

[4] allows the link to continue using more than one lane, but it

takes time as the link needs first to be reset. Interlaken [5]

allows an arbitrary number of lanes to operate but does not

define a mechanism for link reconfiguration when a lane fails,

as this is expected to be done by software.

Fig. 2 shows a use case enabled by the above requirements.

In this setup, unidirectional lane 6 can be enabled when one

lane fails or higher data rate is required and bidirectional lane 2

can be set as a unidirectional lane for power saving reasons.

Note that at least one bidirectional lane must be working for

the link to operate.

Lane 3

Lane 4

Lane 3

Lane 4

Lane 5Lane 5

Unidirectional lane

Unidirectional lane

Unidirectional lane

Lane 6Lane 6
Inactive unidirectional lane

Lane 1

Lane 2

Lane 1

Lane 2

Bidirectional lane

Bidirectional lane

 Figure 2. SpaceFibre Multi-Lane layer use case.

There are additional requirements related with SpaceFibre

standardization efforts:

 Single-lane SpaceFibre implementation must not be

affected by new rules added by multi-lane capabilities.

This ensures that legacy single-lane implementations

are still compatible with future single-lane

implementations.

 Minimize modifications to the definition of other

layers in the SpaceFibre standard.

Finally, there are the requirements regarding SpaceFibre

implementation on space qualified devices:

 Must be feasible to implement in radiation hardened

FPGAs, which are slower than state of the art COTS

components.

 Resource usage in radiation hardened FPGAs must be

minimized.

III. MULTI-LANE DESIGN

The multi-lane specifications of SpaceFibre were designed

with the following methodology:

1. Identify and evaluate the key concepts that could

allow the requirements to be met (e.g. define generic

protocol sequence diagrams).

2. Constrain these concepts to work with the more

specific set of rules already specified in the

SpaceFibre standard (e.g. adapt to control word

definitions)

3. Validate the concepts and derived new set of rules in a

prototype using a software simulator that can easily be

modified. If an issue is found, rework the concept

and/or associated set of rules.

4. Refine the simulation engine until it validates with

high accuracy the proposed multilane specifications.

The resulting main concepts and specifications are

explained in the following subsections.

A. Distribution of control and data words over sending lanes

In this specification, a row is defined as the set of words

sent over all sending lanes simultaneously. These words can be

data or control words. Data words contain data from the user

interface and control words are generated by the Data Link

layer to support the protocol operation.

In a single-lane SpaceFibre implementation, control words

are processed at a rate of 62.5Mhz for a 2.5Gbps link rate, as

there can only be one single control word for every 40 bits. If a

row can contain multiple control words, then the processing

rate required would increase with the number of lanes [6]. It

would then not be possible to implement multi-lane in some

radiation hardened devices. Therefore we must enforce that a

row can only contain one control word.

The simplest solution is to replicate each control word to be

sent across all lanes in a row. This avoids to have complex

rules that deal with mixing data and control words in the same

row. Fig. 3 shows this solution and the use of the PAD control

word when the size of a data frame is not a multiple of the

number of lanes available.

315

Lane 0 Lane 1

Data 3 Data 4 -

Data 0 Data 1 -

SDF SDF -

Data 6 Data 7 -
time

EDF EDF -

Data 5

Data 2

SDF

PAD

EDF

Row

Lane 3
Lane 2

Disabled

FCT FCT - FCT

Figure 3. Words forming a row across a multi-lane link

In order to keep the same protocol overhead than single

lane implementations, the maximum data frame size needs to

be increased. The maximum data frame size was defined as a

trade off between latency and protocol overhead. In a

multi-lane solution, the maximum data frame size can be

increased without modifying these metrics.

Another advantage of this solution is that the data frame

CRC can be computed lane by lane as the CRC is provided in

the EDF control word. A different CRC value can be included

in the EDF of each lane. This keeps intact the error detection

capabilities of the CRC for burst errors and for the amount of

data covered by the CRC. More important, this solution

simplifies the computation of the CRC in slow FPGAs as the

incoming rate of the data covered by the CRC is kept the same

than in single-lane implementations.

B. Lane alignment at reception

At the receiver side, the set of words received from each

lane need to be aligned to compensate for small differences in

lane delays. This delays are due to different cable lengths or

line driver delays. Therefore, data and control words can not be

passed to the Data Link layer until the multi-lane layer has

compensated this skew and it is processing the same original

rows sent by the sender side.

The lane alignment is usually done with a set of FIFOs that

compensate the delays of each lane, using a specific control

word, called ALIGN, that is known to be sent over all lanes

simultaneously. To cover the case of lane errors, the ALIGN

word needs to be sent periodically and with a minimum

separation in between. When the alignment is no longer

needed, the sending of ALIGNs can be disabled to avoid

increasing the protocol overhead.

Fig. 4 shows the set of words received with a skew between

lanes, which is compensated in Fig. 5 using ALIGN control

words.

Lane 0 Lane 1
Lane 2

Disabled Lane 3

Word 4 ALIGN - Word 6

ALIGN Word 2 - ALIGN

Word 1 Word 0 - Word 3

Step 1

Figure 4. Rows not aligned at reception

Lane 0 Lane 1
Lane 2

Disabled Lane 3

Word 7 Word 8 - Word 9

Word 4 Word 5 - Word 6

ALIGN ALIGN - ALIGN Row

Figure 5. Aligned rows at reception

To avoid data corruption, data words in a row should be

processed in the same order than they were placed in the row

by the sending side. To help with this requirement, each lane

has a lane number associated and it is enforced that words are

processed starting with the lowest lane number. Then, this

requirement can be fulfilled if the receiver side knows two

parameters:

a) The lane number of each lane

b) The total number of lanes used by the sending side.

This information is provided within the ALIGN word itself,

so the information is up to date when the receiver side use

these words for the alignment procedure.

C. Alignment state machine

It has been stated that data and control words can not be

passed to the Data Link layer until the multi-lane layer has

completed the alignment process and both sides are aware of

the lanes used for sending and receiving. This means that this

process has to be performed each time the number of lanes in

active state, i.e. working lanes, changes due to a lane error or a

lane being enabled or disabled by the user.

The alignment state machine ensures that no data is being

transferred to the Data Link layer when the lanes are not

aligned and that ALIGN words are only sent when it is

required. Three states are defined:

a) Not Ready: lanes have not been aligned and only

ACTIVE and ALIGN words are sent. This state is set

when the number of lanes in active state changes or an

alignment error is detected.

b) Near-End Ready: lanes are aligned and the Data Link

layer is being used to send and receive data and

control words. However, ALIGN words are sent as

the far-end has still not sent any data word.

c) Both Ends Ready: data words were received

indicating that the far-end has aligned the lanes. No

ALIGN words are sent. Link is ready.

The ACTIVE control word sent by the multilane layer has

three functions:

a) Stop the flow of words from the Data-Link layer when

the lanes are not aligned.

b) Indicate to the far-end that the lanes are not aligned.

c) Indicate in the cargo of this word which lanes are in

active state, so the other end can synchronize the active state of

the lanes. This is especially important in unidirectional transmit

lanes, which can not detect if the receiving side has

disconnected the lane. In a bidirectional lane, the lane

initialisation state machine can detect if the other side exits the

active state.

316

ALIGNED
condition

Link Reset

Not Ready

Send ACTIVE words
Send an ALIGN word

periodically

Near-End
Ready

Pass words to/from
Link Layer

Send an ALIGN word
periodically

Both Ends
Ready

Pass words to/from
Link Layer Data Word Received

AND
NOT MISALIGNED condition

MISALIGNED
condition

MISALIGNED condition

ACTIVE word received

Figure 6. Alignment state machine

Fig. 6 shows the alignment state machine. The ALIGNED

condition is asserted when all receiving active lanes are

aligned, these lanes are the same active lanes indicated by the

received ACTIVE words and they are consistent with the

content of the ALIGN words. The MISALIGNED condition is

asserted when the active lanes change in the near end or far end

or there is an error related with the alignment process.

Fig 7 shows a protocol sequence diagram describing what

occurs when one lane fails at the far end and becomes not

active. The near end detects this event when it receives the

ACTIVE words. It then moves to Not Ready state and starts

sending ACTIVE words too. When the alignment process is

completed using ALIGN words, the state machines move to

Near-End Ready state. Finally when data words are received

indicating the other side is in Near-End Ready, the state

machines move to Both Ends Ready state and the link is

considered to be ready.

Data&Ctrl words Data&Ctrl words

Active words

Near End Far end

Active words

Align word

Data&Ctrl words

Align word

Data&Ctrl words

Lane fails

Far end

active lane

change
Not Ready

Both ends

Ready
Both ends

Ready

Near-End

Ready

Both ends

Ready

Not Ready

Near-End

Ready

Both ends

Ready

Figure 7. Link ready protocol sequence diagram

Figure 8. Simulator tool screenshot of the alignment process

The time it takes for a multi-lane link to resume sending

data after a lane has failed or a new lane has been added is less

than a few microseconds. More precisely, it is the round trip

delay of the ACTIVE words plus the delay between the

sending of ALIGN words, which is the time needed to send 8

words.

Fig 8 is a screenshot of the simulator tool used for the

validation of the alignment process and the associated state

machine. The first set of two columns show the words sent by

the sender side using two lanes. The ALIGN word indicates

that two lanes are used for sending and the lane numbers are 0

and 1. The ACTIVE word indicates that lane zero and one are

active (bits zero and one are set). The second set of two

columns show how the row sent is received disaligned at the

receiver side. The middle Align column shows in yellow when

the state machine is in Not Ready state. The third set of two

columns shows how row alignment is achieved using a FIFO

and the ALIGN word. Finally the last set of two columns show

the words received by the Data Link layer.

D. Unidirectional lanes

Single-lane SpaceFibre implementations must be

bidirectional even if the end-user data flow is unidirectional,

because feedback from the receiver side is required for the

protocol to operate. However in a multi-lane implementation,

one lane is enough for the protocol related information and the

other lanes can be unidirectional, saving power and mass.

The lane layer initialisation state machine was designed for

a bidirectional lane, however some additional rules can be

defined to allow a unidirectional lane to reach active state

without affecting the operation for bidirectional lanes. The

state machine just needs to know if the lane is receive or

transmit only and if the far end has the lane in active state.

317

InvertRxPolarity

Send INIT1s

Started

Start Timeout Timer
Send INIT1s

Connecting

Send INIT2s

Rx’ed 3x i_INIT1s

OR
Rx’ed 3x i_INIT2s

Rx’ed 1023 words

without error
including at least one
INIT1 or INIT2
OR FarEndActive

Connected

Send INIT3s

Rx’ed 3x INIT2s

OR Rx’ed 3x INIT3s

OR FarEndActive
OR RxOnly

Active

Rx’ed 3x INIT3s
OR FarEndActive
OR RxOnly

LossOfSignal

Send 32x LOST_SIGNAL

OR No_Signal AND (NOT TxOnly)
OR Unacceptable BER AND (NOT TxOnly)

Rx’ed 1023 words

without error
including at least
one INIT1 or INIT2
OR FarEndActive

In All States:
• Disable TX if RxOnly
• Disable RX if TxOnly

Figure 9. Changes to the lane initialisation state machine

Fig 9 shows in red the required modifications to the lane

initialisation state machine. First, if the lane is receive only, the

RxOnly condition is set and the state machine immediately

moves to Active after reaching the Connecting state. Second, if

an ACTIVE word is received after the lane is started indicating

that the lane is active at the far end, the FarEndActive

condition is set, and the state machine moves to Active.

Finally, the LossOfSignal state is not reachable if the lane is

TxOnly.

Fig 10 shows how a unidirectional lane is initialised. The

side configured as RxOnly, receives INIT1 words until it

reaches Connecting state. It then immediately moves to Active.

Then, the bidirectional lane(s) send ACTIVE words, which

when received, sets the FarEndActive flag. This moves the

TxOnly initialisation state machine to ACTIVE.

Lane 1
near end
TxOnly

ClearLine

Disabled

Wait
Started

2 µs

Lane_Reset
Lane_Reset

ClearLine

Disabled

Wait

Started

Lane_Start
AutoStart

Connecting

Connecting

Connected

Connected

Active

Active

2 µs

Signal Detected

Rx’ed 1023 words
including one INIT1/2

FarEndActive

RxOnly

RxOnly

FarEndActive

FarEndActive

ACTIVE word
rx’ed on lane 0

Lane 1
far end
RxOnly

Figure 10. Initialisation of a unidirectional lane

The TxOnly side can not detect loss of signal or receive

control words. A mechanism has to be defined in TxOnly lanes

to exit the Active state when the RxOnly far end is not

anymore in Active state. The solution is to reset the TxOnly

lane when ACTIVE words are received in bidirectional lanes

indicating that the far end is not anymore active, i.e. the

FarEndActive flag is deasserted.

One requirement for unidirectional lanes states that it must

be possible for a bidirectional lane to become unidirectional in

order to save power. More precisely, a bidirectional lane can be

set as RxOnly lane by the user when the data rate sent is

reduced. A mechanism is required for the far end to detect this

event and change from a bidirectional lane to a TxOnly lane, so

it matches the RxOnly setting at the near end.

The solution is for the TxOnly flag to be set when the lane

initialisation state machine is in Started state and the

FarEndActive flag is set. The FarEndActive flag will move the

state machine to Active and the lack of signal at the receiver

will be ignored as the TxOnly flag will be set.

E. Hot redundant lanes

An important requirement is the decoupling between the

link bandwidth provided by the number of active lanes and the

maximum data rate of the end user interface. There are two

possibilities:

a) The available link bandwidth is lower than the user

interface. This can occur if one or more lanes fails or are

disabled. The user interface flow control will limit the data rate

of the user.

b) The available link bandwidth is higher than the user

interface. This can be useful to provide hot redundancy.

In order to simplify the implementation of the second

scenario, the concept of hot redundant lanes is introduced. Hot

redundant lanes are lanes that are initialized in the same way

than a normal lane, but only send Lane Layer and Multi-Lane

layer control words and do not send any Data Link layer word.

When no control words must be sent, they send a PRBS

sequence that is generated in the same way than the PRBS data

words of Idle frames. This mechanism ensures that the word

transfer rate between the Multi-Lane layer and the Data Link

layer does not exceed the maximum user interface data rate.

Hot redundant lanes must have lane numbers higher than

the other lanes. The receiver can identify a hot redundant lane

by the content of the ALIGN word received. An ALIGN word

sent by a hot redundant lane has the LANES and the iLANES

fields both set to zero, which can not occur for non redundant

lanes. Hot redundant lanes identified by the receiver are not

considered for the reception of Data Link layer words.

F. New control word fields

The addition of multi-lane capabilities requires two new

fields in existing control words that do not break compatibility

with single-lane implementations:

a) FCT multiplier: Allows to reduce the number of FCTs

sent when the data frame size is increased.

b) Multi-Lane capable flag: provided in the INIT3 control

word to indicate that the lane is part of a multi-lane link.

318

IV. HARDWARE IMPLEMENTATION

After the new specifications that enable multi-lane

capabilities to SpaceFibre were successfully simulated in

software, a hardware prototype was built using commercial

off-the-shelf (COTS) and space-qualified FPGAs. The new

multi-lane capable STAR-Dundee SpaceFibre IP Core is an

optimised and improved version.

A. Hardware Prototypes

The multi-lane specifications were first evaluated using the

STAR-Dundee SpaceFibre PXI board, which has a set of

flexible interface connectors that can be used to customise

the board, such as SpFi, SpW and external triggers, etc [7].

Fig 11 shows a multi-lane link using two PXI boards with

one bidirectional lane and two unidirectional lanes. Each

connector has two activity LEDs. If the upper LED is red it

indicates that the receiver is disabled. If the lower LED is red it

indicates that the transmitter is disabled. Blue colour indicates

data transfer. In addition to the SATA laboratory cables used

for SpaceFibre, there are two SpaceWire blue cables used for

device configuration.

Figure 11. Unidirectional lanes on a PXI board

Figure 12. RTG4 development board with a multi-lane SpaceFibre link

The design was then optimised and ported to the radiation

hardened RTG4 FPGA. Fig 12 shows the RTG4 development

board with a multi-lane link connected to a PXI board using

two bidirectional lanes.

For the validation of the new protocol capabilities, the

STAR-Fire software was updated to support the new multi-lane

capable features. Fig 13 is a screenshot of the the STAR Fire

Analyser view. The two middle columns shows the words

being sent by lane numbers 1 (left) and 0 (right). At each side

the word is decode in its symbol components. The analyser was

triggered on the event of the first ACTIVE word sent after the

link was started with three lanes. As stated, ACTIVE words are

sent when a lane becomes active until alignment is achieved.

Figure 13. Words sent when lanes 0 and 1 become active

319

The left side of Fig 14 shows what happens later when

alignment is achieved and the alignment state machine moves

from Not Ready to Near-End Ready. It is allowed then to send

Data Link layer words such as the FCT control words. The

ACTIVE words indicate that the first three lanes are active (716,

1112). The ALIGN word indicates that three lanes are used for

sending and the lane number of each lane (1910, 1316). The right

side shows sometime later when data frames are sent with user

data from virtual channel 1. At this time, the alignment state

machine is in Both Ends Ready as no ALIGN words are being

sent.

Figure 14. Words sent for alignment (left) and sending data (right).

Fig 15 shows a link with two lanes in which lane 1 fails and

starts sending LOS control words before disabling the SerDes.

The alignment state machine moves to Not Ready and

ACTIVE words sent indicate lane 1 is not anymore active.

After re-alignment, a NACK control word followed by a

RETRY control word are sent, so both ends can resume

sending data.

Figure 15. Words sent when a lane fails (from left to right)

Near End

…

Far End

…

Figure 16. Link starts with lane 1 unidirectional with TxOnly set

Fig 16 shows a multi-lane link with three lanes in which

lane 1 is a unidirectional transmit-only lane. That is why the far

end has the SerDes transmitter of lane 1 disabled (PLL_OFF).

In the near end, this lane starts sending INIT1s until the far end

achieves Active state and sends ACTIVE words indicating this

lane is active. The near end sends INIT2 and INIT3 and

reaches active state on the reception of these ACTIVE words.

B. STAR-Dundee SpaceFibre IP Core

The STAR-Dundee SpaceFibre IP Core was updated to

support multi-lane capabilities after the hardware

implementations were successfully validated and optimised for

low resource usage and easy of use.

Table I provides the resource usage for two radiation

hardened FPGAs, Microsemi RTG4 and Xilinx Virtex-5QV,

320

for different number of lanes and virtual channels. Lanes can

operate up to 3.125 Gbps.

TABLE I. RESOURCE USAGE

 RTG4 Virtex-5QV

 LUT DFF
RAM
Block LUT DFF

RAM
Block

2 Lanes
1 VC

6494
4.3%

5351
3.5%

8
3.8%

3858
4.7%

3938
4.8%

8
2.7%

2 Lanes
2 VC

7314
4.8%

6088
4.0%

12
5.7%

4503
5.5%

4382
5.3%

12
4.0%

3 Lanes
2 VC

8997
5.9%

7413
4.8%

12
5.7%

5416
6.6%

5226
6.4%

12
4.0%

The IP Core has been designed to fully support the

redundancy capabilities of multi-lane. When using hot

redundancy, the data flow of the user is not affected when a

lane fails, as the data is internally buffered during the time it

takes to resume sending data, which is less than 2 µs. When not

using a hot redundant lane, there is a graceful degradation of

link bandwidth and the QoS mechanism ensures that most

important data is sent first. If a redundant lane is available it

will be activated in less than 20 µs, providing warm

redundancy.

Fig 17 shows the floorplan of a Virtex-5QV with the IP

core constrained to be placed in one of the tiles. Using the

Xilinx transceiver capabilities, the IP Core can work with a

single clock input signal. The user can write and read data

to/from the IP Core with the AXI4-Stream interface, using any

other clock frequency as the IP includes synchronisation

buffers.

Figure 17. STAR-Dundee multi-lane IP Core in Virtex-5QV

V. CONCLUSION

The new SpaceFibre multi-lane capabilities increase

dramatically the data throughput of SpaceFibre links to meet

the requirements of next generation of spacecraft payloads.

With the designed multi-lane layer, the additional lanes can

also provide hot or warm redundancy, and graceful degradation

of the link bandwidth when no redundant lanes are available. In

the event of a lane failure, the link is again operative in just a

few microseconds, which is close to the round trip delay of the

lane, without user intervention and without any data loss.

Furthermore, the flexibility in the number of lanes of a

multi-lane link and the support of unidirectional lanes, allows

for significant savings in mass and power, which are critical in

space applications.

The multi-lane specifications have been validated in

simulation and hardware prototypes. These specifications have

been designed to be easy to implement in slower radiation

hardened FPGAs. The STAR-Dundee SpaceFibre IP Core has

been updated to provide all these new multi-lane capabilities in

RTG4 and Virtex-5QV FPGAs with low resource usage and

high performance.

ACKNOWLEDGMENT

The research leading to these results has received funding

the European Space Agency under ESA contract numbers

4000102641 and from the European Union Seventh

Framework Programme (FP7/2007-2013) under grant

agreement n° 263148 and 284389.

REFERENCES

[1] Next Generation Processor for On-board Payload Data

Processing Application ESA Round Table Synthesis, ESA,

TEC-EDP/2007.35/RT, October 2007.

[2] S. Parkes, A. Ferrer, A. Gonzalez and C. McClements,

“SpaceFibre Standard”, Draft H4, April 2016, available from

https://indico.esa.int/indico/event/126/session/0/contribution/1

(last accessed 29th August 2016).

[3] T. Scheckel, “Serial RapidIO: Benefiting system interconnects”,

Proceedings - IEEE International SOC Conference, pp. 317-318,

2005.

[4] J. Ajanovic, “PCI express 3.0 overview”, 2009 IEEE Hot Chips

21 Symposium (HCS), Stanford, CA, 2009, pp. 1-61.

[5] “Interlaken Protocol Definition”, A joint specification of Cortina

Systems and Cisco System, Revision 1.2, Cortina Systems Inc.

and Cisco Systems Inc., 7 October 2008.

[6] Y. Otake, “The study and proposal for improvement the

multi-lane operation of SpaceFibre protocol”, SpaceWire

Conference 2014, Athens.

[7] A. Gonzalez, “A new Generation of SpaceFibre Test and

Development”, SpaceWire Conference 2016, Yokohama.

321

https://indico.esa.int/indico/event/126/session/0/contribution/1

SpaceFibre Flight Equipment

SpaceFibre, Long Paper

Steve Parkes, Albert Ferrer Florit,

Alberto Gonzalez Villafranca, Chris McClements,

Bruce Yu, Pete Scott, Julie Logan,

STAR-Dundee Ltd.,

STAR House, 166 Nethergate, Dundee, DD1 4EE, UK

steve.parkes@star-dundee.com

 David McLaren,

Space Technology Centre, University of Dundee,

166 Nethergate, Dundee, DD1 4EE, UK

Abstract— SpaceFibre is a new standard for spacecraft on-

board data-handling networks, which runs over both electrical

and fibre optic media. It provides high bandwidth, low latency,

fault recovery and novel QoS that combines priority, bandwidth

reservation and scheduling. SpaceFibre is backwards compatible

with SpaceWire at the network level, allowing existing

SpaceWire equipment to be incorporated into a SpaceFibre

network without modification. SpaceFibre is now being designed

into its first spaceflight missions. This paper describes

SpaceFibre flight equipment being designed by STAR-Dundee

for space flight applications. This includes a range of SpaceFibre

IP cores targeted at radiation tolerant FPGAs and the

SpaceFibre interfaces in a radiation tolerant many core DSP

processor.

Index Terms — SpaceFibre, SpaceWire, Flight Equipment,

Networking, Spacecraft Electronics.

I. INTRODUCTION

SpaceFibre [1][2][3] is a new standard for spacecraft on-

board data-handling networks, initially designed to deliver

multi-Gbit/s data rates for synthetic aperture radar and high-

resolution, multi-spectral imaging instruments. The addition of

quality of service (QoS) and fault detection, isolation and

recovery (FDIR) capabilities to SpaceFibre has resulted in a

unified network technology. SpaceFibre provides high

bandwidth, low latency, fault isolation and recovery suitable

for space applications, and novel QoS that combines priority,

bandwidth reservation and scheduling and which provides

babbling node protection [4]. SpaceFibre is backwards

compatible with the widely used SpaceWire standard [5] at the

network level allowing simple interconnection of existing

SpaceWire equipment to a SpaceFibre link or network.

This paper describes SpaceFibre equipment being designed

by STAR-Dundee for space flight applications. This includes a

range of SpaceFibre IP cores targeted at radiation tolerant

FPGAs, the SpaceFibre interfaces in a radiation tolerant many

core DSP processor and boards, subsystems and instrument

processing units, containing these devices.

II. SPACEFIBRE INTERFACE IN THE RTAX FPGA

A version of the SpaceFibre IP core targeted for high

performance and small size in flight qualified FPGAs is

currently being developed by STAR-Dundee Ltd. This IP core

is designed to support instrument interfacing with SpaceFibre

using existing flight proven FPGAs and SerDes devices. It is

expected that this design will reduce the size of the SpaceFibre

IP core for instrument interfaces significantly.

A board that implements this “SpaceFibre-Lite” IP core in a

Microsemi AX1000 FPGA is illustrated in Figure 1.

(a)

(b)

Figure 1. SpaceFibre-Lite board for Microsemi AX1000

FPGA; (a) top-side and (b) bottom-side

On the bottom side of the SpaceFibre-Lite board is a socket

for an AX1000 FPGA, which is the commercial equivalent of

the radiation tolerant RTAX1000 FPGA [6]. This FPGA does

322

not include a SerDes so an external SerDes device is required.

Texas Instruments have a suitable radiation tolerant SerDes

device: the TLK2711-SP Wizard Link device [7]. This device

contains both a transmitter and receiver and offers data rates

from 1.28 to 2.0 Gbits/s (1.6 to 2.5 Gbits/s data signalling

rates). The transmitter takes in 16-bit wide serial data, encodes

it using 8B/10B encoding and serialises it for transmission over

a differential signal pair. The receiver takes the serial data, de-

serialises it, and performs 8B/10B decoding to provide the 16-

bit parallel data. The TLK2711A (commercial version) can be

seen on the top-side of the board, at the top of Figure 1.

The SpaceFibre-Lite interface has two virtual channels and

a broadcast message interface. One virtual channel is used for

sending or receiving high data-rate application data, which

requires substantial link bandwidth. The other virtual channel

is used for receiving configuration, control and housekeeping

requests from a remote computer and for returning status and

housekeeping information. This latter virtual channel is

typically set to high priority, but uses little bandwidth.

The SpaceFibre-Lite board has an FMC connector for

connecting to a host system, e.g. another FPGA development

board. A 32-bit interface is provided on this FMC connector

for sending and receiving data between the host system and the

SpaceFibre virtual channels in the AX1000 FPGA. This

interface can also be used for configuring the SpaceFibre

interface and for accessing the broadcast message interface.

For test purposes, a pair of Mictor connectors are provided on

the parallel interface to the FMC connector for connection to a

logic analyser.

The SpaceFibre serial interface is connected to an eSATA

connector which is used in SpaceFibre electrical ground

support equipment. This connector can be seen on the bottom

left of Figure 1 (b).

All of the major components on the SpaceFibre-Lite board

are commercial equivalents of radiation tolerant, spaceflight

grade components. It operates at a data signalling rate of 2.5

Gbits/s and demonstrates that SpaceFibre is at TRL5, ready to

fly.

III. SPACEFIBRE IN THE RTG4 FPGA

The Microsemi RTG4 is a new generation radiation tolerant

FPGA [8]. It has extensive logic, memory, DSP blocks, and IO

capabilities and is inherently radiation tolerant, having triple

mode redundancy built in. The RTG4 has a flash configuration

memory built into the device. In addition the FPGA

incorporates 16 SpaceWire clock-data recovery circuits and 24

multi-Gbits/s SerDes lanes to support high-speed serial

protocols like SpaceFibre. The integrated radiation tolerant

SerDes make the RTG4 ideal for the implementation of

SpaceFibre.

A SpaceFibre interface has been implemented in the RTG4

FPGA and tested extensively [9]. The test design incorporates

two SpaceFibre interfaces and four SpaceWire interfaces. One

SpaceFibre interface has eight virtual channels and the other

has four. These two SpaceFibre interfaces are connected back

to back with VC4-7 on one interface connected to VC4-7 on

the other interface. The four SpaceWire interfaces are

connected to VC0-3 on the SpaceFibre interface with eight

virtual channels. This is illustrated in Figure 2.

RTG4

SpW SpW SpW SpW

SpaceWire

SpaceFibre
Interface

SpFi 4
5
6
7

SpaceFibre
Interface

SpFi4
5
6
7

0
1
2
3

Figure 2. Functional block diagram showing

interconnection between SpaceFibre and SpaceWire

interfaces in an RTG4 FPGA

The design is implemented on the Microsemi RTG4

development board with SpaceWire and SpaceFibre connectors

provided via an FMC board, as shown in Figure 3.

Figure 3. Microsemi RTG4 development board used to test

the SpaceFibre interface

The SpaceFibre interfaces operate at up to 3.125 Gbits/s. A

multi-lane interface has also been implemented in the RTG4

and validated [10]. The multi-lane IP core has two-lanes with a

third lane available in hot or cold standby.

The SUNRISE SpaceFibre routing switch [11] is currently

being transferred to the RTG4 FPGA, using a specially

designed board [12], which is shown in Figure 4.

Figure 4. Prototype board for SUNRISE SpaceFibre

Routers

323

IV. SPACEFIBRE MULTI-LANE INTERFACE IN THE RTG4

FPGA

The multi-laning capabilities of the SpaceFibre protocol

allow several lanes to operate in parallel to provide enhanced

throughput [10]. For example, with four lanes running at 2.5

Gbits/s each an aggregate throughput of 10 Gbits/s is achieved.

SpaceFibre multi-laning can operate with any number of lanes,

from 1 to 16. Each lane is normally bi-directional, but to

support spaceflight instruments with very high-data rate in one

direction and to save mass and power, it is possible to have

some uni-directional lanes in a multi-lane link, provided that at

least one lane is bi-directional. SpaceFibre multi-laning also

supports graceful degradation in the event of a lane failure. If a

lane fails, the multi-lane link will rapidly reconfigure to use the

remaining lanes so that important (high priority) information

can still get through. It takes a couple of microseconds for this

reconfiguration to occur, which happens without loss of

information. Clearly, with reduced bandwidth some

information will not be sent over the link, but this will be less

important, low priority, information. If a redundant lane is

available in the link, it can be enabled and full capacity

operation will resume.

Figure 5. Demonstration of SpaceFibre Multi-Laning

The photograph in Figure 5 shows a demonstration of the

multi-laning capability of SpaceFibre. A four lane link was

demonstrated with low-priority, high-bandwidth traffic flowing

over some virtual channels and high-priority video data over

another virtual channel. Lanes were unplugged with

corresponding loss in bandwidth, but the link continued to

operate sending the "critical" video data without interruption.

Only when all four lanes were unplugged, did the video data

stream cease. As soon as any of the four lanes were plugged

back in, the video stream continued once more.

V. SPACEFIBRE ENGINEERING MODEL

 STAR-Dundee is currently designing a flight Engineering

Model level board for the RTG4 which will support SpaceWire

and SpaceFibre applications. The architecture of this board is

illustrated in Figure 6.

JTAG

RTG4
FPGA

DDRDDR

SMA
ADC I1

AAF

Clock
Generator

SMA
ADC Q1

AAF

ADC

SMA
ADC I2

AAF

SMA
ADC Q2

AAF

R
EF

C
LK Buffer

ADC

FM
C

Sp
W

Sp
Fi

Sp
Fi

Sp
W

P
o

w
e

r

Power
Supplies

R
EF

C
LK

 x
6

LVDS

A
U

X
C

LK
 x

 6
SY

SR
ST

x
8

I2
C

x
4

U
p

 t
o

 8
x

Sp
W

U
p

 t
o

 2
4

x
Sp

Fi

C
LK

IN

 x
2

Figure 6. SpaceVPX-RTG4 Board Block Diagram

The SpaceVPX-RTG4 board is a 3U board designed to

conform to the emerging VITA78.1 SpaceVPX-Lite standard

[13]. The main component on the board is the RTG4 FPGA

(PROTO Silicon). It is connected to two independent banks of

DDR memory, each supporting Error Detection and Correction

(EDAC). Two SpaceWire and two SpaceFibre interfaces are

provided on the front panel. The SpaceVPX-Lite backplane

supports a SpaceWire control plane and a SpaceFibre data

plane along with standard utility plane functions. An FMC type

daughterboard connector allows connection to various

daughterboards. A dual, 3 Gsamples/s ADC FMC board is

available supporting demanding DSP applications. Other

daughter boards are planned. The board is conduction cooled.

The board can be configured to operate as a SpaceVPX-

Lite System Controller or as a versatile SpaceVPX-Lite

Payload Processing board. The System Controller incorporates

an ARM Cortex M1 processor running in the FPGA, and has

two SpaceWire and two SpaceFibre interfaces on the front

panel. It provides the VITA78.1 radial REF_CLK and

AUX_CLK signals to each of up to six Payload boards. It can

provide either SpaceWire or SpaceFibre radial control plane

connections to each Payload board. These control plane

interfaces also provide the Payload management function using

RMAP [14]. The System Controller is designed to operate in a

dual redundant configuration with control plane cross strapping

to each Payload board. Cold sparing of the RTG4 is addressed

in the board design.

The SpaceVPX-RTG4 board can also act as a Payload

board, with control plane connections to each of the two

system controller boards. Data plane connections are provided

on the board to support full mesh interconnection between the

six payload boards.

The components on the board are commercial equivalents

of flight grade components.

This board is currently being used to implement the

engineering model of a wideband spectrometer for a THz

radiometer instrument, being developed in the UK [15]. When

fitted with the ADC FMC board each SpaceVPX-RTG4 board

will be able to process 1-2 GHz bandwidth signals into 1-

5MHz spectral components. The design of the FFT processor is

324

currently underway based on previous designs implemented

and tested in Xilinx Virtex 5 FPGAs.

At present the board is in the PCB layout stage. A physical

model of the SpaceVPX-RTG4 board is illustrated in Figure 7.

Figure 7. SpaceVPX-RTG4 Physical Model

SpaceVPX-Lite Power Switches and Power Supply

modules are also under development along with a backplane

and conduction cooled rack.

VI. RAMON CHIPS RC64

Ramon Chips are developing a many core DSP processing

chip in radiation tolerant technology. The RC64 [16], is a novel

rad-hard 64-core digital signal processing chip, with a

performance of 75 MACS, 150 GOPS and 38 GFLOPS (single

precision) and low power consumption, dissipating less than 10

Watts. The RC64 integrates sixty-four advanced DSP cores, a

hardware scheduler, 4 MBytes of multi-port shared memory, a

DDR2/DDR3 memory interface, and twelve 3.125 Gbps full-

duplex, high-speed SpaceFibre serial links, four of which can

also support serial Rapid IO.

The RC64 architecture is illustrated in Figure 8. A central

scheduler assigns tasks to processors. Each processor executes

its task from its cache storage, accessing the on-chip 4MByte

shared memory only when needed. When task execution is

done, the processor notifies the scheduler, which subsequently

assigns a new task to that processor. Access to off-chip

streaming channels, DDR2/DDR3 memory, and other

interfaces happens only via programmable DMA channels.

This approach simplifies software development and it is found

to be very useful for DSP applications, which favour

streaming over cache-based access to memory. Hardware

events, asserted by communication interfaces, initiate software

tasks through the scheduler. This enables high event rates to

be handled by the many cores efficiently.

Shared Memory

M M M M M M M M

SpFi/sRIO DDR2/3 AD/DA SpW NVM

DMA

scheduler

FEC

D
SP

$

D
SP

$

D
SP

$

D
SP

$

D
SP

$

D
SP

$

D
SP

$

D
SP

$

M M M M M M M M

M M M M M M M M

Figure 8. RC64 Many Core DSP Processor Block Diagram

(only 8 DSP processors are shown)

The RC64 is implemented as a 300 MHz integrated circuit

on a 65nm CMOS technology, assembled in a hermetically

sealed ceramic CCGA624 package and qualified to the highest

space standards. Supported communication applications

include frequency multiplexing, digital beam forming,

transparent switching, modems, packet routing and higher-

level processing. The 12 SpaceFibre interfaces on the RC64

were designed by STAR-Dundee.

STAR-Dundee is currently designing a SpaceVPX-Lite

board containing an RC64 many core DSP processor. A block

diagram of this board is shown in Figure 9.

JTAG

RC64
Many Core

DSP
Processor

DDRDDR

SMA
ADC 1

AAF

Clock
Generator

SMA
DAC 1

AAF

DAC

SMA
ADC 2

AAF

SMA
DAC 2

AAF

R
EF

C
LK Buffer

ADC

FM
C

Sp
W

Sp
Fi

Sp
Fi

Sp
W

P
o

w
e

r

Power
Supplies

R
EF

C
LK

 2
LVDS

A
U

X
C

LK
 x

2
SY

SR
ST

x
2

2
x

Sp
W

U
p

 t
o

 1
2

x
Sp

Fi

Figure 9. SpaceVPX-RC64 Board Block Diagram

The SpaceVPX-RC64 board contains an RC64 DSP

processor attached to DDR memory. The board is designed as a

SpaceVPX-Lite Payload board. It receives nominal and

redundant REFLCK, AUXCLK and SYSRST signals from the

backplane. These signals originate from the nominal and

redundant System Controller boards. Nominal and redundant

control plane interfaces are also provided from the System

325

Controller boards via the backplane connectors. The control

plane can be either SpaceWire or two-lane SpaceFibre.

There are a pair of SpaceWire interfaces and a pair of

SpaceFibre interfaces on the front panel. An FMC connector

on the board allows for the connection of a range of FMC type

boards to be added. All components on the board are

commercial equivalents of radiation tolerant parts. Like the

SpaceVPX-RTG4 board the SpaceVPX-RC64 board is

conduction cooled.

VII. SPACEFIBRE INTERFACE CHIP

The SpaceFibre ECSS standard is close to being published

and SpaceFibre is already being considered for several space

missions. There is a need for a range of radiation tolerant

SpaceFibre chips to support the missions that plan to use this

technology. STAR-Dundee has won a contract from ESA to

develop such a device, which is able to meet the instrument

interface and avionics equipment requirements for high-speed

serial links. This design will build on the extensive experience

that STAR-Dundee has with SpaceFibre and in particular on

the experimental SpaceFibre interface device designed by

STAR-Dundee with European Commission Framework 7

research funding [17].

CONCLUSIONS

SpaceFibre is a new generation of the widely used

SpaceWire spacecraft on-board data-handling network

technology, which has over ten times the performance (per

lane) and operates over electrical or fibre optic media.

Integrated quality of service and fault detection, isolation and

recovery mechanisms enable SpaceFibre to be used for

guidance and navigation control, time-distribution, event

signalling, command and control, as well as very high data-rate

payload data-handling, all with a single, unified network. This

reduces cost, mass and risk, improves reliability and simplifies

redundancy.

STAR-Dundee has developed a range of SpaceFibre IP

cores for spaceflight applications including a single-lane and

multi-lane interface targeted for the Microsemi RTG4 and

Xilinx Virtex-5QV FPGAs. A SpaceFibre routing switch IP

core for the RTG4 is currently under development. STAR-

Dundee’s IP cores are also being used in a range of radiation

tolerant ASIC devices including the Ramon Chips RC64 many

core DSP processor and the ESA SpaceFibre Interface Chip. A

range of engineering model level boards is being designed by

STAR-Dundee based on the emerging VITA 78.1 SpaceVPX-

Lite standard. This equipment is targeted at a range of

spaceflight signal and image processing applications and is

already being designed into the UK LOCUS TeraHertz sounder

instrument.

ACKNOWLEDGMENTS

The research leading to these results has received funding

from the European Space Agency under ESA contract numbers

4000102641 and 17938/03/NL/LvH, from the European Union

Seventh Framework Programme (FP7/2007-2013) under grant

agreement numbers 263148 and 284389, and from the UK

Space Agency and CEOI-ST under University of Leicester

contract numbers: RP10G0348A02, RP10G0348B206 and

RP10G0348A207.

REFERENCES

[1] S. Parkes, A. Ferrer Florit and A. Gonzalez Villafranca,

“SpaceFibre Standard”, Draft H5, University of Dundee, July

2016.

[2] S. Parkes, C. McClements and M. Suess, “SpaceFibre”,

International SpaceWire Conference, St Petersburg, Russia,

2010, ISBN 978-0-9557196-2-2, pp 41-45.

[3] S. Parkes, A. Ferrer, A. Gonzalez, & C. McClements,

“SpaceFibre: Multiple Gbits/s Network Technology with QoS,

FDIR and SpaceWire Packet Transfer Capabilities”,

International SpaceWire Conference, Gothenburg, June 2013.

[4] S. Parkes et al, “SpaceFibre: Multi-Gigabit/s Interconnect for

Spacecraft On-board Data Handling”, IEEE Aerospace

Conference, Big Sky, Montana, 2015.

[5] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire, Links,

Nodes, Routers and Networks”, Issue 1, European Cooperation

for Space Data Standardization, July 2008, available from

http://www.ecss.nl.

[6] http://www.microsemi.com/products/fpga-soc/radtolerant-

fpgas/rtax-s-sl

[7] Texas Instruments, “TLK2711A 1.6 TO 2.7 GBPS

TRANSCEIVER”, SLLS908A, September 2009.

[8] http://www.microsemi.com/products/fpga-soc/radtolerant-

fpgas/rtg4

[9] S. Parkes et al, “SpaceWire and SpaceFibre on the Microsemi

RTG4 FPGA”, IEEE Aerospace Conference, Big Sky, Montana,

2016.

[10] A. Ferrer Florit, A. Gonzalez Villafranca and S. Parkes,

“SpaceFibre Multi-Lane”, International SpaceWire Conference,

Yokohama, Japan, 2016, ISBN 978-0-9954530-0-5.

[11] S. Parkes, A. Ferrer Florit, A. Gonzalez Villafranca, Chris

McClements and David McLaren, “SpaceFibre Networks”,

International SpaceWire Conference, Yokohama, Japan, 2016,

ISBN 978-0-9954530-0-5.

[12] A. Gonzalez Villafranca, S. Parkes, C. McClements, B. Yu, P.

Scott and A. Ferrer Florit, “A New Generation of SpaceFibre

Test and Development Equipment”, International SpaceWire

Conference, Yokohama, Japan, 2016, ISBN 978-0-9954530-0-5.

[13] Scott Goedeke, et al, “SpaceVPXLite, Lightweight SpaceVPX

Systems Specification”, VITA 78.1, Draft revision 2.3, VITA,

14 July 2016.

[14] ECSS Standard ECSS-E-ST-50-52C, “SpaceWire – Remote

memory access protocol”, Issue 1, European Cooperation for

Space Data Standardization, 5 February 2010, available from

http://www.ecss.nl.

[15] S.P. Rea, et al, “The Low-Cost Upper-Atmosphere Sounder

(LOCUS)”, 26th International Symposium on Space TeraHertz

Technology, Cambridge, MA, 16-18 March 2015.

[16] R. Ginosar, P. Aviely, T. Israeli and H. Meirov, “RC64: High

Performance Rad-Hard Manycore”, IEEE Aerospace

Conference, Big Sky, Montana, 2016.

[17] S. Parkes, A. Ferrer-Florit, A. Gonzalez-Villafranca, C.

McClements, R. Ginosar, T. Liran, G. Sokolov, G. Burdo, N.

Blatt, P. Rastetter, M. Krstic, A. Crescenzio, “A Radiation

326

http://www.ecss.nl/
http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtax-s-sl
http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtax-s-sl
http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4
http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4
http://www.ecss.nl/

SpaceFibre Based On-board Networks for Real-Time

Video Data Streams
SpaceFibre, Long Paper

Alexey Khakhulin, Igor Orlovsky

Rocket and Space Corporation Energia after S.P. Korolev

Korolev, Moscow region, Russia

{Alexey.Hahulin, Igor.Orlovsky}@rsce.ru

Yuriy Sheynin, Ilya Korobkov, Valentin Olenev, Elena

Suvorova, Irina Lavrovskaya

Saint-Petersburg State University of Aerospace Instrumentation

Saint Petersburg, Russia

sheynin@aanet.ru, {ilya.korobkov, valentin.olenev}@guap.ru,

suvorova@aanet.ru, irina.lavrovskaya@guap.ru

Abstract—High-speed onboard networks for the space

industry with a lot of tasks that could be solved only by

transmitting large data streams in a short time, with minimum

overheads and accepted latencies. Particular tasks for data

transmission require various types of traffic and onboard

network topologies. Video data in many applications generate

high throughput real-time data streams, from most demanding

onboard traffic. The SpaceFibre protocol, which gives an

ability to transmit data with high speeds and different quality

of services (QoS), could be prospective technology for the

spacecraft tasks and missions. Implementation of SpaceFibre

and considering its application for Russian space missions is

going on.

The paper presents use cases for SpaceFibre based onboard

networks for real-time video data streams in prospective

missions. We consider features and characteristics of raw, non-

compressed video data streams for processing and real-time

control (e.g. to support docking), data streams of compressed

motion imagery to record video, science experiment high

quality video, robotics, high definition television frames to

monitors, etc. The paper considers requirements and

restrictions for building SpaceFibre onboard networks for

real-time video data streams. Streaming Data Transport

Protocol is mapped on a SpaceFibre network for transmission

of streaming data from onboard cameras (video stream), to

onboard monitors and to a high rate downlink.

Index Terms — Spacecraft onboard networks, Streaming

data, SpaceFibre, Motion imagery.

I. INTRODUCTION

Modern onboard networks for space industry include a lot

of streaming traffic sources. Examples of such sources are

video cameras. Its traffic typically has high rate and

requires essential part of network resources. In many cases

delivery time and jitter of delivery time for video traffic is

strongly constrained. Influence of this traffic to other traffic

may be dramatical.

Main features of streaming traffic are:

- PDUs have equal size;

- Intervals between sequential PDUs generations are

equal;

- PDUs are structurally homogenous

- PDUs arrives continuously

- Loss of an individual PDU is not critical [1].

II. VIDEO DATA STREAMING CHARACTERISTICS

The parameters of video from CCSDS 766.1-B-1 Digital

Motion Imagery (hereinafter referred to as CCSDS) standard

are presented Table I. It is a standard that identifies which

television and video industry standards should be utilized for

interoperability in a spacecraft, between spacecrafts and

between a spacecraft and Earth. The CCSDS specification

describes real-time video data transmission and video

streaming (telecasting). Transmitted data can be

uncompressed, compressed or encrypted (Secure JPEG2000)

[2].

TABLE I. PARAMETERS OF VIDEO TRAFFIC DESCRIBED IN AVIATION

STANDARD CCSDS 766.1-B-1

Traffic Resolution
*Frame size,

Kbyte

*Line size,

Kbyte

Playback

frequency, Hz

Personal video

conferencing

320х240..1280

x720
150..1800 0,625..2,5 10 – 60

Medical

conferencing

320х240..1280

x720

Standard

resolution

640x480

150..1800

600

0,625..2,5

1,25
10 – 60

Situational

awareness 640x480..1280

x720
600..1800 1,25..2,5

25 – 60

Public affairs 24, 25, 60

High Resolution

Digital Imaging

1920x1080..40

96х2160
4050..17280 3,75..8 24 – 120

* - all evaluations are done when color depth is 16 bit

327

III. SHORT INFORMATION ABOUT THE SPACEFIBRE

The layers from the Physical layer until the Network

layer are defined in the SpaceFibre protocol.

В текущей версии стандарта SpaceFibre определены

уровни протокола до сетевого.

A. Evaluation of data transmission overheads on a

SpaceFibre data link

The 8B/10B coding is used at the Lane layer for data

transmission via physical link. Correspondingly the useful

throughput on this layer is 0,8 (80%) from the physical

throughput.

Data are transmitted via data link in frames. The

maximal payload size of a frame is 256 bytes of data, FILL

or EP symbols. (The SpaceFibre frame can contain one or

some SpaceWire packets or parts of consequent packets.)

The size of the frame header and the size of the frame tail

is four bytes. The credit mechanism is used for flow control.

A receiving side sends credits in accordance with free space

in its buffers. One credit (FCT) corresponds to 256 NChars

(data bytes, FILLs , EOPs, EEPs). The length of FCT

symbol is 4 bytes. The receiving side sends responses for

received frames. (ACK response indicates that the frame is

received correctly, NACK response indicates any errors.)

The length of response symbol is four bytes. To avoid

essential overheads of physical channel by responses, one

response may be sent for some sequential frames with small

length. However, if a frame has the maxima length the

response is sent for every frame.

Thus for the useful throughput evaluation we suppose

that one ACK and one FCT correspond to every data frame.

These ACK and FCT are transmitted in opposite direction

than data frame, therefore they influence to useful

throughput only when data traffic is transmitted in both

directions.

Accordingly to this, if data are transmitted in one

direction and frames with maximal size are used for data

transmission, the useful throughput of data link will be 97%

from throughput of Lane layer, and, correspondingly, 77%

from throughput of the physical channel.

If data are transmitted in both directions the useful

throughput of data link will be 94% from throughput of Lane

layer, and, correspondingly, 75% from throughput of

physical channel.

If frames with smaller size are used for data

transmission, the useful throughput would be less.

B. QoS at the Data link layer

The QoS mechanisms in SpaceFibre standard are

supported at the Data link layer:

- Priorities

- Reserved bandwidth

- Scheduling

- Guaranteed delivery

Virtual channels are used for QoS implementation. The

Data link layer may support up to 32 virtual channels.

Particular implementations may support less quantity of

virtual channels, because hardware cost of this mechanism is

essential.

The priority layer, reserved bandwidth and set of timeslots

for data transmission should be assigned for every virtual

channel.

These parameters and QoS mechanisms determine

sequence of data frames transmission to physical channel for

different virtual channels.

The priority mechanism. The priority level should be

assigned to every virtual channel. Several virtual channels may

have same priority level or every virtual channel can have

uncial priority. If several virtual channels have data for

transmission (and credits) the first will be transferred a frame

from the virtual channel with highest priority. When several

virtual channels have the same (and highest) priority selection

will be made by other QoS parameters.

Priorities of virtual channels are used only at the data link

layer. In general case they do not correlate with packets’

priorities at the network layer.

Reserved bandwidth. The portion of channel’s throughput

should be reserved for every virtual channel. This portion

should include not only data payload but overheads also

(SpaceFibre frame header and tail, ACK|NACK, FCT).

The virtual channel may use more bandwidth than reserved

when other channels with highest and same priority do not

have any data for transmission. It can use all channel

bandwidth during long time (implementation dependent) to the

prejudice of the channels with lower priorities.

Selection of next virtual channel for data transmission is

made after transmission of every frame. Frame borders may be

not match with the packet’s borders. Thus after transmission

via physical channel of a part (in a frame) belongs to one

packet, the a part of another packet (transmitted via other

virtual channel) will could be transmitted. Thus transmission of

rare part that belongs to the first packet may be essentially

delayed.

Selection of next virtual channel for data transmission is

made after transmission of every frame. Frame borders may be

not match with the packet’s borders. Thus after transmission

via physical channel of part belongs to one packet, the part of

other packet (transmitted via other virtual channel) will be

transmitted. Thus transmission of rare part belongs to the first

packet may be essentially delayed.

The mechanism of virtual channels allows to rationale

divide physical channel’s bandwidths between virtual

channels. The bandwidth of a single virtual channel may be

used inefficiently.

The mechanism of virtual channels allow to rationale

division of physical channel’s bandwidths between virtual

channels. The bandwidth of one virtual channel may be used

no effectively.

III. ON-BOARD NETWORK FOR VIDEO DATA STREAMING

Let’s consider the part of onboard network represented on

Fig. 1 as the use case.

328

Video camera 1

R
Video camera 2

Video camera 3

Video camera 4

Video camera 5

R

R
R

Display 1

Display 2

Display 3

CBOC

R

CBOC Memory

CCM

Fig. 1. An example of the part of onboard network

The types of traffic are transmitted via this network:

- Command traffic (packets with constrained size –

64 Bytes, transmission rate is very low, delivery

time is critical);

- Real time video traffic (size of video frames could

be about some Mbytes, they may be transmitted by

one or some packets, data rate is high, delivery time

and jitter of delivery time are important parameters)

- Other data – Best Effort (BE) traffic

In our use case data paths of these traffics are competing.

All considered traffic types may be transmitted via one data

link. Let’s evaluate influence between the traffic types. It

essentially depends on virtual channels parameters; therefore

we make some decisions about these parameters.

We plan to use separate virtual channels for every traffic

type. There are several sources of same traffic type (for

example, several video cameras). Separate virtual channels

could be used for traffic from every source or traffic from all

sources could be transmitted via one virtual channel. (The

quantity of virtual channels in the SpaceFibre is constrained

by 32, but concrete device may support much less channels

due to hardware constraints.)

A. Command traffic

The command traffic is most critical for the onboard

network. Therefore we assign the highest priority to a virtual

channel hat is selected for this traffic. The command could

be transmitted via fixed or random timing intervals. Thus, its

transmission could be permitted in all timeslots. The reserved

bandwidth for this virtual channel should correspond to the rate

of command traffic, in our use case this rate is 1 – 3%. If in a

certain time moment the rate of command traffic would be

higher than the reserved bandwidth, the commands will be

transmitted as this virtual channel has highest priority during 1

ms – 1s (implementation defined). In most cases duration of

increasing of command traffic is essentially less than this

interval.

Let’s evaluate influence of other traffic to command traffic

delivery time. In worst case a command will wait for

transmission of one SpaceFibre frame in every data link. A

virtual channel for Command traffic has highest priority,

therefore frames from it could wait for transmission of only

one frame independently from quantity of virtual channels and

its traffic. If transmission rate in a physical channel is

1,25 GBit/s transmission time of a frame with maximal length

is 264 ns.

The graphs of dependency between command delivery time

and quantity of transit routers are represented in Fig. 2. The

graph «without other data» corresponds to the case when no

other data is transmitted via the network; the SpaceFibre frame

with a command will be translated via all data links without

delays. The graph «with other data» corresponds to the case

when the command waits for transmission of one SpaceFibre

frame in every data link. The graph «with other data,

Broadcast, FCT, ACK» corresponds to the case when the

command waits for transmission of one SpaceFibre frame, one

329

Broadcast, one ACK and one FCT in every data link. These

graphs show that maximal delivery time grows essentially

with increasing of routers quantity, but in all cases is less

than 35 us.

Fig. 2. The graphs of dependency between command delivery time and

quantity of transit routers (transmission rate in the physical channel is
1,25 GBit/s)

B. Real time video traffic

The length of video frames is essentially bigger, than the

length of commands. Transmission of video frames is

periodic. If uncompressed video is used, the length of all

video frames is equal, it can be 1 – 2 Mbytes and even more.

If compressed video is used, the size of video frame depends

from its type. The size of I-frame may be some Mbytes

(typically a bit more than size of one uncompressed video

frame). The size of P- and B- frames is about ten times less

than the size of I-frames.

The maximal delivery time and jitter (jitter of delivery

time) are critical parameters for real time video traffic.

Therefore, we assign next level of priority after command

traffic to a virtual channel that used for real time video

transmission. The reserved bandwidth for this virtual

channel depends on size of video frames and its rate. Video

traffic is periodic, thus potentially we may use scheduling

QoS for this traffic.

One video frame may be transmitted via the network by

one or several packets at the transport/network layer.

Correspondingly to the SpaceFibre standard, packet size

does not lead to changes in delivery time for traffic that is

transmitted via other virtual channels. Data are transmitted

by frames with constrained maximal length at the data link

layer. Selection of next virtual channel for transmission is

implemented after transmission of every frame. Thus data from

virtual channel with a high priority will be delayed no longer

than transmission time of one SpaceFibre frame of maximal

size.

Let’s consider transmission of uncompressed video with

the size of video frame 1 – 2Mbytes and the rate of 24 frames

per second via the network. Required bandwidth for

transmission of video frames with 1 Mbytes size is 25%, for

transmission of video frames with size 2 Mbytes is 50%, when

the channel rate is 1,25Mbit/s.

The graphs in Fig. 3 represents transmission time of one

video frame via the path that includes one router and tree

routers when other traffic does not transmit via the network

(video data transmitted continuously).

These graphs shown that transmission time strongly

depends from size of a video frame and practically does not

depend from quantity of transit routers – delay of a SpaceFibre

frame in one router is essentially less than delay of frame

transmission via physical channel.

Fig. 3. The graphs of dependency between video frame transmission time

and video frame size (channel rate 1,25Mbit|c)

When video flow transmission is realized by whole video

frames a sequence of SpaceFibre frames, which belongs to one

video frame, is transmitted to the network continuously

(including the case when some transport/network packets are

used for transmission of one frame). As result the SpaceFbre

frames will be transmitted via every data link during long time

(about 9 ms for 1 Mbyte length, about 18 ms for 2 Mbytes

length). (Then data will not be transmitted via this virtual

channel during long time.)

The width of Bandwidth credit counters in the network

equipment should be enough for count during 9 ms (18 ms)

without achieving Minimum Bandwidth credit Threshold.

If Minimum Bandwidth credit Threshold will be achieved

the lowest priority level will be assigned automatically to this

330

virtual channel. In this case the video frame delivery time

may be grow dramatically if other traffic is transmitted via

the network.

Let’s consider influence of other types of traffic to

streaming (video) traffic. In our sample rate of command

traffic is very low, packet length is 64 Bytes << max frame

length. Therefore increasing of delivery time for video traffic

is less than 1%.

Traffic with lower priority (for example, Best Effort

traffic) may be transmitted via the network together with

streaming traffic (compete with streaming traffic in routers).

Therefore in the worst case every SpaceFibre frame, which

belongs to the streaming traffic, will wait for transmission of

one frame from BE traffic in every data link. It leads to

increasing of streaming PDU’s (video frame) delivery time

in two times. If BE traffic may appear and disappear in

different time moments, jitter of delivery time for streaming

traffic will be about 9 ms (for PDU length 1 MByte), and

about 18 ms (for PDU length 2 MByte).

There are some flows of video traffic between different

sources and destinations in the network, which compete in

routers. Let’s suppose that all these flows are transmitted via

one virtual channel (let’s mark it VCi). If transmission of a

packet from one source (let’s mark it packet_1) to the output

port of the router has started, the packet from other source

(let’s mark it packet_2) would not be transmitted to the same

virtual channel (VCi) of this output port. The packet_2 will

be transmitted to the output port only after transmission of

packet_1 is finished. The next portion of data, which belongs

to the packet_1, may be not ready (e.g. corresponding

SpaceFibre frame may be delayed in a previous router),

therefore the VCi in this case can stay idle during long time.

The packet_2 should wait of the virtual channel releasing

in the router all this time. Therefore, delivery time of the

packet_2 is increased in some times. The waiting time is

proportional to the packet size. Therefore if one virtual

channel is used for some data flows, the packet size at the

transport/network layer should be strongly constrained (and

should be essentially less than the size of video frame).

However it will lead to essential increasing of overheads due

to packets headers (and correspondingly decreasing of useful

throughput).

If there is possibility of using a separate virtual channel

for every source of video traffic (if tis traffic is competed in

the network), then any constraint to SpW packet length is

not required. If video traffic from all these sources has same

parameters, the equal settings may be assigned to all virtual

channels used for this traffic.

Let’s consider the part of the network where video traffic

from tree sources is competing. Size of a video frame is

1 Mbytes, and rate is 24 video frames per second. The equal

priority (next priority after command traffic) and equal

portion of bandwidth/throughput (25%) is set for every

virtual channel assigned to video traffic.

In the best case all sources will transmit video frames in

different time periods and BE traffic will not present in the

network in these periods. In such case the video frame

delivery time will be about 9 ms. In the worst case all sources

will transmit video frames in one time and BE traffic will be

also transmitted in this time. In this case worst delivery time

for every SpaceFibre frame, which belongs to video traffic

may be represented as the sum of waiting time (transmission

time of one SpaceFibre frame, a frame from BE traffic and two

SpaceFibre frames that belongs to video traffic from other

sources) and transmission time of the considered frame. In our

case, delivery time of video frame in this case will be in four

times bigger than in case of empty network; its value will be

about 36 ms, and, correspondingly, jitter will be about 27 ms.

Thus if there are Lv video data flows with same parameters

and BE data flows (its parameters do not play any role) in the

network, and they compete, the maximal delivery time of video

frame is in Lv times bigger than delivery time of such video

frame in empty network (without any other data).

In general case if in the network there are Lh data flows

with priority higher than considered, (Lv-1) data flows with

same priority and some data flows with lower priority (its

quantity in not important), the maximal delivery time of a

SpaceFibre frame, which belongs to the considered data flow,

may be evaluated by next formula:

TbTvThTv
Lv

v

i

Lh

i

i
 11

max (1)

where Thi – transmission time of SpaceFibre frame of

maximal length, which belongs to highest priority traffic,

Tvi – transmission time of a SpaceFibre frame of maximal

length, which belongs to traffic with same priority as the

considered;

Tb –transmission time of a SpaceFibre frame of maximal

length, which belongs to the traffic with lowest priority.

The maximal length of a SpaceFibre frame (and,

correspondingly, its transmission time) for the concrete traffic

in the network can be less than maximal length in the standard

(256 bytes). This situation takes place when the packet length

for considered traffic type is less, than 256 Nchars, and the

data flow rate is small. In this case every packet will be

transmitted in a separate SpaceFibre frame.

Jitter may be evaluated by the formula:

TvTbTvThTvTvTvj
Lv

i

i

Lh

i

i
 11

minmax (2)

These evaluations show essential jitter for streaming

(video) data flow. The jitter is in some times bigger than

minimal delivery time of video frame.

Let’s consider using of SpaceFibre scheduling QoS for

jitter decreasing. We analyze an approach, when the timeslots

and epoch changes in all data links of the network

synchronously. The duration of a timeslot corresponds to

transmission of every possible SpW packet in the network

between source and destination.

In our use case rate of video frames is 24 frames per

second. Correspondingly, every data source should have 24

timeslots for data transmission of every second. The timing

interval between generation of two sequential video frames is

331

about 41,7 ms. Transmission time of one video frame via the

network (when does not transmitted any other data) is about

9 ms (1Kbytes length), about 18 ms (2Kbytes length). We

consider the sample of network with tree sources of video

with length of video frame 1Kbytes. We select duration of

epoch equal to 41,7 ms, and divide it to four timeslots with

duration about 10,4 ms. Tree timeslots we assign to virtual

channels for video traffic. Forth timeslot is used for BE

traffic. As noted above the command traffic may be

transmitted in all timeslots (also separate timeslot for this

traffic is not required). With these settings the video traffic

from one source can compete in the network with one

SpaceFibre frame belongs to command traffic (influence of

this traffic is minimal), and with one SpaceFibre frame

belongs to other video traffic or BE traffic (waiting time is

not more than time of one SpaceFibre frame transmission

time). As result jitter is less than 1 us.

However, the sources of streaming data with different

PDU’s length (for example, compressed video) may be exist

in the network. Using of such approach can lead to

ineffective using of channel throughput. The duration of

timeslots should be corresponds to transmission time of

PDU’s with maximal length. For example, in case of

compressed video duration of timeslot should be enough for

transmission of I-frame. But P-frames and B-frames length

can be less than I-frame length in ten times. Quantity of

transmitted P- and B- frames in dozen times greater than

quantity of I-frames. Therefore in most timeslots the channel

will be not used (data will be not transmitted) about 90% of

timeslot’s duration.

If there are some sources of streaming traffic with

different and aliquant period of PDU’s generation in the

network, the task of timeslot duration’s selection and

quantity of timeslots in epoch selection is nontrivial.

C. Best effort traffic

The lowest layer of priority can be assigned for virtual

channel, selected for Best Effort traffic (BE), because

typically does not exist any restrictions for transmission time

of this traffic type. Rate of BE traffic in some cases may be

known, but in other cases it may vary essentially during

system operation (BE traffic may have periodic or aperiodic

nature). The portion of bandwidth reminder from other

virtual channels, may be assigned for the BE traffic virtual

channel. Data transmission via this virtual channel will be

possible when there is no data for transmission in other

virtual channels with higher priorities. In our use case the BE

traffic compete in the network with command traffic and

video traffic, therefore the maximal delivery time for BE

traffic is about 27 ms.

In general case, if there are Lh command flows, Lv data

flows of streaming (video) traffic (with equal parameters)

and the Best Effort data flow (its parameters do not play any

role) competing in the network, the maximal of transmission

wait time for the BE traffic can be evaluated by the formula:

Lv

i

i

Lh

i

i TvThTb
11

max (3)

Where Tvi – transmission time of a SpaceFibre frame that

belongs to command traffic;

Tvi – transmission time of a SpaceFibre frame that belongs

to streaming (video) traffic (in the empty network)

IV. CONCLUSION

In the paper we show that quantity and packet sizes of low

priority traffic does not affect maximal delivery time of

command traffic (highest priority traffic). The maximal

delivery time of command traffic depends only from the

number of transit routers. When path of the command traffic

includes ten routers the maximal delivery time is less than 35

us; it is acceptable for most systems.

The evaluations of delivery time and jitter for streaming

traffic (for example, video traffic) with real time requirements,

when other traffic is transmitted via network, are represented in

our paper. We show that when streaming (video) traffic from

some sources is competed in the network it is appropriate to

transmit the traffic from different sources via different virtual

channels. If it is impossible (quantity of virtual channels

implemented in the network equipment is not enough), the

video traffic should be transmitted by small size packets (on

the transport and network layer). However using of small size

packets leads to increasing of transmission overheads,

increasing of delivery time and decreasing of useful

throughput.

We evaluate achievable timing parameters for streaming

(video) traffic for considered use case when guaranteed

bandwidth QoS is used (a separate virtual channel is used for

every video traffic flow). The maximal delivery time of the

video frame is less than 36 ms and jitter is less than 27 ms.

These values do not depend on Best Effort traffic parameters in

the network.

In this paper we show possibilities and constraints of using

QoS scheduling when timeslot duration allows transmission of

whole a PDU (for example whole video frame) between source

and destination. The epochs and timeslots change

synchronously in all data links of the network.

We show that this type of QoS allows to essentially

decrease jitter for streaming traffic with equal sizes of PDUs

(for example video traffic without compression). In our use

case jitter is less than 1 us (jitter is equal 27 ms without

scheduling). But this approach leads to essential decreasing of

useful throughput when PDUs with different sizes are

transmitted (for example compressed video). If there are some

sources of streaming traffic with different and aliquant period

of PDU’s generation in the network, the selection of timeslot

duration and quantity of timeslots in the epoch is nontrivial

task for developer.

We show dependency between maximal transmission wait

time for the Best Effort traffic and parameters of other traffic

in the network. We evaluate maximal wait of transmission time

for considered use case; it is about 27 ms.

ACKNOWLEDGEMENT

The research leading to these results has received financial

support from the Ministry of Education and Science of the

332

Russian Federation under grant agreement no.

RFMEFI57814X0022.

REFERENCES

1 I. Korobkov “Adaptive Data Streaming Service for

Onboard Spacecraft Networks”, Proceedings of 17th

Conference of Open Innovations Association Finnish-Russian

University Cooperation in Telecommunications (FRUCT),

2015, pp. 291-298.

2 CCSDS 766.1-B-2 Digital Motion Imagery

Recommended Standard

333

 Test & Verification (Long)

334

How to design, test and verify the physical layer of
SpW networks

 SpaceWire Test and Verification session, Long Paper

Giorgio Magistrati (Author), Norbert Bonnici, Wahida

Gasti, Farid Guettache, Jorgen Ilstad
Data Systems Division ESA ESTEC

Noordwijk, The Netherlands
Giorgio.Magistrati@esa.int, Norbert.Bonnici@esa.int,

Wahida.Gasti,@esa.int, Farid.Guettache@esa.int,
Jorgen.Ilstad@esa.int

 James Windsor, Science Directorate
ESA ESTEC

Noordwijk, The Netherlands
james.windsor@esa.int

Alex Palacios, Earth Observation directorate
ESA ESTEC

Noordwijk, The Netherlands
alex.palacios@esa.int

Abstract
The AIT/AIV spacecraft test campaign undergoes an electrical
verification program for all the units and instruments. The
SpaceWire standard calls for LVDS signals in the physical layer
and these are considered critical because the present LVDS
technology is capable to drive signals up to 400 Mbit/s with low
common mode voltage. Reliable SpaceWire communication can
be difficult in the presence of induced noise, ground level
differences, impedance mismatches, failure to effectively bias for
idle line conditions, and other hazards associated with
installation of a SpW network within the spacecraft. Therefore,
the verification steps of SpW signals are very important and they
shall be addressed with special care.
Moreover, the new revision of the SpaceWire standard ECSS-E-
ST-50-12C* rev.1 (currently under review) defines new
requirements for the SpW signals in particular for the skew and
the jitter budget and the margins. In addition, responsibilities for
the two main actors (i.e. the unit manufacturer and the cable
assembly manufacturer) are defined via jitter and skew budget
calculation. All these aspects motivated ESA to the internal
development of boards to perform the new requirement tests.
This paper will summarize the related test campaign and the test
coverage of various clauses of the new revision of the standard. A
comprehensive plan and recommendations for the validation
measurement of SpW link from the design to the final
qualification/acceptance is proposed, distinguishing
responsibilities among system architect, component
manufacturer, unit supplier, cable assembly manufacturer and
system integrator.

References to on-going ESA projects will be presented.. The
effect on the overall skew and jitter budget calculation is
discussed as well.

Index Terms—SpaceWire, Networking, Spacecraft
Electronics.)

I. INTRODUCTION
After a mission is adopted, the related project planning and
implementation encompass all of the processes carried out in order to
plan and to execute a space project from initiation to completion at
all levels in the customer‐supplier chain in a coordinated, efficient

and structured manner. Project breakdown structures provide the
basis for creating a common understanding between all actors. They
break the project down into basically 3 tree structures that are: the
function tree, the specification tree and the product tree. The primary
project product is the spacecraft. Following [1], the spacecraft
product development is closely linked to specification, design,
manufacturing and test activities on all the levels related to the
spacecraft product tree supported by a V-Model process involving a
succession of decisions based on reviews.

The V-Model process is thus designed as guidance for planning
and executing the spacecraft product development taking into account
the entire system (i.e. on-ground and on-board system products) life
cycle development. It defines the results to be achieved and it
describes the actual approaches for developing these results. At all
levels of the product tree, the acceptance decision is linked to test
results. In addition the V-Model specifies the responsibilities of each
participant involved in each level. Thus, it is describing in detail,
"who" has to do, "what" has to be done and "when" it has to be done
within a spacecraft project.

Figure-1: Basic structure of the V-model

335

Figure 1 indicates the basic structure of the V-model. It shows a
top-down approach starting from the system specification down to the
detail design of products at the lowest level. The first top-down phases
are concluded by the Critical Design Review which should initiate the
bottom-up approach. The bottom-up approach is punctuated with tests
ranging from lowest level products tests (e.g. the units, the
instruments, the harness etc.) to the final integration/assembly
spacecraft acceptance tests.

Thus specifying the appropriate test cases for each requirement is
essential to the V-model. The top-down structure of the requirement
specifications and the design corresponds to a bottom-up structure of
the requirement test cases.

The introduction of the V-model as a paradigm in the engineering
flow of a spacecraft system results in a significantly more structured
way of development within the supplier chain. The more the
requirements are specified in detail, the more obvious the limited test
coverage of complex assistance systems becomes.

In this paper, we present the specific case of how to design, to test
and to verify the physical layer of SpW networks implemented within
a spacecraft. The spacecraft SpW network specification at system
level is based on the ECSS-E-50-12C. The paper will not address the
SpW physical layer implementation over a backplane. The SpW
standard covers three (physical, data-link and network) of the seven
layers of the OSI model (ISO/IEC 7498-1) for communications. The
ECSS-E-50-12C physical layer requirements are considering a point-
to-point serial Data Link Interface depicted by Figure 2. The SpW
Data Link Interface is constituted by a pair of LVDS driver/receiver
exchanging signals via PCB tracks, connectors and an assembled
cable with connectors as depicted by Figure 2.

Figure 2: SpW Data Link Interface

The ECSS-E-50-12C is a specification made applicable to the

overall supplier chain involved in the SpW Data Link Interface
procurement. This standard does indicate any system apportionment
requirements, thus it does not take into account the V-Model process
so it does not cover the "who" has to do "what" and "when"
responsibility aspects.

This is an issue for the spacecraft AIT/AIV work when the SpW

Data Link Interface constituents are provided by different suppliers
(i.e. unit supplier, instrument supplier and harness supplier). These
suppliers have designed only one constituent of the SpW Data Link
Interface, e.g. the driver node, and accordingly they have tested it only
at their level and with EGSE representative to their level. The test
coverage is only partial w.r.t the one related to the spacecraft. It is not
addressed by the SpW standard how these supplier tests can be
complemented at system level to ensure a reliable data communication
over the SpW link. .

The new version of the SpaceWire standard [3], still under
revision, describes a more thorough set of measurements for the
SpaceWire Physical Layer under section 5.3 but it is still missing the
top-down V-Model specification and design, and the bottom-up test
approach.

Thus, this paper reports on the test of a sub-set of requirements

related to the physical layer to introduce a discussion on the physical
layer requirements of the SpW Standard and its revision 1 w.r.t to the
V-model spacecraft development process. To this end,

• section II indicates the selected set of requirements supporting
the discussion

• section III provides the review of the revision of the SpW
standard

• section IV describes the test bench developed by ESA for the
review of the new Standard

• Section V provides the test results and the preliminary
comments

• The paper’s conclusion (section VI) provides recommendations
on how to design, test and verify the physical layer of SpW
networks

II. SPW PHYSICAL LAYER SELECTED REQUIREMENTS
In this section parts of the physical layer requirements presented in
the new SpW standard currently under revision. The SpW Data Link
interface requirements are falling under mainly three categories that
are design requirements, signaling requirements and timing
requirements. The signaling and timing requirements are linked to
performance aspects that are mainly affected by the spacecraft
grounding aspects (signaling) and with the spacecraft SpW network
data rate aspects (timing). They are the two categories of
requirements that have different test perspectives and constraints
when addressed at unit or instrument level and when addressed at
spacecraft level. The following Sub-sections are indicating the related
set of requirements extracted from [3] for test and review.

A. SpW Physical Layer Signaling Requirements
The SpW signaling requirements are specified in section 5.3.5.
Tables 1 and 2 contain the selected sets of requirements for
which a test bench has been implemented and measurement test
procedures have been established to ensure that a unit or an
instrument is compliant with the standard.

The requirements are categorized in two parts:
1. The LVDS transmit signals requirements specified in section

5.3.5.2.2 (see Table 1)

Req.ID Requirement description
a When terminated, for measurement purposes, by

two 50 Ω ± 1% termination resistors in series
forming the required 100 Ω ± 1% termination
impedance, the two outputs of the LVDS line driver
(Out+ and Out-) shall have a common mode
voltage, Vcm, measured at the junction of the two
50 Ω ± 1% termination resistors, of 1.125 V to 1.45
V

b When terminated, for measurement purposes, by a
100 ± 1 Ω termination resistor, the two outputs of
the LVDS line driver (Out+ and Out-) shall have
amplitude, Vtx, of +250 mV to +450 mV, as
illustrated in Figure 5-8, and a differential
amplitude (Out+ minus Out-) of 2Vtx

c When a logic 1 is to be transmitted +Vtx shall be
greater than –Vtx

336

d When a logic 0 is to be transmitted +Vtx shall be
less than –Vtx

e The steady state difference in magnitude of the
common mode voltage, Vcm, when transmitting a
logic 1 compared to when transmitting a logic 0
shall be less than 50 mV.

f The steady state difference in magnitude of +Vtx
or –Vtx when transmitting logic 1 compared to
when transmitting logic 0 shall be less than 50 mV.

g The differential output of the line driver, Out+ - Out-
, shall rise and fall monotonically with a rise time
(Tr) and fall time (Tf) of at least 260 ps and less
than 0.3 times the bit period (T), as illustrated in
Figure 5-9, with the rise time being from 20% to
80% of the difference between the two steady state
values of the line driver differential output and the
fall time being from 80% to 20% of those values.

h The differential output of the line driver, Out+ -
Out-, should rise and fall monotonically with a rise
time (Tr) and fall time (Tf) of less than 3 ns .

i Ringing on the differential output of the line driver,
Out+ - Out-, shall not be greater than ±0.4Vtx.

j The maximum dynamic difference in magnitude
between +Vtx or –Vtx shall be less than 150 mV.

TABLE 1: LVDS transmit signal requirements

2. The LVDS receive signals requirement specified in section

5.3.5.2.3 (see Table 2)

Req.ID Requirement description
a The receive signals shall be terminated by a 100 ± 10

Ω termination resistor.
b The receive signals should be terminated by a 100 ± 1

Ω termination resistor when an external termination
resistor is being used.

c The SpaceWire LVDS line receiver input
characteristics and sensitivity shall be as defined in
TIA-644-A.

d A differential signal greater than +100 mV (i.e.
+Vrx is greater than –Vrx by more than 100 mV) shall
result in logic 1 at the line receiver output.

e A differential signal less than -100 mV (i.e. +Vrx is
less than –Vrx by more than 100 mV) shall result in
logic 0 at the line receiver output.

f The line receiver shall maintain correct operation for
differential input voltages of up to 600 mV magnitude.

g The line receiver shall tolerate a voltage on the
receiver inputs in the range 0 V to +2.4 V relative to
the line receiver ground and operate correctly.

h The line receiver should tolerate a voltage on the line
receiver inputs beyond the range 0 V to +2.4 V
relative to the line receiver ground and operate
correctly.

TABLE 2: LVDS receive signal requirements

B. The SpW Physical Layer Timing Requirements
The new SpW standard rev.1 [3] introduces an informative

Annex A for the measurement of Data-Strobe Skew and Jitter. The
requirements of Annex A contain the selected set of requirements for
which a test bench has been implemented and measurement test
procedures have been established to ensure that a unit or an instrument
is compliant with the standard.

III. REVIEW OF THE NEW SPW STANDARD

A SpW communication channel implemented using a LVDS
physical layer is depicted in fig. 5-7 of the standard and here below
(see Figure 3):

TX RX
Dout Din

Medium

TX RX
Sout Sin

TXRX
DoutDin

TXRX
SoutSin

Z

Medium TransmitterReceiver

ReceiverTransmitter

Z

Z

Z

Z is the 100 Ω termination resistor

+Vtx

-Vtx

+Vrx

-Vrx

Dout+

Dout-

Sout+

Sout-

Dout+

Dout-

Sout+

Sout-

Din+

Din-

Sin+

Sin-

Din+

Din-

Sin+

Sin-

Figure 3: SpW Communication channel

However the figure presented in the Annex A of the new standard

is considered more detailed: all the elements including source logic,
PCB, connectors, cable assembly and destination logic that play an
important role, are shown as per Figure 4.

Figure 4: Elements of a SpW Communication channel (Sending

node transmitting to receiving node from left to right)

Starting from Fig.4 we can add information related to the various

stakeholders that are namely: Equipment Suppliers, harness (i.e.
Cable Assembly) Manufacturer and Prime. The Prime role usually
performed by two different people or entities: the System Architect
that at the beginning of the project has to take care of the correct
definition and specification of the various elements and the System
Integrator that has to perform the integration and the verification at
integrated level of the various units (and harness).

337

Figure 5: Elements and Responsibility of a SpW Communication

channel (one direction)

Section 5.3.5.2.6 of the standard specifies requirements for the

signal characteristic (edge separation) and quality (essentially
differential amplitude) of the LVDS signal at the line receiver inputs.
A test method is provided: repeated sequence of packets (composed
by PSR stream and 0x55 pattern) to be measured across the line
receiver termination resistor. The editor of the Standard is clearly
aware that measurement at termination resistor level is not feasible,
when the unit is closed and this is indeed the situation when an a
model of an equipment is integrated on a test bench or on the
Spacecraft for test, therefore clause 5.3.5.2.6e states: “When access to
the termination resistors is not possible, the receive signal may be
measured at the connector adjusting for the transfer impedance
between the connector and the termination resistor or other equivalent
method”. This is a quite crucial point and we have severe doubts
related to the feasibility of the first proposed method: the transfer
function of the receiver board has to be provided and validated by the
Equipment supplier but according to our experience this transfer
function is usually not calculated by an Equipment supplier,
additionally the transfer function of the connector that is part of the
overall receiver board transfer function is usually not provided by the
connector manufacturer.

A. SpW LVDS “Port Replicator”

We propose to follow a different approach: a LVDS port

replicator could be interposed between the cable assembly and the
Equipment’s SpW LVDS circuitry and as such emulates this. This
LVDS port replicator is essentially a LVDS receiver + driver. The
interposition of the LVDS port replicator will affect the overall
propagation delay of the SpW communication channel and it will add
as well an extra contribution to the overall skew and jitter budget but it
will allow to measure accurately the characteristic of the incoming
LVDS signal in the specific implementation mainly in term of
amplitude (differential and absolute) and timing.

For what concerns the amplitude of the signal it is important to
underline that not only the differential amplitude (min and max as
defined by 5.3.5.2.6a2&3) has to be measured but also the min and the
max absolute voltages (as defined by 5.3.5.2.5k clause “A line
receiver input should withstand without failing a direct connection to
a voltage between -0,3 V and +3,9 V relative to the driver [to be read
as receiver] ground reference” that means that the incoming signal
should stay within this limit). The LVDS port replicator has to be
electrically connected to the signal ground of the Unit under Test (and
this could be done using the pin 3 of the connector in case of AL
assembly). The LVDS port replicator must contain active parts and
the voltage supply should be provided by batteries or receiver unit
power supplies

The insertion of this LVDS port replicator would allow as well to
measure the difference in the common ground as specified by

5.3.5.2.4a : “The maximum potential difference between the local
ground at one end of a SpaceWire link and the local ground at the
other end of that SpaceWire link shall be between -1 V and 1 V”. It is
assumed that the verification of this requirement is falling under the
responsibility of the Prime(s): the system Architect during the
architectural definition has to verify this aspect by analysis and system
integrator during the integration phase will perform the final
verification by test.

B. Integrating SpW Units on a test bench or on a spacecraft

Even if the LVDS port replicator makes it possible at the time of

integration, to verifythe quality of the incoming signals in the case of
an ideal implementation , w/o the transfer function of the Receiver
unit (from connector to the receiver termination resistor), the real
quality of the signals at the input of the receiver component cannot be
assessed of a closed unit. In absence of the transfer function an
estimation of the degradation in amplitude (in dB) and frequency
spectrum could be proposed and applied to the measurements
performed on the LVDS port replicator: the obtained figures could be
finally compared with the requirements defined in section 5.3.5.2.6 of
the standard.

Alternatively and this is indeed what it has been proposed by the
Prime of Solar Orbiter in the Electrical Integration Test Plan signal
characteristics to be measured directly at connector level of the unit
have been specified.

The proposed values are applicable to both the SpW Input (Data
and Strobe IN) and the Output (Data and Strobe Output) signals. The
measurements are proposed to be taken using an ad-hoc test box, an
Integrated Test Box (ITB), that has to have a minimum impact on the
signal quality. The values proposed by the Prime are assuming a
degradation introduced by the circuit and the Prime estimate that this
degradation will not be worse than 7.6dB (from 240 mV down to
100mV that is the minimum specified as differential amplitude by the
ANSI TIA 644 standard and section 5.3.5.2.2 of the standard). This
degradation has not been independently confirmed and should be
taken as a working hypothesis. Ultimately the impact of the
attenuation is clearly a function of the data rate sought operated at and
the length of the transmission line i.e. lower data rate means
attenuation of the high frequency components of the rising and falling
edges is affecting less the LVDS receiver’s ability discriminate
between 0’s and 1’s.

For the MTG Project the prime produced a technical note that

synthesizes the context of the MTG-I and MTG-S Spacewire links, the
definition of the grounding rails dedicated to these links, and the
testing approach at unit level and system level. The technical note
defines the measurement to be done at unit connector level for SpW
signals and in particular eye diagram are required to be performed
while triggering on the Data and Strobe signal positive and negative
edge at +100mV for rising edge and -100mV for falling edge and also
at 0V level. The eye diagram are used to derive the minimum edge
separation without taking into consideration the possible effect of the
unit connector and PCB on signal degradation. The applicability of
figures and values defined by ANSI-TIA-644-A at unit level created
some Non Conformances: e.g. the measurements of the LVDS
dynamic output voltage during EQM qualification tests showed a
variation higher than the 150 mV specified at the LVDS circuit by the
ANSI-TIA-644-A and several clarification sessions within the MTG
team were needed to resolve the non-conformance.

For BepiColombo, System AIT performed electrical
measurements on the SpW interface following mounting of a SpW
unit on the spacecraft. These tests involved inserting a dedicated

338

passive test-adaptor on the UUT’s SpW connector and performing
single-ended measurements of each line against the unit’s signal
ground (via Pin 3). The disadvantage of this approach is that if a non-
conformance is measured then it is already too late and possible
damage might have been caused. In cases where additional
precautions were needed, a SpaceWire EGSE was used in between
the units and measurements were taken on the SpW EGSE interface to
the unit under suspicion because it has been observed that a
substantially disturbed SpW signal has been cleaned by the EGSE unit
and does not propagate further along the SpW link. However this
means that single-ended measurements are made against the EGSE’s
signal ground and not the UTT so these measurements cannot be used
to close out the test, meaning the SpW recorder must eventually be
removed and the measurements repeated in order to complete the
integration procedure. Ideally, having a means to perform safe
measurements against the UUT’s input interface vs. signal ground
combined with having a clear requirement on the limits of the
differential voltage would have allowed more efficient integration
testing of payloads and data handling units on the spacecraft.

A LVDS port replicator can indeed be used to verify the quality of
the LVDS signals generated by the driver circuit. However, it has to
be underlined that the requirements defined in section 5.3.5.2.2 of the
standard (LVDS transmit) are not directly applicable to measurements
performed at unit/board connector level because they are specified at
driver level (they are indeed directly taken from the ANSI-TIA-644-
A), therefore also in this case a transfer function including the PCB
and connector has to be subtracted to compare the obtained
measurements with the requirements at driver components or even
better based on the consideration that all the drivers components are
compliant with the ANSI-TIA-644-A standard (therefore no need to
verify this…) it is more important to specify a max degradation
(induced by the PCB circuit and by the connector of the driver unit) in
amplitude and timing characteristic of the signal at connector level
that can be tolerated at system level (and this was what has been done
by the Prime in Solar Orbiter).

C. Data and Strobe signals : Skew & Jitter budget

Section 5.3.6 of the standard defines and specifies how to measure

the Data and Strobe skew budget and how to evaluate the maximum
achievable operating frequency (inverse of minimum bit time) of a
SpaceWire link. A margin of 10% is applied to the calculated skew
figure. A more detailed explanation is included in Annex A of the
standard where the various elements composing a SpW
communication channel are individually addressed:

• source logic;
• driver;
• connections from driver to unit connector;
• cable assembly;
• connections from unit connector to receiver;
• receiver and destination logic.

Responsibilities are assigned for the specification and the

measurement of the individual contributions to the overall skew and
jitter budget, examples are:

5.3.2.6.2a. “The equipment manufacturer shall provide the

specification for the worst case skew between the differential data and
strobe output signals at the SpaceWire connector of a unit
(DSskewOUT), including the effect of transmitter jitter”

and

Annex A- A3a. “The cable assembly manufacturer provides the
worst case skew between the differential data and strobe signals”

However the proposed principle is not fully in line with a V-model

verification process where the System Architect is supposed to be in
charge of the architectural definition of all the communication
channels and he is supposed, at the beginning of the project, to define
an apportionment of the skew and jitter budget among the various
contributors and to specify individual figures for all the units and the
cable assemblies. The System Architect is in charge of maintaining the
skew and jitter budget along the project life. It’s a task normally
shared with the System integrator at the end of the AIT phase. The
Equipment supplier is in charge of the selection of components
(source/receive logic and LVDS transmitter) and specification of the
board/unit design in order to be compliant with the skew and jitter
figures defined by the system architect. A similar role is performed by
the Cable Assembly manufacturer for the cables and connectors. To be
noted that the selection of components has to be done taking into
consideration radiation, temperature range and aging. |Indeed all the
manufacturer datasheets and SMD drawings for qualified components
are defining values in the full T range and after irradiation.

The development of the units and cable assemblies supported by
design justification files and analyses, if approved by the
Prime/agency, can then be followed by the manufacturing phase.
Measurements are needed at unit level and at integration level to
confirm that the specified requirements have been fulfilled. Section
5.3.6 and Annex A are defining how to measure the jitter and skew
contribution and the system integrator has to reassess the overall skew
and jitter budget, to be noted that the measurement specified in section
5.3.6 and Annex A are done at ambient T and before exposition to
radiation that will happen in orbit therefore margins or correction
factor have to be applied on the measured values in order to compare
the real measured budget with the estimation done at the beginning of
the project and evaluate possible out of compliance. Availability of
measurements done at different model (EM, EQM, PFM/FM) will
make possible early verification of the skew and jitter budget with a
risk reduction.

To be noted that the table presented in annex A (table A-1) and
table 5-7 of the new standard erroneously does not include the jitter
contribution of the Receiver unit.

D. Bandwidth of measurement tools
The standard requires that the operator has to use an oscilloscope

and differential probes which have bandwidths of at least 1,05 times
the reciprocal of the signal rise time.

BW(BandWidth) = 1,05/(signal rise time).
A justification note states that the factor of 1,05 is a rule of thumb

requiring the bandwidth of the oscilloscope and probe to include the
third harmonic of the signal edge bandwidth. The signal edge
bandwidth is given by 0,35/rise-time (the bandwidth of a signal is
0,35/rise-time). The fastest signal rise time for LVDS is specified in
ANSI-TIA-644-A to be 260 ps, resulting in a minimum combined
oscilloscope and probe 3-dB bandwidth of 4 GHz. Allowing some
margin the standard gives a recommended combined oscilloscope and
probe 3-dB bandwidth of 5 GHz (which is the figure recommended in
TIA-644-A).

The specified rule of thumb gives a quite accurate representation
of the signal to be measured. All fast edges have an "infinite"
spectrum of frequency components. However, there is an inflection (or
"knee") in the frequency spectrum of fast edges where frequency
components higher than Fknee are insignificant in determining the
shape of the signal. To calculate Fknee:

Fknee=0.4/Trisetime (20-80 percent)

339

Fknee=0.5/ Trisetime (10-90 percent)
See [5]
Now, the above equations only tell us what the "useful" frequency

content is in the signal we want to measure. We need further to
specify to what accuracy we need to reproduce the signal. Depending
on the frequency response of the scope, which is either Gaussian or
maximally flat response, the Fknee can be multiplied with different
accuracy factors to determine the necessary bandwidth required for an
oscilloscope.

To achieve 3% accuracy the oscilloscope bandwidth needs to be:
Fbw= 1.9xFknee (Gaussian response) or 1.4xFknee (Max. flat amplitude
response). In contrast to achieve 10% accuracy, which is quite
sufficient in most cases, the result is: BW= 1.3*Fknee (Gaussian
response) or 1.2*Fknee (Max flat amplitude response).These equations
are appropriate as a guideline to determine the maximum frequency
the oscilloscope (including probes) should support to reproduce the
measured signal sufficiently.

To be underlined that the recommendation to use a 5GHz BW
oscilloscope in the standard is present also in section 5.3.5.2.6. where
“system test” at the receiver unit are described, in this case the
filtering effect of the parasitic capacitance (PCB, cable) are slowing
down the edges, therefore the 260ps as fastest edge is not in reality a
realistic value.

In Fig 6-8 rise and fall time of SpW signal have been measured at
the output of a SpW unit, probes with different BW (1.5 GHz and
20GHz) coupled with High BW DSO and the measurements are
showing that timing measurements are essentially the same (appx 340
ps).

Figure 6: ZD1000 (1 GHz) probe - DSO @ 40 GSps – Data Signal

(differential)

Figure 7: DS2005 (20 GHz) probe - DSO @ 80 GSps – Data Signal
(differential) – rise time

Figure 8: DS2005 (20 GHz) probe - DSO @ 80 GSps – Data Signal

(differential) – fall time

IV. ESA TEST BENCH

A test bench has been defined and developed in order to test the

set of requirements of the new SpW Standard defining the Physical
layer of SpW:
a) Measurements at node level and at component level (to

compare)
b) Measurements on Driver side

– Common mode (voltage, steady state difference, maximum
dynamic difference)

– Differential mode (amplitude, steady state difference, rise
and fall time, ringing)

– Jitter and skew contributions
c) Measurements on Receiver side

– Jitter and skew contributions
– Signal quality of received LVDS signal
– Absolute maximum ratings

Additionally significant effort has been spent in order to
implement non-intrusive measurements techniques and to carefully
place test point on the boards.

A.Test bench description
TEC-EDD has developed a board for testing and verification of

SpaceWire communication channels (see Fig.9). The board hosts six
(6) SpaceWire interfaces, four of them are nominal channels while
two are redundant.

LVDS drivers and receivers from different manufacturers have
been soldered (SpaceIC SPLVDS031/32 from SpaceIC,
SN55LVDS31/32–SP from TI, and GR54LVDS049SPW LVDS dual-
transceiver from Cobham Gaisler). Also two different types of Cross-
Point Switches (SN55LVCP22-SP from TI, RHFLVDS2281 from ST)
have been mounted and tested. SpaceWire codec IPs have been
instantiated on an FPGA that hosts also the interface logic with the
host computer.

Figure 9 ESA TEC-EDD Test board

340

Several ad-hoc boards have been prototyped in order to perform

the various measurement steps defined by the standard (Fig 10):
1. SpW interface mezzanine board (prototype)
2. SpW Unit Tester
3. SpW Driver Analyser
4. SpW Jitter Analyser

Figure 10 Test Jigs

The overall test bench is depicted by Figure 11.

Figure 11: Test Bench Overview

V. TEST RESULTS

Different techniques and probes with different BW (500MHz,

1GHz, 1.5GHz and 20GHz) coupled to DSO with high sampling rate
and input BW have been used for the signals measurement.

Figure 12 different Probes used on the ESA Test Bench

Several tests defined by the new SpW standard have been

performed and hereafter the test results for the Eye diagrams
measurements are reported: cables of 50 cm and 5 meters have been
used and two type of patterns have been used (fixed pattern 0x55 and
PSeudo Random-PSR pattern). The measurements have been done
using or the built-in test point on the board or an external passive test
jig (see fig.17)

Fig 14 Eye diagram 1.5 GHz probe, 0x55 (>1000 bytes) using

built-in test point - 5 mt cable, linkspeed is 100Mbit/s.

2

1
4

3

341

Fig. 15 Eye diagram 1.5 GHz probe, PSR (>1000 bytes) using

built-in test point - 5 mt cable, link speed is 100Mbit/s.

Fig. 16 Eye diagram 1.5 GHz probe –PSR (>1000 bytes) using

external passive test-jig to measure the signal - 5 mt cable, linkspeed
is 100Mbit/s

Fig. 17 External pssive test–jig used to measure SpW signal

Use of passive Test Jig or measurements at connector level of a

unit can not be compared with ANSI-TIA/EIA-644-A limits unless
corrected by impedance transfer functions that are particular for any
given unit implementation. Firstly because it represents a considerable
different load impedance than that for test fixture defined in the ANSI
TIA/EIA-644-A standard. Alternatively margins have to be
considered.

VI. CONCLUSION AND RECOMMENDATIONS
The new SpW standard should assign precise responsibilities to

the various actors involved in the design, development and
verification of a SpW communication channel. The Prime as system
architect has the responsibility to define and specify the performances
of the communication channel at system and element level (unit, cable
assembly). The element supplier has the task to provide a design that

is compliant to the specified value and the compliance has to be
demonstrated by analysis (that can refer also to datasheet). The
verification process shall be started at unit and cable assembly level
and it shall be again responsibility of the Prime to assess the overall
compliance of the developed SpW communication channel to the
system requirements.

Concerning the testing, it has been verified that in order to obtain

the best results at board level it is necessary to place adequately the
oscilloscope probes, e.g in the case of an eye diagram measurement at
the LVDS receiver, the DSO probes should be preferably located on
each side of the termination resistor. While for practical reasons it may
not be feasible, any test point must be placed as close as possible to
the termination resistor of each differential line. A test point should be
small to reduce inductive as well as capacitive effects that distorts the
signal, particularly the high frequency components of the rising and
falling edges. Because of the fast edges of the LVDS signal low
capacitance high bandwidth oscilloscope probes are required coupled
with an oscilloscope with an adequate bandwidth, hence active probes
that fulfill the previously mentioned rules for bandwidth calculation
must be considered in order to give an accurate representation of the
signal being measured (see [6], [8], [9]).

In case of unit-to-unit level tests the termination resistor within a
unit may not be possible to access. In order to obtain the quality of the
signal generated and received by the unit, an external adapter or port
replicator, as reported in section III, could be introduced which
presents the required differential impedance. It should as well present
lowest possible distortion of the LVDS signal while allowing the SpW
communication link between two end-points to operate at specified
data rate. It is unfortunately not possible to achieve these overall goals
using a passive adapter, particular because it does not support very
well an undisturbed measurement between two end-points.

Although the circuit is relatively simple it presents some distortion
to the LVDS signal mainly due to the additional MDM connector that
is mated to the UUT. However the contribution in terms of distortion
caused by the repeater board can be characterized using time domain
reflectometer and subtracted from the measurements [7].

REFERENCES

[1] ECSS-M-ST-10C. Project planning and Implementation, 6
March 2009

[2] ECSS-E-ST-50-12C. Space Wire - Links. Nodes. Routers and
Networks.ECSS-E-ST-50-12V Rev.1, 1892, pp.68–73.

[3] ECSS-E-ST-50-12V Rev.1 May/November 2015 (DIR3).
[4] ANSI/TIA/EIA-644-A-2001. Electrical Characteristics of Low

Voltage Differential Signaling (L VDS) Interface Circuits.
[5] Howard Johnson et.al. - A Handbook of Black Magic
[6] Understanding Data Eye Diagram Methodology for Analyzing

High Speed Digital Signals, AND9075/D, ON Semi.
[7] Application note: TDR Impedance Measurements: A

Foundation for Signal Integrity, Tektronix
[8] Application note: Probes and Probing, Teledyne Lecroy
[9] Application note: How oscilloscope Probes affect your

measurement, Tektronix

342

A New Generation of SpaceWire Test and

Development Equipment
SpaceWire Test and Verification, Long Paper

Stuart Mills, Chris McClements, Bruce Yu, Steve Parkes

STAR-Dundee

Dundee, Scotland

stuart.mills@star-dundee.com, chris.mcclements@star-dundee.com, bruce.yu@star-dundee.com, steve.parkes@star-dundee.com

Abstract—STAR-Dundee recently released a number of new

SpaceWire test and development products based on a single

hardware platform and supported by a single software platform.

This paper will describe the modular design that makes this

possible and the advantages, both to STAR-Dundee and to users,

of this system.

Index Terms—SpaceWire, SpaceFibre, STAR-Dundee, PXI,

cPCI, PXIe, Interface, Router, STAR-System

I. INTRODUCTION

STAR-Dundee has recently released a number of new

SpaceWire test and development products based on a single

hardware platform, using modular FPGA designs, and

supported by a single software platform. The hardware, FPGA

and software platforms each make use of a modular design,

which allows different features to be included in a number of

unique products.

This modular combination allows STAR-Dundee to quickly

develop new products to support common requirements for

SpaceWire and SpaceFibre test and development equipment.

In addition, it provides a framework to explore new concepts

without requiring completely new hardware, FPGA code and

software to be developed.

This paper describes the hardware, FPGA and software

modules which make up this system, and how they themselves

have benefited from reusing previous developments. It then

describes some of the products that have been released using

this platform, and some of the projects that have used the

platform to quickly develop devices to test out new

technologies. The paper concludes with information on some

new products being developed using the modules described.

II. HARDWARE PLATFORM

To enable this modular system, a new hardware platform

was developed. The STAR-Dundee PXI hardware platform

has a CompactPCI (cPCI) connector at the rear. This allows

the device to be used in cPCI, PXI and PXI Express (PXIe)

racks. A photograph of the hardware platform is shown in Fig.

1.

Fig. 1. STAR-Dundee PXI hardware platform

The hardware platform has been designed to support a

number of different interfaces on the front panel, not only

SpaceWire. The platform has sockets for sixteen flexi

connectors, to which a number of different supported flexi

interfaces can be connected and made available to users on the

front panel of the device. The interfaces which can be

connected currently include:

 SpaceWire ports

 SpaceFibre ports

 CAN bus ports

 JTAG ports

 USB UART ports

 GPIO ports

 SD card slots

 SMB trigger connectors

 Switches

 Push buttons

Other new interfaces can be developed and connected in the

same way. Each interface includes LEDs which can be used to

indicate status. For example, the SpaceWire interfaces have

one LED which indicates whether packets are being

transmitted, and another to indicate whether packets are being

received. These LEDs can also be used to indicate errors.

Supporting each of these interface types allows devices to

be created with a mixture of interfaces, for example a

SpaceWire to SpaceFibre bridge or a device with multiple

343

mailto:stuart.mills@star-dundee.com
mailto:chris.mcclements@star-dundee.com
mailto:bruce.yu@star-dundee.com
mailto:steve.parkes@star-dundee.com

SpaceWire ports and triggers, switches and buttons for

triggering events.

Front panels must be manufactured to support the specified

interfaces, but for internal developments or during prototyping

these front panels can be quickly produced using a 3D printer.

The PXI card is a 3U (rack Units) card, and the front panels are

3U high, with 6U versions available. The width of most front

panels developed so far is 8HP (Horizontal Pitch), but larger or

smaller widths such as 12HP or 4HP front panels can also be

developed if required.

III. REUSABLE FPGA MODULES

To support each of the interfaces which can be included in

the hardware platform, FPGA modules have been developed

for each interface. A number of these modules were developed

for previous STAR-Dundee devices, or are modifications of

existing STAR-Dundee FPGA modules.

Similarly, a module is required to interface with software

over the cPCI interface. This is an existing module and

provides the same interface as other STAR-Dundee devices

such as the SpaceWire cPCI Mk2 [1], an older device with a

cPCI interface. As well as minimising the FPGA development,

this also reduces the software development required to support

the PXI devices.

In addition to FPGA modules to support the device’s

interfaces, there are also FPGA modules to provide additional

functionality within the device. For example, SpaceWire and

SpaceFibre devices can include interface and/or router

functionality. Other more advanced features that can be

included are error injection on SpaceWire links, triggering on

events and an RMAP (Remote Memory Access Protocol)

target.

Fig. 2. STAR-System Error Injection application screenshot

IV. STAR-SYSTEM SOFTWARE

The STAR-Dundee STAR-System software suite [1][3]

was developed prior to the PXI hardware platform. It provides

a full software suite supporting all STAR-Dundee devices

developed since 2012. At the bottom level it includes drivers

for accessing each of the supported device types in the

supported operating system. Above this are APIs for accessing

these devices in software. At the top level STAR-System

includes a number of console and Graphical User Interface

(GUI) applications for accessing the devices. These include

applications to transmit and receive packets and time-codes,

configure the devices and inject errors. A screenshot of the

STAR-System Error Injection application is shown in Fig. 2.,

while the Device Configuration application is shown in Fig. 3.

Fig. 3. STAR-System Device Configuration application screenshot

As the PXI devices use the same FPGA interface that is

used in previous STAR-Dundee cPCI devices, the only

modification required to the STAR-System drivers to support

the PXI devices was to update the STAR-System PCI Driver to

add support for the device identifiers used by each of the PXI

products. Similarly the APIs were updated to include

identifiers for each of the new products. No changes were

required to the console and GUI applications, as these

applications obtain device information from the APIs and

drivers.

To support the unique features of the PXI devices, some

additions were required to STAR-System. A new RMAP

Target API was added to support PXI devices which contain an

RMAP target. This API contains functions to configure the

target, such as which commands are to be supported, and to

receive notifications whenever an RMAP operation is

performed. A Trigger API was also added to configure actions

to be performed when specific events occur on devices

supporting the triggering functionality. This is a powerful

feature which can be used, for example, to transmit packets or

time-codes when a particular event occurs, such as a time-code

being received, an external trigger or a time period elapsing.

344

Fig. 4. STAR-System for LabVIEW screenshot

A. LabVIEW

Two options are available for using STAR-System devices

with National Instruments’ LabVIEW environment: a

Windows LabVIEW Wrapper for STAR-System [4] and a

LabVIEW VISA Driver [5]. A screenshot of the LabVIEW

Wrapper is shown in Fig. 4. This Wrapper provides all the

functionality of STAR-System within LabVIEW on Windows

operating systems, while the VISA Driver offers lower level

access to the device on any LabVIEW supported operating

system.

As LabVIEW is often used on PXI systems, it was

important to support the PXI products in both of STAR-

Dundee’s LabVIEW products. The VISA Driver required only

minor modifications to support the additional device types.

The LabVIEW Wrapper required similar modifications to

support the additional device types, plus new modules to

support each of the new APIs added to access the new

functionality provided by some of the PXI devices.

V. PXI PRODUCTS

With the hardware, FPGA and software building blocks in

place, these were then combined in to a number of different

products, described below.

A. SpaceWire PXI Interface

The SpaceWire PXI Interface device [6], shown in Fig. 5.,

provides four SpaceWire ports, four SMB triggers, two push

buttons and two switches on the front panel. The FPGA

includes support for both interface and router modes, so the

device can be used to explore SpaceWire routing, as well as

transmitting and receiving directly on each of the four

SpaceWire ports.

The inclusion of trigger connectors allows the device to

make full use of the triggering functionality included in the

FPGA, and supported in the STAR-System Trigger API. The

Trigger API allows actions to be specified which will occur

when specific events occur. The events include:

 An external trigger

 A valid time-code being received

 A counter being decremented or reaching zero

 An internal trigger

 A port event, including:

o Receiving a start of packet

o Receiving an End Of Packet (EOP)

o Receiving an Error End of Packet (EEP)

o Transmitting a start of packet

o Transmitting an EOP

o Packet available to be transmitted

o Port running

o Port encounters an error

o Port disconnects

o Port receives a time-code

o Port transmits a time-code

The counter event can be used to delay a trigger for a

specified period of time, or to trigger once a specified number

of triggers have occurred.

The actions include:

 Output an external trigger

 Start or stop a counter

 Transmit a time-code

 A port action, including:

o Transmit a queued packet

o Disconnect the port

o Inject a parity or escape error

o Insert or suppress a Flow Control Token

(FCT)

o Increment or decrement credit

The combination of these actions and events allows very

powerful control of the traffic on a SpaceWire link. There are

numerous possibilities and users have been putting them to

good use. One common use is to periodically transmit packets

sent to the device from software, out of one or more SpaceWire

ports. This provides deterministic behaviour while using a

non-real-time operating system such as Windows.

Fig. 5. STAR-Dundee PXI Interface device

345

B. SpaceWire PXI Interface with RMAP Target

The SpaceWire PXI Interface with RMAP Target [6]

demonstrates how a new product can be created with existing

hardware. The device uses the same connectors and front

panel as the SpaceWire PXI Interface, but in addition to the

functionality provided with the SpaceWire PXI Interface, it

also includes an FPGA module which provides four RMAP

targets. An additional software API in STAR-System provides

access to this functionality.

The RMAP Target module supports multiple targets, each

of which can be configured to restrict the RMAP commands

that are to be supported by that target. Authorisation of

commands can be performed automatically by the device, or

each command can be passed to software for authorisation.

The properties that can be used when configuring automatic

authorisation include:

 A logical address range

 A protocol ID

 Supported commands

 A key range

 A memory address range

A target can also be configured to notify software whenever

a command is received and/or completed, while the memory on

the device can be read or written from software. This provides

a powerful system for testing of RMAP initiators and

simulating RMAP targets, which can be setup very quickly.

C. SpaceWire PXI Router

The 16 flexi connectors on the STAR-Dundee PXI platform

allow large SpaceWire routers to be created. The SpaceWire

PXI Router [6] includes 12 SpaceWire ports, in order to fit all

the ports in the 8HP front panel.

As with the PXI Interface devices, the SpaceWire PXI

Router includes both interface and router modes, along with

other features such as triggering support, although there are no

external triggers on this device.

The SpaceWire PXI Router can therefore be used for

similar purposes to the SpaceWire PXI Interface devices, while

also offering the ability to explore and test SpaceWire routing

with a large number of ports.

Fig. 6. STAR-Dundee PXI Router device

Fig. 7. STAR-Dundee SpaceWire Recorder

D. SpaceWire Recorder

The STAR-Dundee SpaceWire Recorder [7] is a rack

system with a 1 Terabyte Solid-State Drive (SSD), which can

record the SpaceWire traffic crossing up to four SpaceWire

links. The large SSD allows the traffic crossing a network to

be recorded for a much longer period of time than with a

device such as the SpaceWire Link Analyser Mk2 [8], which

makes use of internal memory for storage.

The SpaceWire Recorder rack, shown in Fig. 7., includes a

SpaceWire Recorder PXI device to allow four SpaceWire ports

to be monitored. This uses a front panel which is similar to the

SpaceWire PXI Interface devices with four external triggers,

two push buttons and two switches. The only difference is that

the SpaceWire Recorder PXI includes eight SpaceWire ports.

The functionality provided by the FPGA of the SpaceWire

Recorder PXI device is very different to that provided by the

SpaceWire Interface and Router devices. It must transparently

monitor the traffic passing between two ports, and provide this

to software to be recorded. Some of the modules required to

support this functionality were already available within STAR-

Dundee’s other products, however. For example, the

SpaceWire Link Analyser Mk2 provides similar functionality,

so some of this code was reused.

The software provided with the SpaceWire Recorder

required much more development, however. Adding support

for the device to STAR-System was a simple task, but the

software to provide the functionality specific to the SpaceWire

Recorder required considerably more development. This

software must record the traffic to the SSD at very high speeds.

It must then display the very large recordings to the user,

working within the restrictions of the PC’s limited memory.

Despite its unique nature, by using the SpaceWire PXI

platform and other existing modules, the SpaceWire Recorder

was developed in a very short time period, with a large

percentage of that effort being focused on software

development. The resulting product can be used to view the

traffic crossing a SpaceWire network over large periods of

time, quickly find errors, data patterns and time-codes, and can

be an invaluable tool when debugging issues with a SpaceWire

network.

346

VI. PROJECTS USING PXI DEVICES

The PXI platform is of huge benefit for one-off

developments, for example when developing devices for

research projects. Devices can be quickly created using

existing interfaces, or new interfaces can be developed in a

relatively short period of time and added to the existing

platform. Two projects which have benefited in this way are

described below.

A. SpaceWire-D

As part of an ESA project on deterministic SpaceWire, the

University of Dundee was required to produce a system

demonstrating the capabilities of the SpaceWire-D protocol [9].

STAR-Dundee was given the task of developing a rack system

with two routers, multiple RMAP targets, and two processors

with SpaceWire interfaces acting as the RMAP initiators. The

resulting SpaceWire-D Demonstration System is shown in Fig.

8.

In the Demonstration System, four SpaceWire PXI

Interfaces with RMAP Targets are used to simulate as many as

16 RMAP targets. Two SpaceWire PXI Routers route traffic

between the initiators and the targets.

The two RMAP initiators are provided by custom PXI

devices. Unlike other STAR-Dundee PXI devices, these have

a 12HP front panel. This allows nine SpaceWire ports to be

included, three USB UARTs, four SMB triggers, two push

buttons and two switches. The FPGA on these devices is also a

custom development, which includes a LEON2 processor.

The University of Dundee was then able to use the RTEMS

operating system on the initiators, and develop the SpaceWire-

D initiator software to run on these boards. Software was also

developed to run on the Windows operating system, using

STAR-System and its RMAP Target API, to configure the

routers and configure and monitor the RMAP targets.

The PXI hardware platform enabled this system to be

developed in considerably less time than would have otherwise

been possible, allowing University of Dundee to concentrate on

the research and development of the SpaceWire-D software.

Fig. 8. SpaceWire-D Demonstration System

Fig. 9. SUNRISE router devices routing SpaceFibre and SpaceWire packets

B. SUNRISE

STAR-Dundee has been leading the development of

SpaceFibre, and has been working on the development of a

SpaceFibre Router under a Centre for Earth Observation

Instrumentation and Space Technology (CEOI-ST) activity

called SUNRISE.

The hardware for the SUNRISE SpaceFibre Routers is

provided by the PXI platform. It makes use of the SpaceWire

and SpaceFibre interfaces, including eight SpaceFibre ports

and four SpaceWire ports. Two SUNRISE routers are shown

in Fig. 9. routing traffic between SpaceWire and SpaceFibre

ports.

The PXI hardware platform allowed devices to quickly be

created so that work could instead focus on the core objective

of the activity: developing the FPGA module to perform

SpaceFibre routing. This has been a very successful project

and resulted in the development of the first ever SpaceFibre

router, enabled by the PXI platform.

VII. CONCLUSION

This paper has described the building blocks that make up

the STAR-Dundee PXI products, and has shown how these

hardware, FPGA and software modules can be used to produce

a wide range of products while also providing a platform for

prototyping and experimentation.

Work is continuing on this platform, and more products

will be released, as a result of FPGA and software additions,

with new front panels designed when required. Potential future

products include a SpaceFibre interface device and a

SpaceWire to SpaceFibre bridge.

There is work also being performed at STAR-Dundee in a

slightly different direction, to take advantage of the existing

interface boards, software and FPGA modules. A new

hardware platform has been developed with a PXIe connector

at the rear, but using the existing front panel interfaces. This

platform includes a Microsemi RTG4 FPGA – a flash-based

radiation tolerant FPGA. The PXIe-RTG4 platform, shown in

Fig. 10., offers the same flexibility as the PXI platform, while

347

providing a high quality engineering prototype board for the

development of RTG4 applications.

Fig. 10. STAR-Dundee PXIe-RTG4 device

The PXI hardware platform, reusable FPGA modules and

STAR-System software suite provide a powerful combination

which enables STAR-Dundee to develop bespoke products to

meet customers’ requirements. With the possibility of

alternative hardware platforms, additional interfaces and new

FPGA and software modules, the platform will continue to be

developed as new requirements are identified which cannot be

met with the existing system.

ACKNOWLEDGMENT

The STAR-Dundee PXI platform is the result of a

combined effort between STAR-Dundee’s PCB, mechanical,

electronics, FPGA and software engineers. The authors would

like to acknowledge the efforts and input of the STAR-Dundee

engineers not listed as co-authors.

STAR-Dundee would also like to acknowledge the support

of the CEOI-ST in funding the SUNRISE activity, Contract

Number: RP10G0348A02.

REFERENCES

[1] STAR-Dundee, “SpaceWire cPCI Mk2”, https://www.star-

dundee.com/products/spacewire-cpci-mk2, 2016.

[2] S. Mills, A. Mason, C. McClements, D. Paterson, I. Martin, S.

Parkes, “Developing SpaceWire Devices with STAR-Dundee

Test and Development Equipment”, International SpaceWire

Conference 2013, Gothenburg, Sweden, June 2014.

[3] STAR-Dundee, “STAR-System Datasheet”, https://www.star-

dundee.com/sites/default/files/STAR-System_1.pdf, 2016.

[4] STAR-Dundee, “STAR-System for LabVIEW”,

https://www.star-dundee.com/products/star-system-labview,

2016.

[5] STAR-Dundee, “SpaceWire LabVIEW (VISA) Driver”,

https://www.star-dundee.com/products/spacewire-labview-visa-

driver, 2016.

[6] STAR-Dundee, “SpaceWire PXI”, https://www.star-

dundee.com/products/spacewire-pxi, 2016.

[7] STAR-Dundee, “SpaceWire Recorder”, https://www.star-

dundee.com/products/spacewire-recorder, 2016.

[8] STAR-Dundee, “SpaceWire Link Analyser Mk2”,

https://www.star-dundee.com/products/spacewire-link-analyser-

mk2, 2016.

[9] D. Gibson, S. Parkes, C. McClements, S. Mills, “SpaceWire-D

Prototype and Demonstration System”, International SpaceWire

Conference 2016, Yokohama, Japan, October 2016.

348

Software-to-Hardware Tester for SpaceWire Oriented

Transport Protocols
SpaceWire networks and protocols, Long Paper

Valentin Olenev, Irina Lavrovskaya,

Nadezhda Chumakova

Saint-Petersburg State University of Aerospace

Instrumentation

Saint Petersburg, Russia

{valentin.olenev, irina.lavrovskaya,

nadezhda.chumakova}@guap.ru

Dmitry Dymov, Vadim Shkolniy, Sergey Kochura

JSC "Academician M.F. Reshetnev" Information Satellite

Systems"

Zheleznogorsk, Russia

dymovdv@mail.ru, {shkolniy, kochura}@iss-reshetnev.ru

Abstract—Compliance or conformance testing is basically a

kind of an audit which is performed for the system to check

whether all the specified standards are met or not.

Implementation of conformance testers for the communication

protocols is an important task, which is being solved in the

majority of industrial companies that develop the communication

equipment.

On-board equipment always needs a proper testing before the

integration into a spacecraft. Especially if we talk about

equipment, that operates according to the newly developed

communication protocol. Conformance testing is such kind of

testing, which gives an ability to ensure that a hardware or

software product, system or a physical link complies with the

requirements of a specification or any other document.

There is a number of transport protocols intended to operate

over SpaceWire. The newly developed transport protocol

STP-ISS is now among these protocols and provides such services

as reliability, guaranteed data delivery, scheduling and

connection-oriented data transmission. In order to test the

software models or hardware implementation of the STP-ISS

protocol the authors created a so-called software-to-hardware

tester. It gives ability to test the real on-board hardware with the

software implementation of a protocol model. The evolution of a

tester can provide opportunities for testing other SpaceWire

oriented transport protocols such as RMAP, CCSDS PTP,

SpaceWire-R, etc.

The current paper gives an overview of conformance testers,

describes main features of the STP-ISS protocol, and, finally

deals with the implementation of the Software-to-Hardware STP-

ISS tester and its application use cases.

Index Terms— Conformance Tester, SpaceWire, STP-ISS,

Transport Protocol.

I. INTRODUCTION

Nowadays, it is a common practice that industrial

companies develop special testing equipment or software in

order to ensure that standard compliances are met. The widely

used standards such as USB or Ethernet are developed by large

organizations and could be tested on all stages of the

implementation. We do not need a special equipment to test the

hardware if we buy a USB stick or a networking card, we can

just plug it into a computer and operation system will do it

automatically. But if a company develops a new specialized

protocol and a number of devices that should meet the

requirements of a new standard, this company should carefully

test the implemented equipment before integration and

dissemination.

On-board equipment is such kind of equipment that needs

very proper and detailed testing [1]. And if a new protocol for

on-board communication is developed, then we need to be sure

that the devices work as expected, before we can integrate it

into an aircraft or a spacecraft.

We had a long-term project for the research, development

and implementation of an STP-ISS transport protocol for the

on-board communication via the SpaceWire networks. In this

project we developed two revisions of STP-ISS protocol,

simulated and investigated them. The first revision of STP-ISS

is much simpler and compact, but the second one is more

powerful. Nevertheless, the backward compatibility for these

revisions is provided. After that we got the task to implement a

tester for the STP-ISS rev.1 equipment, which could tell the

manufacturer, that STP-ISS device operates correctly. Tester

should examine the device with a set of different testing

scenarios; each scenario should test a particular STP-ISS

mechanism. So after the testing the manufacturer will know

what STP-ISS mechanism failed and it can analyse the log-files

for details.

For this reason we conducted an overview of different

approaches for the implementation of hardware conformance

testers, studied the main examples of conformance testers

represented at the market.

II. HARDWARE AND SOFTWARE CONFORMANCE TESTING

On-board equipment always needs a proper testing before

the integration into a spacecraft. Especially if we talk about

349

equipment, that operates according to the newly developed

communication protocol. The conformance testing should be

provided to prove that this equipment meets the requirements.

Conformance testing gives an ability to ensure that a

hardware or software product, system or just a medium

complies with the requirements of a specification or any other

document. Various test procedures, testing software or

hardware testers have been developed either by the standard's

maintainers or external auditing organizations, specifically for

testing conformance to standards. Also service providers,

equipment manufacturers, and equipment suppliers rely on

such testing to ensure Quality of Service through this

conformance process.

Conformance testing may include some of these kinds of

tests, it has one fundamental difference – the requirements or

criteria for conformance must be specified in the standard or

specification. This is usually in a conformance clause or

conformance statement, but sometimes some of the criteria can

be found in the body of the specification. Some standards have

subsequent documentation for the test methodology and

assertions to be tested. If the criteria or requirements for

conformance are not specified, there can be no conformance

testing [2].

Many companies that develop or just work with the new

equipment have such kind of conformance testers and usually

equipment testing is done by the testing organizations. But

some standards have no official testing organizations. They

rely on self-assessment by the implementer and acceptance

testing by buyers.

Depending on the available information we can elaborate

two main approaches for the conformance testing that are

widely used across the industry:

 Software testers;

 Hardware testers.

Software testers usually consist of a test entity (software)

that includes a number of test cases. These tests are aimed to

get the correct responses from the unit that is being tested.

Testing software is running on a PC or any portable device and

it is connected with the real hardware, that it tests.

Conformance testing software usually includes a test tool (e.g.,

tool, suite, and/or reference implementation) and procedures

for testing (test engine).

The software may be represented by a set of programs, a set

of instructions for manual action, or another appropriate

alternative. It is likely to be platform independent, and it should

generate repeatable results. A reference implementation is an

implementation of a standard that is by definition conformant

to that standard. Such an implementation provides a proof of

concept of the standard and also provides a tool for the

developers of the conformance software. The reference

implementation is of considerable importance on the early

stages of conformance testing.

The conformance testing procedures should be agreed and

implemented before testing begins. This would include the

implementation of different types of tests.

There are many examples of the software testers for the

communication protocols. One of them is the “HDMI

compliance test software” that is implemented and distributed

by Tektronix. It automates a comprehensive range of tests on

conformance to HDMI 1.4a/b and HDMI 2.0 standards

(see Fig 1) [3].

Fig. 1. HDMI compliance test software by Tektronix

The other good example of testing software is R&S®CMW

– Conformance testing solution for eCall/ERA-Glonass

implemented by Rohde&Schwartz Gmbh&Co (see Fig. 2). It is

electronic safety systems for cars, developed by European

Union and the Russian Federation to have intelligent

telematics-based vehicle safety systems to speed up emergency

response times in order to save human lives. This software

tester is a solution for automated, reliable and reproducible

end-to-end conformance tests on eCall/ERA-Glonass

modules [4].

Fig. 2. Conformance testing solution for eCall/ERA-Glonass implemented by

Rohde&Schwartz Gmbh&Co

Also there are a number of good conformance testing

software implementations based on the formalized methodics

and algorithms. These examples are described in [5] and [6].

The other way of conformance testing is using of the real

hardware testers that produce the test sequences and test the

remote device. Usually it is a device operating with full respect

to the standard, which could have a different number of

parameters and settings. Configuration of this device is

performed via a special configuration software installed on PC.

350

There are also many examples of hardware testers for the

widely used communication standards as USB, LAN, RS232

and others (see Fig. 3).

Fig. 3. Implementations of hardware testers for different communication

standards

There is another example that is related to the on-board

equipment testing – the SpaceWire Conformance Tester

implemented by Star-Dundee. It connects to a SpaceWire

device and, through the host software, executes a variety of

tests to check the device under test’s (DUT) compliance to the

SpaceWire Standard. Over 55 tests can be conducted. The user

can easily select which tests they do and do not want to run.

With each test, expected and achieved results are displayed,

including a link to the appropriate clause of the SpaceWire

Standard to dramatically reduce the time spent debugging the

DUT. The SpaceWire Conformance Tester can also be used as

a high speed packet generator, and one of the SpaceWire links

can act as a data / time-code sink or loop-back [7].

Fig. 4. SpaceWire Conformance Tester

III. STP-ISS PROTOCOL FEATURES

The main task for our research was to decide how to test

the newly developed devices that should operate in

conformance to the STP-ISS protocol specification. So firstly,

we should describe what STP-ISS protocol is, what main

mechanisms and distinctive features it has. In this section, we

consider the second revision of the STP-ISS protocol which

includes all required functionality.

STP-ISS is a transport layer protocol that describes

informational and logic interaction between on-board devices,

packets’ formats and packet transmission rules for SpaceWire

networks.

STP-ISS provides transmission of control commands,

application messages, SpaceWire time-codes, SpaceWire

distributed interrupts and interrupt-acknowledges. There are

two types of application messages:

 urgent messages (higher priority);

 common messages (lower priority).

STP-ISS encapsulates applications’ messages into

SpaceWire packets. Length of each message data block should

be not less than 1 byte and should not exceed 2048 bytes for

the connectionless data transmission, and 64 Kbytes maximum

for the connection-oriented data transmission. Each packet is

finalized with CRC-16 which covers the packet starting from

the first byte of the STP-ISS packet header (excepting path

address) till the last byte of data, excluding the end of packet

symbol EOP.

For each transmitted packet STP-ISS protocol has a special

lifetime timer, which counts the time, when the packet is still

relevant in the SpaceWire network. Each packet is stored in a

transmission buffer during its lifetime.

STP-ISS has two logical buffers at the receiver side. The

first buffer is used for the connectionless data transmission, for

all types of packets (control commands, common messages and

urgent messages). The second buffer is used for the

connection-oriented data transmission only. The receiving side

should reserve required space in the buffer for each new

connection. If one of the receiving buffers is full, then STP-ISS

should indicate the Application layer about it and discard all

the packets coming from the SpaceWire.

The important STP-ISS feature is its configuration

flexibility. The protocol has a number of configuration

parameters, which give ability to tune the protocol depending

on the developer needs. There are some mechanisms that

should be implemented as mandatory. For example, Priority

QoS at least for one priority, Best effort QoS, transmit and

receive buffers. The other mechanisms are extensions and

could be optionally implemented in different combinations.

One of the STP-ISS benefits is the possibility to transmit

data using the following quality of service types:

 priority quality of service;

 guaranteed delivery quality of service;

 best effort quality of service;

 scheduling quality of service.

A. Priority Quality of Service

Priority quality of service is the main quality of service type

that should be supported by all the network end-node devices,

which communicate by means of STP-ISS. According to this

quality of service type, the data with the higher priority should

be transmitted first. STP-ISS supports 9 levels of priorities.

B. Guaranteed Delivery Quality of Service

Guaranteed delivery quality of service provides

confirmation for the successful packet transmission by sending

the acknowledgement packets. In addition, it resends the data

from the transmitter end-node if the acknowledgement is lost

351

(resending mechanism). Guaranteed delivery is provided by

resend timers and acknowledges.

Another feature is duplicate control commands detection in

the receiver. A duplicate control command can occur in case of

a loss of an acknowledgement.

C. Best Effort Quality of Service

Best effort quality of service provides data transmission

without acknowledging. When an STP-ISS receiver gets a best

effort packet it checks the CRC and data length only. In case of

an error or if the packet ends with EEP, the data packet still

should be sent to the Application, but with an error indication.

D. Scheduling Quality of Service

STP-ISS assumes to have a single data transmission

schedule for the whole SpaceWire network. This schedule

gives an opportunity for the node to send data only during

particular time-slots. The schedule consists of a number of

time-slots. The schedule table describes one epoch.

STP-ISS has the timer synchronisation mechanism.

Synchronisation is performed once in an epoch. During

synchronisation, a node should calculate a new value for the

time-slot timer. The newly calculated value will be applied for

the time-slot timer of a new epoch. The new epoch should start

when the time-code is received.

There are K time-slots in each epoch, when the time-code is

recognized as relevant. These time-slots are called Time-code

relevancy window. If a time-code is received before the last

K/2 time-slots of the epoch, or after the first K/2 time-slots of

the epoch, then this time-code is considered as irrelevant and

synchronisation should not be performed. If the time-slot timer

for a last time-slot expires simultaneously with the time-code

reception, then there is no need to correct the epoch timer

value.

E. Connection-Oriented Data Transmission

Connection-oriented data transmission gives an ability to

transmit large sized data with minimum overheads. Only

urgent or common messages could be transmitted over a

transport connection. Maximum number of transport

connections should not be more than 8 per one direction. Each

transport connection is unidirectional: it connects the

transmitter of the initiator node and receiver of the remote

node.

An application, which needs to transmit or receive a large

portion of data, should initiate the transport connection

establishment. The maximum size of data, which could be

transmitted over the transport connection in a packet, is

64 Kbytes. The transport connection establishment is

performed by means of classical three-phase

handshake [9], [10].

During data transmission, STP-ISS provides the flow

control, which is performed by sending of information about

the available free space in the receiving buffer. This

mechanism is applied only for the transport connections with

the guaranteed quality of service.

STP-ISS rev.1 protocol is described in [11] while STP-ISS

rev.2 protocol was previously described in details in [12].

IV. STP-ISS REFERENCE CODE

STP-ISS specification development was followed by a

simulation phase [13]. During this simulation stage we

precisely analysed, investigated and tested the specification. In

order to check STP-ISS protocol mechanisms we used three

different models:

 SDL model;

 SystemC network model;

 C++ reference code.

These modeling and investigation directions for STP-ISS

were described in more details in [14].

The SDL model is needed for the clear formal description

of the STP-ISS internal mechanisms and specification

analysis [15]. The SDL specification is used as a separate

document describing the specified mechanisms, and it is a

useful part for the main protocol specification document.

The SystemC model shows the STP-ISS protocol operation

over SpaceWire network, and it gives an ability to test the

network configuration and test networking features [14].

The reference code is intended to be used as the reference

for the programmers, who will implement STP-ISS in the on-

board software. The reference code is a software

implementation of the STP-ISS protocol in C++ language [16].

This implementation corresponds to the specification as

accurate as it is possible. The C++ reference code describes the

logical structure of the protocol, its interfaces and internal

mechanisms. All methods, which describe protocol

functionality, are provided with detailed comments for each

line. In addition, in order to check and prove the accuracy of

STP-ISS the model contains a number of test scenarios for

studying and demonstration of protocol functioning. Each

scenario launch produces detailed log files with event traces of

nodes and of a channel.

This reference code is used for studying of the protocol

functionality. Moreover, it could be translated into the other

programming languages and used for the implementation of

STP-ISS in the on-board software.

The other possible application of the reference code is an

implementation of a tester, that could be useful for testing of

the software models or hardware implementation of the

protocol. In this case, reference code is used as a black box,

which works with full conformance to the STP-ISS

specification [17]. This reference implementation of the

protocol could be placed on the one side of the connection, and

the software model or hardware protocol implementation – on

the other side. That software or hardware implementation is

called Device Under Test (DUT). Reference code can generate

different types of packets and the DUT should respond to them.

Depending on the result of the data exchange we can make a

decision, if the DUT works in conformance to the specification

or not.

V. SOFTWARE-TO-HARDWARE TESTER

We used the reference code to implement a Software-to-

Hardware Tester (S2HT) for the STP-ISS protocol. This title

means that we test the real on-board hardware with the

software implementation of a protocol model (reference code).

352

And this is a software conformance tester, if we refer to the

overview from the chapter II.

Software part of the S2HT consists of the following parts:

 Test engine “stp_testengine”, containing a set of

testing scenarios;

 STP-ISS reference code “stp_reference”;

 Error generation module “error_generator”.

Test engine is a set of testing scenarios for checking of

correctness of the testing equipment operation. This module is

implemented in SystemC, which represents a simulation library

of C++ programming language [18]. After the start of the tester

operation the user is able to choose the number of a test

scenario and a test starts to execute. In the course of the test the

S2HT performs a fixed number of actions according to the

particular scenario, for example, protocol configuration or

transmission of different types of packets. When the test is

completed the tester displays the results. During execution of

the test, the tester gathers the information on test operation and

different events to the log files.

Error generation module is implemented for testing of the

non-nominal cases in the communication process. Similarly the

Test Engine module it is implemented in SystemC. This

module gets data from the STP-ISS and can inject errors into a

valid packet depending on a testing scenario. Error generation

module is able to:

 Distort the transmitting data;

 Delete the service packets;

 Delete the EOP/EEP symbols;

 etc.

This module is also responsible for sending and receiving

data from a hardware driver.

STP-ISS reference code part of the tester is a reference

implementation of STP-ISS protocol with some modifications

to the network level interface. Modifications were made so that

the reference code can intercommunicate with the Error

Generation module: we changed network interface primitive

functions from serial byte to full packet transfer. It was

necessary for data preparation for passing to the hardware

driver. These modifications give an ability to work with Star-

Dundee USB Brick and SpaceWire-Ethernet drivers. In the

tester implementation the reference code is a separate library

that is used by the software.

The general architecture of the implemented Software-to-

Hardware tester is shown in Fig. 5.

This software part of the tester is installed on the PC.

Current version of S2HT operates under the Ubuntu operation

system.

PC should be connected to the DUT via the SpaceWire

cable. It is possible to use any suitable SpaceWire hardware

(Hardware in Fig. 5) for connection of the PC to the SpaceWire

device. For example it can be Star-Dundee SpaceWire Brick

Mk2 [19] or Ethernet-SpaceWire Bridge [20]. The Ethernet-

SpaceWire Bridge could be used to connect SpW network

through Ethernet interface to end user which is especially

useful in testing purposes.

Test cases

STP-ISS

C++ reference

Error Generator

User

Interface

HW Driver

Hardware

SW-to-HW

Tester

Device Under Test

Fig. 5. Software-to-Hardware tester architecture

Each of these devices (brick or bridge) provides a special

driver (HW Driver in Fig. 5) with an API for sending and

receiving SpaceWire packets, time-codes and interrupt-codes.

The other side of the connection is the DUT. This device

should have the SpaceWire port and should satisfy the

following general requirements:

 implementation of STP-ISS at least rev. 1;

 SpaceWire packets sending and receiving

functionality;

 indication of data packet or command reception;

 implementation of a SpaceWire link interface.

The DUT can be represented by the following devices:

 real on-board equipment which is a “black-box” in the

sense that we do not have a model of it, thus, can rely

only on its observable input/output behavior;

 PC with the SpaceWire interface (including a special

SpaceWire networking board).

If we use another PC as the DUT, we have some additional

abilities for testing and verification. We can set up the

reference code of STP-ISS to DUT and observe, how both

sides of the connection communicate with each other via the

SpaceWire link. The other beneficial option is to test the real

VHDL implementation of STP-ISS IP Core [20]. Fig. 6 shows

a way of connection of STP-ISS IP block to the S2HT.

Test cases

STP-ISS

C++ reference

Error Generator

User

Interface

HW Driver

Hardware

SW-to-HW Tester

STP-ISS IP-block

Hardware

DUT

Application Emulator

PC

SpW controller

FPGA

Fig. 6. STP-ISS IP Core interconnection with S2HT

353

Fig. 7 and Fig. 8 show the Software-to-Hardware tester that

is implemented in our laboratory. This tester consists of a

laptop with a pre-installed Ubuntu OS and Test Software. This

laptop could be connected to the DUT by means of Ethernet-

SpaceWire Bridge (see Fig. 7) or SpaceWire Brick Mk2

(see Fig. 6).

Fig. 7. SUAI Software-to-Hardware tester for STP-ISS connected with DUT

via SpaceWire Brick Mk2

Fig. 8. SUAI Software-to-Hardware tester for STP-ISS connected with DUT

via Ethernet-SpaceWire Bridge

VI. APPLICATION OF SOFTWARE-TO-HARDWARE TESTER

A. S2HT for STP-ISS Protocol Testing

Current version of the Software-to-Hardware tester is able

to test the following mechanisms of STP-ISS:

 assembling and disassembling of STP-ISS user data

packets and service packets;

 data transmission mechanisms;

 best-effort quality of service;

 guaranteed quality of service;

 error detection and recovery mechanisms;

 SpaceWire time-codes transmission and reception.

Testing should focus not only on normal protocol operation

checking, but also on operation in exceptional and critical

situations.

There is a number of STP-ISS mechanisms the Software-

to-Hardware tester is not able to test:

 Receiving and Transmitting of SpaceWire distributed

interrupts and interrupt acknowledges, which are not

supported by a SpaceWire Brick Mk2;

 Settings of configuration parameters for DUT;

 Any problems in SpaceWire link-level functionality

and other SpaceWire equipment errors (e.g. SpaceWire

cable and Brick Mk2), because it is out of S2HT scope.

S2HT provides two alternatives for the user interface:

console application and graphical user interface. Fig. 9 shows

launched S2HT graphical user interface with a selected test

scenario #2.

Fig. 9. Execution of the test scenario #2

Test scenario #2 is intended to check assembling and

disassembling of STP-ISS user data packets and service

packets mechanisms of the DUT. The tester sends a guaranteed

urgent packet to the DUT and waits for an acknowledgement.

If a correct acknowledgement is received, then this mechanism

is correctly implemented inside the DUT.

During the S2HT exploitation the user should be always

sure that all the equipment is correctly connected and

configured. Moreover, if DUT is not able to send data, thus

some of the test scenarios could not be executed successfully,

because the tester needs a response form the remote side of the

connection.

B. S2HT for SpaceWire Oriented Protocols Testing

Although S2HT is aimed for STP-ISS transport protocol

testing, it can be applied for other transport protocols operating

over SpaceWire. Figure 9 shows the variety of different

applications of S2HT.

In order to get a Tester for another protocol it is necessary

to implement the transport protocol in C++. An interface with

the Error Generator module will stay the same as for STP-ISS

protocol, but the upper interface with Test Cases module will

be different depending on the protocol.

354

Test cases

Error Generator

User

Interface

HW Driver

Hardware

SW-to-HW
Tester

Device Under
Test

Transport

protocol, C++

STP-ISS

RMAP

CCSDS

Plug-and-Play

STP-2

Fig. 10. Application of the S2HT for other protocols testing

The DUT, in turn, should be able to operate in accordance

with the tested protocol. Test cases module should be updated

in order to perform appropriate conformance testing.

CONCLUSION

The implemented Software-to-Hardware tester is a

promising tool that could help the developers to ensure that

STP-ISS equipment operates correctly. The implemented list of

testing scenarios should give the full test coverage for the

testing devices, so the result of the tester exploitation should be

simple – true or false. That means, did the DUT successfully

passed all the tests or not. If there are any faults in particular

test scenarios, then the developer could analyse log-files and

find out, which mechanism is implemented incorrectly.

Current implementation of a tester is able to test the

equipment that operates in conformance with STP-ISS protocol

specification rev.1. So the work that is still need to be done in

this field is updating the tester to the 2nd STP-ISS revision

conformance.

Finally, S2HT tester architecture and modules can be used

for implementation of a Tester for SpaceWire oriented

transport protocols.

ACKNOWLEDGEMENT

The research leading to these results has received funding

from the Ministry of Education and Science of the Russian

Federation under the contract RFMEFI57814X0022.

REFERENCES

[1] P. Marwedel, “Embedded System Design”, Springer, 2006.

241 p.
[2] Martha Gray, Alan Goldfine, Lynne Rosenthal, Lisa Carnahan.

“Conformance Testing”, National Institute of Standards and

Technology, Gaithersburg, USA, 2010.

[3] Tektronix official website, HDMI compliance test software, Web:

http://www.tek.com/datasheet/product-software/options-hdm-hdm-
ds-hdm-dsm-ht3-and-ht3-ds-datasheet-1.

[4] Rohde&Schwartz official website, R&S®CMW - Conformance

testing solution for eCall/ERA-Glonass, Web: https://www.rohde-

schwarz.com/en/applications/r-s-cmw-conformance-testing-solution-

for-ecall-era-glonass-application-card_56279-106883.html.
[5] A. Krupp, W. Muller “A Systematic Approach to the Test of

Combined HW/SW Systems”, in Proc. Design, Automation & Test in

Europe Conference & Exhibition (DATE), Paderborn University / C-
LAB, Paderborn, Germany, 2010, pp. 323 – 326.

[6] H. Kahlouche, C. Viho, M. Zendri “Hardware Testing Using a

Communication Protocol Conformance Testing Tool”,
TACAS/ETAPS'99, LNCS 1579, Springer-Verlag, Berlin Heidelberg,

1999, pp. 315-329.

[7] Star-Dundee website, SpaceWire Conformance Tester, Web:
https://www.star-dundee.com/products/spacewire-conformance-

tester.

[8] Koopman, P., Chakravarty, T. “Cyclic redundancy code (CRC)
polynomial selection for embedded networks”. DSN '04 Proceedings

of the 2004 International Conference on Dependable Systems and

Networks, IEEE Computer Society, 2004. pp. 145-154.
[9] Tanenbaum, A. S., Computer Networks, Fifth Edition; Prentice Hall,

2011. 962.

[10] Tomlinson, R.S., “Selecting Sequence Numbers”, Proceedings of the
ACM SIGCOMM/SIGOPS Interprocess Communication Workshop,

and ACM Operating Systems Review, Vol. 9, No. 3, July 1975,

Association for Computing Machinery, New York, 1975.
[11] Y. Sheynin, V. Olenev, I. Lavrovskaya, I. Korobkov, D. Dymov

“STP-ISS Transport Protocol for Spacecraft On-board Networks”,

Proceedings of 6th International Conference SpaceWire 2014
Program, Athens, Greece, 2014, pp. 26-31.

[12] Y. Sheynin, V. Olenev, I. Lavrovskaya, I. Korobkov, S. Kochura, S.
Openko, D. Dymov “Second Revision of the STP-ISS Transport

Protocol for On-Board SpaceWire Networks”, Proceedings of 17th

Conference of Open Innovations Association FRUCT. Yaroslavl:
Russia, 2015. pp.192-200.

[13] D. Dietterle, “Efficient Protocol Design Flow for Embedded

Systems”, PhD thesis in Computer Science. Cottbus, 2009.
[14] Y. Sheynin, V. Olenev, I. Lavrovskaya, I. Korobkov, S. Kochura, S.

Openko, D. Dymov “STP-ISS Тrаnsроrt Protocol Overview аnd

Моdеling”, Proceedings of 16th Conference of Open Innovations
Association Finnish-Russian University Cooperation in

Telecommunications (FRUCT) Program. Oulu: University of Oulu,

2014. pp.185-191.

[15] P. Morozkin, I. Lavrovskaya, V. Olenev, K. Nedovodeev,

“Integration of SDL Models into a SystemC Project for Network

Simulation”, in F. Khendek et al. (Eds.), SDL 2013: Model-Driven
Dependability Engineering, Lecture Notes in Computer Science,

Volume 7916 (pp. 275-290). Berlin: Springer Berlin Heidelberg,

2013.
[16] B. Stroustrup, The C++ Programming Language, 4th Edition. USA:

Addison-Wesley, 2013.

[17] M. Krichen, S. Tripakis, “Black-Box Conformance Testing for Real-
Time Systems”, 11th international SPIN workshop on model

checking of software (SPIN'04). LNCS, vol. 2989. Springer, Berlin.

[18] D. Black, J. Donovan, B. Bunton, A. Keist, “SystemC: From the
Ground Up”, NY: Springer, 2010.

[19] Star-Dundee website, SpaceWire-USB Brick Mk2, Web:

https://www.star-dundee.com/products/spacewire-usb-brick-mk2.
[20] Yablokov, E., Rozanov, V., Vinogradov, A. “Protocol for

Connection Ethernet Interface to SpaceWire Networks”, Proceedings

of 17th Conference of Open Innovations Association Finnish-Russian
University Cooperation in Telecommunications FRUCT. Yaroslavl:

Russia, 2015, pp. 362-367.

[21] A. Ben Abdallah, “Multicore Systems On-Chip: Practical
Software/Hardware Design”, Second Edition. Atlantic Press, 2013.

355

http://www.tek.com/datasheet/product-software/options-hdm-hdm-ds-hdm-dsm-ht3-and-ht3-ds-datasheet-1
http://www.tek.com/datasheet/product-software/options-hdm-hdm-ds-hdm-dsm-ht3-and-ht3-ds-datasheet-1
https://www.rohde-schwarz.com/en/applications/r-s-cmw-conformance-testing-solution-for-ecall-era-glonass-application-card_56279-106883.html
https://www.rohde-schwarz.com/en/applications/r-s-cmw-conformance-testing-solution-for-ecall-era-glonass-application-card_56279-106883.html
https://www.rohde-schwarz.com/en/applications/r-s-cmw-conformance-testing-solution-for-ecall-era-glonass-application-card_56279-106883.html
https://www.star-dundee.com/products/spacewire-usb-brick-mk2

Papers Indexed by Author

Author Surname A – K

Thomas Bahls, Alin O. Albu-Schäffer; A GRAPHICAL METHOD TO CONFIGURE SPACEWIRE

NETWORKS 282

G. Baterina, A. Senior, Y, Moghe; GALVANIC ISOLATION OF SPACEWIRE RECEIVERS 83

Michael Birmingham, William H, Anderson, Alexander Krimchansky, Matthew S. Lombardi; ESSENTIAL

SPACEWIRE HARDWARE CAPABILITIES FOR A ROBUST NETWORK 55

Michael Birmingham, William H. Anderson, Alexander Krimchansky, Matthew S. Lombardi; THE

GEOSTATIONARY OPERATIONAL SATELLITE R SERIES SPACEWIRE BASED DATA SYSTEM 145

Susan C. Clancy, Mazen Shihabi; USING SPACEWIRE TIME CODES FOR SPACECRAFT TIME

SYNCHRONIZATION 11

Daniele Davalle, Alessandro Leoni, Luca Dello Sterpaio, Luca Fanucci; DESIGN AND IMPLEMENTATION

OF TEST EQUIPMENT FOR SPACEFIBRE LINKS 135

Brice Dellandrea, Alexandre Dimitriou, David Jameux; MOST:MODELING OF SPACEWIRE &

SPACEFIBRE TRAFFIC 129

Brice Dellandrea, Antonis Tavoularis, Vassilis Vlagkoulis, Fotis Kostopoulos, Tam Le Ngoc, Luca Fossati,

Jorgen Ilstad, David Jameux; AN IP CORE FOR THE SPW FAMILY OF PROTOCOLS 273

Kevin Enouf, Stéphane Hermant, Florent Mettendorff; COMPACT, IMPEDANCE-MATCHED

SPACEWIRE CONNECTOR DEVELOPMENT 261

Albert Ferrer-Florit, Steve Parkes, Alberto Gonzalez-Villafranca, Chris McClements; SPACEFIBRE

MULTI-LANE 314

Iwao Fujishiro, Shigeyuki Arase, Masaharu Nomachi, Soichiro Mihara, Kenji Sasaki; SPACEWIRE TEST

CENTRE IN JAPAN 237

David Gibson, Steve Parkes, Chris McClements, Stuart Mills; SPACEWIRE-D PROTOTYPE AND

DEMONSTRATION SYSTEM 298

Alberto Gonzalez-Villafranca, Steve Parkes, Albert Ferrer-Florit, Chris McClements; A NEW GENERATION

OF SPACEFIBRE TEST AND DEVELOPMENT EQUIPMENT 140

Sandi Habinc, Magnus Hjorth, Javier Jalle, Felix Siegle, Jan Andersson, Roland Weigand; SPACEWIRE

ROUTER (GR740) VALIDATION METHODOLOGY AND RESULTS 69

S. Habinc, F. Johansson, F. Sturesson, F. Hernandez, F. Siegle, S. Redant, K. Stinkens, G. Thys J. Das

Arul Mahesh, Martin Suess, Rok Dittrich; RADIATION-TOLERANT 18X SPACEWIRE ROUTER

FOR SPACE APPLICATIONS (GR718B) 267

Michiya Hayama, Hiroto Namikoshi, Isao Odagi; FDIR METHOD USING AN EMBEDDED TIMECODE

IN PACKETS FOR SPACEWIRE-D 198

Hiroki Hihara, Nobuo Tamagawa, Takayuki Imamura, Hisashi Sugaya, Kazutoshi Wakabayashi, Tadahiko

Sugibayashi, Makoto Miyamura, Toshitsugu Sakamoto, Munehiro Tada, Hiromitsu Hada, Akira Iwasaki;

PROGRAMMABLE SPACEWIRE INTERFACE WITH ATOM SWITCH 65

Hiroki Hihara, Seisuke Fukuda, Takayuki Ishida, Takahiko Tanaka, Osamu Watanabe, Masanori Matsuo,

Mitsunobu Kuribayashi, Hiroshi Matsushima, Koichi Shinozaki, Toshiyuki Yamada; INNOVATIVE

MINIATURIZATION FOR LOW RESOURCE INTERPLANETARY EXPLORATION 89

Takayuki Ishida, Seisuke Fukuda, Keiichi Matsuzaki, Tadayuki Takahashi, Mitsutaka Takada, Hiroaki Takada,

Masaharu Nomachi, Takanori Narita, Masahiro Taeda, Kazunori Masukawa, Keigo Saso; SOFTWARE AND

SPACEWIRE EVALUATION OF SOI-SOC3 79

Hiroshi Itakura, Yoshihiro Akeboshi, Hirotoshi Yamada, Hisashi Yoshiko, Satoshi Ichikawa, Atsutake Kosuge,

Masashi Haraguchi, Tadahiro Kuroda; BASIC STUDY OF NON-CONTACT CONNECTOR FOR

HIGH-SPEED SPACE CABLE TRANSMISSION 227

Alexey Khakhulin, Valentin Olenev, Igor Orlovsky, Yuriy Sheynin, Ilya Korobkov, Elena Suvorova, Irina

Lavrovskaya; SPACEFIBRE BASED ON-BOARD NETWORKS FOR REAL-TIME VIDEO DATA

STREAMS 327

Alexander Kisin, Glenn Parker Rakow; NEW APPROACHES FOR DC BALANCED SPACEWIRE 61

Author Surname L - O

Irina Lavrovskaya, Valentin Olenev, Elenev Podgornova, Yuriy Sheynin; DETERMINISTIC SERVICES

FOR SPACEWIRE NETWORKS 159

Irina Lavrovskaya, Yuriy Sheynin, Valentin Olenev; MULTICHANNEL ADAPTIVE ROUTING FOR

INTENSIVE DATA PACKET FLOWS TRANSMISSION 289

Ronald T. Logan Jr; RUGGEDIZED PHOTONIC TRANSCEIVERS FOR SPACECRAFT DATALINKS 23

Giorgio Magistrati, Felice Torelli, Jørgen Ilstad; JUICE TIME DISTRIBUTION PROTOCOL 189

Giorgio Magistrati, Norbert Bonnici, Wahida Gasti, Farid Guettache, Jorgen Ilstad, James Windsor; HOW

TO DESIGN, TEST AND VERIFY THE PHYSICAL LAYER OF SPW NETWORKS 335

Mattavelli Marco, Brice Dellandrea, Gianluca Aranci, Nans Douay, Wahida Gasti, Giorgio Magistrati, Johannes

Wolf; SPACEWIRE ELECTRICAL TESTING 243

Joseph R Marshall; MATURATION OF A SCALABLE FORM FACTOR SYSTEM STANDARD FOR

INTEROPERABLE SPACEBORNE PROCESSING AND INTERCONNECT NEEDS 16

Joseph R Marshall; SPACEWIRE FABRIC USED TO CONTROL FAMILY OF STANDARDIZED HIGH

PERFORMANCE SPACEVPX MODULES 120

Joseph R Marshall; HIGH PERFORMANCE NETWORK COMPONENTS FOR SCALABLE SPACEBORNE

PROCESSING NEEDS 232

Stuart Mills, Chris McClements, Bruce Yu, Steve Parkes; A NEW GENERATION OF SPACEWIRE

TEST AND DEVELOPMENT EQUIPMENT 343

Giuseppe Montano, Marek Rucinski, Elie Allouis, Olivier Notebaert, David Jameux; NETWORK LATENCY

ANALYSIS OF A SPACEWIRE-BASED CONTROL SYSTEM FOR SPACE ROBOTIC ARM 213

Stephen Mudie, Steve Parkes; SPACEFIBRE LINK ANALYSIS 34

Takanori Narita, Masahiro Taeda, Masahiro Kato, Masaki Kusano, Kazunori Masukawa, Takayuki Ishida,

Seisuke Fukuda, Keiichi Matsuzaki, Tadayuki Takahashi, Mutsutaka Takada, Hiroaki Takada, Masaharu

Nomachi; HIGH-RELIABILITY SPACEWIRE ENGINE IMPLEMENTED ON SOISOC3

MICROPROCESSOR 75

Olivier Notebaert, Giuseppe Montano, Elie Allouis, Thierry Planche, Clément Pruvost, Andreas Schüttauf,

Hans-Juergen Herpel, Christophe Honvault, David Jameux; TOWARDS SPACEWIRE 2: SPACE ROBOTICS

NEEDS 103

Dan Ohlsson, Henrik Löfgren, Emil Vinterhav, Stefan Stralsjö; ENABLING ADVANCED MISSIONS ON

SMALL PLATFORMS THROUGH DESIGNING COST EFFECTIVE SPACEWIRE-BASED AVIONICS

SOLUTIONS IN THE CUBESAT FORM FACTOR 254

Valentin Olenev, Ilya Korobkov, Elena Suvorova, Yuriy Sheynin; STREAMING SERVICES OVER

SPACEFIBRE NETWORKS 151

Valentin Olenev, Irina Lavrovskaya, Nadezhda Chumakova, Dmitry Dymov, Vadim Shkolniy, Sergey

Kochura; SOFTWARE-TO-HARDWARE TESTER FOR SPACEWIRE ORIENTATED TRANSPORT

PROTOCOLS 349

Author Surname P - Z

Alfonso Gonzalo Palomo; GENERIC ICU – A FAMILY OF ICUs FOR METOP-SG INSTRUMENTS 203

Steve Parkes, Chris McClements, David McLaren, Albert Ferrer Florit, Alberto Gonzalez Villafranca;

SPACEFIBRE NETWORKS 28

Steve Parkes, Chris McClements, David McLaren, Albert Ferrer-Florit, Alberto Gonzalez-Villafranca;

SPACEFIBRE FLIGHT EQUIPMENT 322

Ting Peng, Benjamin Weps, Kai Borchers, Daniel Lüdtke, Kilian Höflinger, Andreas Gerndt; A NEW

SPACEWIRE PROTOCOL FOR RECONFIGURABLE DISTRIBUTED ON-BOARD COMPUTERS 175

Philippe Plasson, Rafael Corsi Ferrão, Sergio Ribeiro Augusto, Cássio Berni, Franklin Ronald Ferreira dos

antos e Vanderlei Cunha Parro, Loic Gueguen, Saulo Finco, Gisbert Peter, Manfred Steller; MULTI-

PURPOSE SIMULATOR FOR PLATO MISSION 244

Felix Siegle, Martin Aberg, Daniel Hellström,Arne Samuelsson, Sandi Habinc, Felice Torelli; COMMON

SPACEWIRE SOFTWARE FOR ESA JUICE INSTRUMENT PAYLOADS 96

Felix Siegle, Sandi Habinc, Kostas Marinis; SPACEFIBRE AND SERIAL RAPIDIO NETWORK LAYERS

(GRSPFI/ GRSRIO) 131

Felix Siegle, Sandi Habinc, Johannes Both; SPACEFIBRE PORT IP CORE (GRSPFI) 218

Dmitri Skok, Tatiana Solokhina, Jaroslav Petrichkovich, Juri Gerasimov; 90NM 12.5 GBIT/S

SPACEFIBRE/GIGASPACEWIRE BASED PHYSICAL INTERFACE FOR THE SPACE RADARS SOC 86

Tatiana Solokhina, Jaroslav Petrichkovich, Alexander Glushkov, Andrey Belyaev, Leonid Menshenin, Yuriy

heynin, Elena Suvorova; RADIATION TOLERANT HETEROGENEOUS MULTICORE “SYSTEM ON

CHIP” WITH BUILT-IN MULTICHANNEL SPACEFIBRE SWITCH FOR ONBOARD DATA

MANAGEMENT AND MASS STORAGE DEVICE 248

Elena Suvorova, Ksenia Rozhdestvenskaya, Nadezhda Matveeva, Lev Kurbanov, Aleksey Evdokimov, Yuriy

Sheynin, Aleksey Rabin; PLACEMENT OF PLUG-AND-PLAY NETWORK MANAGERS IN SPACEWIRE

NETWORKS 167

Elena Suvorova, Liudmila Koblyakova,Yuriy Sheynin; SYNCHRONIZATION OF DISTRIBUTED

INTERRUPTS DELIVERY IN AEROSPACE ONBOARD NETWORKS 223

Elena Suvorova, Nadezhda Matveeva, Yuriy Sheynin; QOS MECHANISMS IN SPACEFIBRE AND

RAPID IO 305

Yi Xiao Su, Tao Cong Ling, Zeng Hua Song, Liu Wen Li; DESIGN AND ANALYSIS OF SPACEWIRE

HOT BACKUP REDUNDANT NETWORK 184

Takeshi Takashima, Emilo Ogawa, Mitsuru Hikishima, Kazushi Asamura; A NEW MISSION DATA

RECORDER (MDR) WITH TIME-SEARCH FUNCTION FOR ERG MISSION SYSTEM 240

Takeshi Takashima, Yosuke Nakamura, Emiko Ogawa; SPACEWIRE NETWORKING SYSTEM FOR

PAYLOADS ONBOARD ERG SATELLITE 241

Takeshi Takashima, Seisuke Fukuda; DEVELOPMENT OF REAL-TIME AND HIGH-SPEED SPACEWIRE

DATA TRANSFER SYSTEM 242

Piotr Tyczka, Krzysztof Romanowski, Wojciech Mich, Rafal Renk, Vangelis D. Kollias, Nikos Pogkas;

IMPLEMENTATION AND VALIDATION OF THE SPACEWIRE-R PROTOCOL 41

Piotr Tyczka, Krzysztof Romanowski, Witold Holubowicz, Rafal Renk, Vangelis D. Kollias, Nikos Pogkas;

SPACEWIRE NETWORK MANAGEMENT USING NETWORK DISCOVERY AND CONFIGURATION

PROTOCOL 45

Liu Weiwei, Niu Yuehua, Cheng Bowen, Wang Luyuan; DETERMINISTIC COMMUNICATION AND

DISTRIBUTED CONTROL OF AVIONICS BASED ON SPACEWIRE-D 208

James Windsor, Wahida Gasti, Ignacio Clerigo; BEPICOLUMBO – BUILDING A ROBUST DATA

MANAGEMENT SUBSYSTEM UTILISING SPACEWIRE NETWORKS 112

Satoshi Yamazaki, Toshio Tonouchi, Yu Otake, Yasuhiro Sota, Takahiko Tanaka, Hiroki Hihara;

CONSTRAINT-BASED CONFIGURATION TABLE GENERATOR FOR RELIABLE PATH ROUTING

AND SAFE TIMESLOT ALLOCATION IN SPACEWIRE NETWORK 51

Niu Yuehua, Liu Weiwei, Li Xin, Mu Qiang, Wang Luyuan; DISTRIBUTED STORAGE SYSTEM FOR

SATELLITE PLATFORM BASED ON SPACEWIRE NETWORK 193

Papers Indexed by Session

Tuesday 25th October

Missions & Applications (Short Papers)

Susan C. Clancy, Mazen Shihabi; USING SPACEWIRE TIME CODES FOR SPACECRAFT TIME 11

SYNCHRONIZATION

Joseph R Marshall; MATURATION OF A SCALABLE FORM FACTOR SYSTEM STANDARD FOR

INTEROPERABLE SPACEBORNE PROCESSING AND INTERCONNECT NEEDS 16

SpaceFibre 1 (Long Papers)

Ronald T. Logan Jr; RUGGEDIZED PHOTONIC TRANSCEIVERS FOR SPACECRAFT DATALINKS 23

Steve Parkes, Chris McClements, David McLaren, Albert Ferrer Florit, Alberto Gonzalez Villafranca;

SPACEFIBRE NETWORKS 28

Stephen Mudie, Steve Parkes; SPACEFIBRE LINK ANALYSIS 34

Networks & Protocols (Short Papers)

Piotr Tyczka, Krzysztof Romanowski, Wojciech Mich, Rafal Renk, Vangelis D. Kollias, Nikos Pogkas;

IMPLEMENTATION AND VALIDATION OF THE SPACEWIRE-R PROTOCOL 41

Piotr Tyczka, Krzysztof Romanowski, Witold Holubowicz, Rafal Renk, Vangelis D. Kollias, Nikos Pogkas;

SPACEWIRE NETWORK MANAGEMENT USING NETWORK DISCOVERY AND CONFIGURATION

PROTOCOL 45

Satoshi Yamazaki, Toshio Tonouchi, Yu Otake, Yasuhiro Sota, Takahiko Tanaka, Hiroki Hihara;

CONSTRAINT-BASED CONFIGURATION TABLE GENERATOR FOR RELIABLE PATH ROUTING

AND SAFE TIMESLOT ALLOCATION IN SPACEWIRE NETWORK 51

Michael Birmingham, William H, Anderson, Alexander Krimchansky, Matthew S. Lombardi; ESSENTIAL

SPACEWIRE HARDWARE CAPABILITIES FOR A ROBUST NETWORK 55

Alexander Kisin, Glenn Parker Rakow; NEW APPROACHES FOR DC BALANCED SPACEWIRE 61

Components (Short Papers)

Hiroki Hihara, Nobuo Tamagawa, Takayuki Imamura, Hisashi Sugaya, Kazutoshi Wakabayashi, Tadahiko

Sugibayashi, Makoto Miyamura, Toshitsugu Sakamoto, Munehiro Tada, Hiromitsu Hada, Akira Iwasaki;

PROGRAMMABLE SPACEWIRE INTERFACE WITH ATOM SWITCH 65

Sandi Habinc, Magnus Hjorth, Javier Jalle, Felix Siegle, Jan Andersson, Roland Weigand; SPACEWIRE

ROUTER (GR740) VALIDATION METHODOLOGY AND RESULTS 69

Takanori Narita, Masahiro Taeda, Masahiro Kato, Masaki Kusano, Kazunori Masukawa, Takayuki Ishida,

Seisuke Fukuda, Keiichi Matsuzaki, Tadayuki Takahashi, Mutsutaka Takada, Hiroaki Takada, Masaharu

Nomachi; HIGH-RELIABILITY SPACEWIRE ENGINE IMPLEMENTED ON SOISOC3

MICROPROCESSOR 75

Takayuki Ishida, Seisuke Fukuda, Keiichi Matsuzaki, Tadayuki Takahashi, Mitsutaka Takada, Hiroaki Takada,

Masaharu Nomachi, Takanori Narita, Masahiro Taeda, Kazunori Masukawa, Keigo Saso; SOFTWARE AND

SPACEWIRE EVALUATION OF SOI-SOC3 79

G. Baterina, A. Senior, Y, Moghe; GALVANIC ISOLATION OF SPACEWIRE RECEIVERS 83

Dmitri Skok, Tatiana Solokhina, Jaroslav Petrichkovich, Juri Gerasimov; 90NM 12.5 GBIT/S

SPACEFIBRE/GIGASPACEWIRE BASED PHYSICAL INTERFACE FOR THE SPACE RADARS SOC 86

Hiroki Hihara, Seisuke Fukuda, Takayuki Ishida, Takahiko Tanaka, Osamu Watanabe, Masanori Matsuo,

Mitsunobu Kuribayashi, Hiroshi Matsushima, Koichi Shinozaki, Toshiyuki Yamada; INNOVATIVE

MINIATURIZATION FOR LOW RESOURCE INTERPLANETARY EXPLORATION 89

Wednesday 26th October

Missions & Applications (Long Papers)

Felix Siegle, Martin Aberg, Daniel Hellström,Arne Samuelsson, Sandi Habinc, Felice Torelli; COMMON

SPACEWIRE SOFTWARE FOR ESA JUICE INSTRUMENT PAYLOADS 96

Olivier Notebaert, Giuseppe Montano, Elie Allouis, Thierry Planche, Clément Pruvost, Andreas Schüttauf,

Hans-Juergen Herpel, Christophe Honvault, David Jameux; TOWARDS SPACEWIRE 2: SPACE ROBOTICS

NEEDS 103

James Windsor, Wahida Gasti, Ignacio Clerigo; BEPICOLUMBO – BUILDING A ROBUST DATA

MANAGEMENT SUBSYSTEM UTILISING SPACEWIRE NETWORKS 112

Joseph R Marshall; SPACEWIRE FABRIC USED TO CONTROL FAMILY OF STANDARDIZED HIGH

PERFORMANCE SPACEVPX MODULES 120

Test & Verification (Short Papers)

Brice Dellandrea, Alexandre Dimitriou, David Jameux; MOST:MODELING OF SPACEWIRE &

SPACEFIBRE TRAFFIC 129

SpaceFibre (Short Papers)

Felix Siegle, Sandi Habinc, Kostas Marinis; SPACEFIBRE AND SERIAL RAPIDIO NETWORK LAYERS

(GRSPFI/ GRSRIO) 131

Daniele Davalle, Alessandro Leoni, Luca Dello Sterpaio, Luca Fanucci; DESIGN AND IMPLEMENTATION

OF TEST EQUIPMENT FOR SPACEFIBRE LINKS 135

Alberto Gonzalez-Villafranca, Steve Parkes, Albert Ferrer-Florit, Chris McClements; A NEW GENERATION

OF SPACEFIBRE TEST AND DEVELOPMENT EQUIPMENT 140

Networks & Protocols 1 (Long Paper)

Michael Birmingham, William H. Anderson, Alexander Krimchansky, Matthew S. Lombardi; THE

GEOSTATIONARY OPERATIONAL SATELLITE R SERIES SPACEWIRE BASED DATA SYSTEM 145

Valentin Olenev, Ilya Korobkov, Elena Suvorova, Yuriy Sheynin; STREAMING SERVICES OVER

SPACEFIBRE NETWORKS 151

Irina Lavrovskaya, Valentin Olenev, Elenev Podgornova, Yuriy Sheynin; DETERMINISTIC SERVICES

FOR SPACEWIRE NETWORKS 159

Elena Suvorova, Ksenia Rozhdestvenskaya, Nadezhda Matveeva, Lev Kurbanov, Aleksey Evdokimov, Yuriy

Sheynin, Aleksey Rabin; PLACEMENT OF PLUG-AND-PLAY NETWORK MANAGERS IN SPACEWIRE

NETWORKS 167

Ting Peng, Benjamin Weps, Kai Borchers, Daniel Lüdtke, Kilian Höflinger, Andreas Gerndt; A NEW

SPACEWIRE PROTOCOL FOR RECONFIGURABLE DISTRIBUTED ON-BOARD COMPUTERS 175

Poster Presentations

Yi Xiao Su, Tao Cong Ling, Zeng Hua Song, Liu Wen Li; DESIGN AND ANALYSIS OF SPACEWIRE

HOT BACKUP REDUNDANT NETWORK 184

Giorgio Magistrati, Felice Torelli, Jørgen Ilstad; JUICE TIME DISTRIBUTION PROTOCOL 189

Niu Yuehua, Liu Weiwei, Li Xin, Mu Qiang, Wang Luyuan; DISTRIBUTED STORAGE SYSTEM FOR

SATELLITE PLATFORM BASED ON SPACEWIRE NETWORK 193

Michiya Hayama, Hiroto Namikoshi, Isao Odagi; FDIR METHOD USING AN EMBEDDED TIMECODE

IN PACKETS FOR SPACEWIRE-D 198

Alfonso Gonzalo Palomo; GENERIC ICU – A FAMILY OF ICUs FOR METOP-SG INSTRUMENTS 203

Liu Weiwei, Niu Yuehua, Cheng Bowen, Wang Luyuan; DETERMINISTIC COMMUNICATION AND

DISTRIBUTED CONTROL OF AVIONICS BASED ON SPACEWIRE-D 208

Giuseppe Montano, Marek Rucinski, Elie Allouis, Olivier Notebaert, David Jameux; NETWORK LATENCY

ANALYSIS OF A SPACEWIRE-BASED CONTROL SYSTEM FOR SPACE ROBOTIC ARM 213

Felix Siegle, Sandi Habinc, Johannes Both; SPACEFIBRE PORT IP CORE (GRSPFI) 218

Elena Suvorova, Liudmila Koblyakova,Yuriy Sheynin; SYNCHRONIZATION OF DISTRIBUTED

INTERRUPTS DELIVERY IN AEROSPACE ONBOARD NETWORKS 223

Hiroshi Itakura, Yoshihiro Akeboshi, Hirotoshi Yamada, Hisashi Yoshiko, Satoshi Ichikawa, Atsutake Kosuge,

Masashi Haraguchi, Tadahiro Kuroda; BASIC STUDY OF NON-CONTACT CONNECTOR FOR

HIGH-SPEED SPACE CABLE TRANSMISSION 227

Joseph R Marshall; HIGH PERFORMANCE NETWORK COMPONENTS FOR SCALABLE SPACEBORNE

PROCESSING NEEDS 232

Iwao Fujishiro, Shigeyuki Arase, Masaharu Nomachi, Soichiro Mihara, Kenji Sasaki; SPACEWIRE TEST

CENTRE IN JAPAN 237

Takeshi Takashima, Emilo Ogawa, Mitsuru Hikishima, Kazushi Asamura; A NEW MISSION DATA

RECORDER (MDR) WITH TIME-SEARCH FUNCTION FOR ERG MISSION SYSTEM 240

Takeshi Takashima, Yosuke Nakamura, Emiko Ogawa; SPACEWIRE NETWORKING SYSTEM FOR

PAYLOADS ONBOARD ERG SATELLITE 241

Takeshi Takashima, Seisuke Fukuda; DEVELOPMENT OF REAL-TIME AND HIGH-SPEED SPACEWIRE

DATA TRANSFER SYSTEM 242

Mattavelli Marco, Brice Dellandrea, Gianluca Aranci, Nans Douay, Wahida Gasti, Giorgio Magistrati, Johannes

Wolf; SPACEWIRE ELECTRICAL TESTING 243

Philippe Plasson, Rafael Corsi Ferrão, Sergio Ribeiro Augusto, Cássio Berni, Franklin Ronald Ferreira dos

antos e Vanderlei Cunha Parro, Loic Gueguen, Saulo Finco, Gisbert Peter, Manfred Steller; MULTI-

PURPOSE SIMULATOR FOR PLATO MISSION 244

Tatiana Solokhina, Jaroslav Petrichkovich, Alexander Glushkov, Andrey Belyaev, Leonid Menshenin, Yuriy

heynin, Elena Suvorova; RADIATION TOLERANT HETEROGENEOUS MULTICORE “SYSTEM ON

CHIP” WITH BUILT-IN MULTICHANNEL SPACEFIBRE SWITCH FOR ONBOARD DATA

MANAGEMENT AND MASS STORAGE DEVICE 248

Dan Ohlsson, Henrik Löfgren, Emil Vinterhav, Stefan Stralsjö; ENABLING ADVANCED MISSIONS ON

SMALL PLATFORMS THROUGH DESIGNING COST EFFECTIVE SPACEWIRE-BASED AVIONICS

SOLUTIONS IN THE CUBESAT FORM FACTOR 254

Thursday 27th October

Components (Long Papers)

Kevin Enouf, Stéphane Hermant, Florent Mettendorff; COMPACT, IMPEDANCE-MATCHED

SPACEWIRE CONNECTOR DEVELOPMENT 261

S. Habinc, F. Johansson, F. Sturesson, F. Hernandez, F. Siegle, S. Redant, K. Stinkens, G. Thys J. Das

Arul Mahesh, Martin Suess, Rok Dittrich; RADIATION-TOLERANT 18X SPACEWIRE ROUTER

FOR SPACE APPLICATIONS (GR718B) 267

Brice Dellandrea, Antonis Tavoularis, Vassilis Vlagkoulis, Fotis Kostopoulos, Tam Le Ngoc, Luca Fossati,

Jorgen Ilstad, David Jameux; AN IP CORE FOR THE SPW FAMILY OF PROTOCOLS 273

Networks & Protocols 2 (Long Papers)

Thomas Bahls, Alin O. Albu-Schäffer; A GRAPHICAL METHOD TO CONFIGURE SPACEWIRE

NETWORKS 282

Irina Lavrovskaya, Yuriy Sheynin, Valentin Olenev; MULTICHANNEL ADAPTIVE ROUTING FOR

INTENSIVE DATA PACKET FLOWS TRANSMISSION 289

David Gibson, Steve Parkes, Chris McClements, Stuart Mills; SPACEWIRE-D PROTOTYPE AND

DEMONSTRATION SYSTEM 298

Elena Suvorova, Nadezhda Matveeva, Yuriy Sheynin; QOS MECHANISMS IN SPACEFIBRE AND

RAPID IO 305

SpaceFibre 2 (Long Papers)

Albert Ferrer-Florit, Steve Parkes, Alberto Gonzalez-Villafranca, Chris McClements; SPACEFIBRE

MULTI-LANE 314

Steve Parkes, Chris McClements, David McLaren, Albert Ferrer-Florit, Alberto Gonzalez-Villafranca;

SPACEFIBRE FLIGHT EQUIPMENT 322

Alexey Khakhulin, Valentin Olenev, Igor Orlovsky, Yuriy Sheynin, Ilya Korobkov, Elena Suvorova, Irina

Lavrovskaya; SPACEFIBRE BASED ON-BOARD NETWORKS FOR REAL-TIME VIDEO DATA

STREAMS 327

Test & Verification (Long Papers)

Giorgio Magistrati, Norbert Bonnici, Wahida Gasti, Farid Guettache, Jorgen Ilstad, James Windsor; HOW

TO DESIGN, TEST AND VERIFY THE PHYSICAL LAYER OF SPW NETWORKS 335

Stuart Mills, Chris McClements, Bruce Yu, Steve Parkes; A NEW GENERATION OF SPACEWIRE

TEST AND DEVELOPMENT EQUIPMENT 343

Valentin Olenev, Irina Lavrovskaya, Nadezhda Chumakova, Dmitry Dymov, Vadim Shkolniy, Sergey

Kochura; SOFTWARE-TO-HARDWARE TESTER FOR SPACEWIRE ORIENTATED TRANSPORT

PROTOCOLS 349

Exhibitors

AXON’ CABLE

The Axon’ group designs and manufactures wire, cable, connectors and cable assemblies for

advanced technology applications in the principal fields of space, aeronautics, medical electronics,

automotive and scientific research. Headquartered in France (100 Km east of Paris) the Group

employs some 1700 staff in 14 subsidiaries across Europe, America and Asia, with an annual

turnover of €115 million euro.

Axon’ Cable has been involved in many space projects, including the International Space Station,

various LEO and GEO satellites and rocket launchers including Ariane 5, and can boast flight heritage

dating back to 1997.

The group offers various types of products for space applications:

- ESCC approved wires, cables and connectors,

- lightweight aluminium round cables and braids,

- aluminium bus bars for satellite power distribution,

- MIL-STD-1553 databus looms for digital transmission systems,

- high data rate links for Voice-Data-Image transmission including SpaceWire, IEEE1394, Ethernet

 and Fibre Channel,

- solutions suitable for the forthcoming multi-gigabit protocol, SpaceFibre,

- and custom-designed products for specific applications.

Additionally, Axon’ has been involved either as prime or subcontractor on a number of ESA EMITS

tenders including the development of high temperature thruster cables, the development of low

mass SpaceWire, the evaluation of shielding techniques for Spacecraft harnesses, the evaluation of

Nano-D for Space, the development of Combo Micro-D’s and the provision of cables for the

SpaceFibre Demonstrator.

4LINKS Limited

4Links test and simulation equipment for SpaceWire will save you time, delay, risk, and money. It

does exactly what test equipment needs to do. It has proved to be interoperable with every design

that it has connected to, while detecting faults including many not found by other methods.

Our solutions provide information to resolve faults, including longstanding ones, and often without

the need to reproduce the fault. And the same hardware can be used - for devices, subsystems and

complete satellites - at all stages of a mission development. The same innovative design, quality and

support extends to 4Links’ SpaceWire chips and SpaceWire IP. 4Links SpaceWire test and simulation

equipment is reliable, accurate and excellent value. This is why more and more users are specifying

4Links as their SpaceWire products of choice.

ÅAC MICROTEC

ÅAC Microtec develops and supplies highly capable components, sub-systems and small satellite

platforms. End-users include operators of commercial, R&D and educational space missions to

whom reliability and resilience of the spacecraft are important. Thanks to our design approach

and system architecture, platforms can swiftly be customized to meet specific mission and

payload needs. Delivering customer data with high assurance and reliability is ÅAC Microtec’s

hallmark. Our fault-tolerant systems combine affordable performance with high mission

confidence. For high-end payloads, our satellite solutions are the first choice of operators

worldwide.

ÅAC has a strong competitive advantage in that it operates in the high-end segment of the small

satellite market, and that the offered products are ITAR free. The products are flight proven and

has strong heritage. Examples of products are On-board computers (OBCs), Mass Memory Units

(MMUs/TCM), Power Control & Distributing Units (PCDUs), and Bluestone. Bluestone is an

efficient way of distributing image data from satellites.

Contact info

ÅAC Microtec AB

Uppsala Science Park

Dag Hammarskjölds väg 48

SE-751 83 Uppsala

Sweden

Phone: +46 18-560130

info@aacmicrotec.com

mailto:info@aacmicrotec.com

COBHAM SEMICONDUCTOR SOLUTIONS
Cobham Semiconductor Solutions provides HiRel standard products, ASICs, and radiation testing

services. Our Cobham Gaisler site in Goteborg, Sweden provides IP cores and supporting

development tools for embedded processors based on the SPARC architecture along with SpaceWire

Routers and boards.

The key product is the LEON synthesizable processor model together with a full development

environment and a library of IP cores (GRLIB). Our personnel have extended design experience, and

have been involved in establishing European standards for ASIC and FPGA development. Cobham

Gaisler has extensive experience in the management of ASIC development projects, and in the

design of flight quality microelectronic devices. The company specializes in digital hardware design

(ASIC/FPGA) for both commercial and aerospace applications.

SHIMAFUJI ELECTRIC
Since 1990, Shimafuji Electric has been developing microcomputer boards including transmission,

graphics and other complex peripheral functions and also producing small number of products for

some OEMs.

Shimafuji have joined the Japan SpaceWire user Group since early days. We developed the

SpaceWire compliant cubic computer - Space Cube with JAXA, and we have some SpaceWire

function boards, like the Universal FPGA Board, The Sampling ADC, The Digital I/O, and ETC since

2005. Then, our one of latest model is the 4 port Space Wire to Gigabit Ether R2 Unit and we are

developed the 24-link SpaceWire Packet Recorder and 48-port SpaceWire Packet Generator based

on the 12-slots microTCA SpaceWire Backplane system. We also developing the Grand Use

SpaceWire for Industries.

In this year, we opened The SpaceWire Test Lab facility in our office for small space businesses,

students and anyone who are interesting SpaceWire. This lab has clean booth, high function

instruments, and off coarse SpaceWire testing instruments etc.

STAR-DUNDEE LTD.
STAR-Dundee is an aerospace engineering company, which designs network and related

data-handling technology for use on-board spacecraft. STAR-Dundee provides electronic test

and development equipment and chip designs for spaceflight applications.

Our highly experienced engineers were instrumental in the development of SpaceWire,

writing the ECSS standard with inputs from international spacecraft engineers. SpaceWire is

now widely used on-board spacecraft with over 100 space missions already in orbit or

currently being designed using SpaceWire technology. Our engineers are currently leading

the research, technical development and standardisation of the next generation of

SpaceWire technology, SpaceFibre, which is a substantial leap forward, offering much higher

data rates, quality of service, fault detection, isolation and recovery, deterministic data

delivery, low latency time-synchronisation and event signalling, and many other features

and benefits.

Since 2002, STAR-Dundee has provided SpaceWire evaluation, test and development

equipment to the world’s space agencies and aerospace companies. Our SpaceWire

interface boards and units are used in Electronic Ground Support Equipment (EGSE) for

integrating and testing many spacecraft. Our IP cores are integrated in spaceflight systems

monitoring the Earth, exploring our Solar System, studying the universe and supporting

commercial space applications.

STAR-Dundee is committed to providing the best possible solution for your application. Our

team of highly qualified and experienced engineers understands the challenges of designing

systems for space applications. Our well proven technology has flown on many high profile

space missions. Part of our commitment to our customers is the effort that we spend on the

research, development and standardisation of data-handling technology. SpaceFibre is the

latest manifestation of our commitment to engineering excellence and international

standardisation.

GLENAIR

Glenair – out of this world of interconnect solutions

SpaceWire cable assemblies:

Glenair offer a complete range of SpaceWire cable assemblies for laboratory and flight use.

In support of the SpaceWire protocol Glenair also offer a complete range of Micro D connectors for

vacuum chamber and router interface use.

For more information on Glenair’s space products portfolio please contact:

Ross Thomson, Business Manager - Space Interconnect Systems

Glenair UK Ltd

40 Lower Oakham Way

Oakham Business Park

Mansfield, Nottinghamshire

NG18 5BY, UK

e-mail: rthomson@glenair.co.uk

Office: +44 (0) 1623 638100

Mobile/ cell: +44 (0) 7711 029 715

SpaceFibre:

Glenair designs and manufactures a full range of fiber-optic interconnect products to support

spacecraft systems.

These include radiation-tolerant high-speed opto-electronic transceivers supporting SpaceFibre,

sRIO and other high-speed protocols up to 10 Gbps per lane, as well as fiber-optic cable assemblies,

connectors, inspection and cleaning kits, and training of personnel to insure mission success.

For more information on Glenair’s fibre optic product portfolio and capability please contact:

Ronald T. Logan Jr., Ph.D.

Chief Technologist, Sr. Director Active Components

Glenair Inc.

1211 Airway,Glendale

California 91202 -2497, USA

e-mail: rlogan@glenair.com

Office: +1 818 247 6000

www.glenair.com

mailto:rthomson@glenair.co.uk
mailto:rlogan@glenair.com
http://www.glenair.com/

INGENIARS S.R.L

IngeniArs S.r.l. is a spin-off company of the University of Pisa born in May 2014, built upon the large

experience (more than 20 years) of its co-founders. Main focus of the company is the space business with

a wide range of services and products such as:

 Specific products for design and validation of on-board high speed data communications based

on SpaceWire and SpaceFibre standards

 Development of ad-hoc on-board data processing and data-handling HW/SW systems

 Development of ad-hoc Electrical Ground Support Equipments (EGSEs) and Validation

Platforms for Space Equipment

As far as SpaceWire/SpaceFibre system is concerned IngeniArs offers an extensive portfolio of products

(http://www.ingeniars.com/english/products/space.html) allowing the final user to design and validate

systems based on such standards. In particular IngeniArs products portfolio is composed of:

 SpaceWire Codec, Spacewire Router and SpaceFibre Codec IP Cores

 Spacewire/SpaceFibre Link Analyser (Stand-Alone Real Time Validation Platform)

 Spacewire/SpaceFibre NI PXI Link Analyser (Real Time Validation platform fully compatible with

National Instrument Platforms based on PXI interfaces)

Despite its recent foundation IngeniArs already counts important customers such as Finmeccanica-

Leonardo and Thales Alenia Space as well as a strategic partnership with National Instrument for

development of EGSEs and validation systems. IngeniArs was also recently awarded with contracts as

prime by ESA and H2020 SME instrument.

Further information about IngeniArs S.r.l. can be found at http://www.ingeniars.com/.

MITSUBISHI ELECTRIC CORPORATION
Mitsubishi Electric's space technology includes the manufacture and implementation of satellites,

satellite components, and ground systems. Over the past four decades, we have completed more

satellite projects for communications concerns, government agencies, and other large-scale clients

than any other Japanese company, making Mitsubishi Electric the leading company for space

systems in Japan. We have a distinct advantage when it comes to designing, building, launching and

controlling satellites, because we also excel in the solar panel, antenna, amplification, tracking,

control and ground station system technologies that make satellites practical to own and operate.

http://www.mitsubishielectric.com/

http://www.ingeniars.com/english/products/space.html
http://www.ingeniars.com/

MITSUBISHI HEAVY INDUSTRIES, LTD

More than 130 years have passed since Mitsubishi first leased the Nagasaki Shipyard from the

government’s Ministry of Industry in 1884. The technologies of the MHI Group supported Japan

through unbridled changes in its quest for modernization and globalization.

The Group uses the technological foundation accumulated over these long years to provide products

and innovations in a wide range of fields. In 2014, the company completed its transition to a domain

system, achieving even greater synergy and contributing even more to the development of society.

As Japan’s leading defense and space systems integrator, the Integrated Defense & Space Systems

Domain combines the technology and expertise of each of its businesses, resulting in a system that

makes it possible to coordinate land, sea and air defense initiatives, as well as reinforcing MHI’s

international competitiveness in the space industry.

MHI provides launch services with the H-IIA, Japan's primary launch vehicle, and has also

participated in the development and production of KIBO, the Japanese Experiment Module (JEM) on

the International Space Station, contributing to space development in Japan.

https://www.mhi-global.com/company/aboutmhi/outline/index.html

https://www.mhi-global.com/company/aboutmhi/outline/index.html

NEC CORPORATION
NEC is a multinational provider of information technology and network solutions & products to

business enterprises, communications services providers and government agencies since established

in 1899. In addition, NEC is a few companies which have both Space technology and ICT. NEC has

more than 50 years of expertise in space business, and has been providing wide diversity of space

products including various satellite systems and optical and radio wave sensors.

We also offer solutions of ICT which use data from sensors. NEC contributes to advanced urban

development with biometric identification technology, versatile sensing technology and analytic

technology that makes high-precision forecasting and prediction possible. NEC also leverages

sensing technologies and big data analysis technologies to support the advancement of lifelines

through ICT.

As the industry makes the shift from Space development to Space utilization, NEC’s space business

intends to transform itself into an enterprise that provides space solutions. NEC can offer space

solutions by fusing space technologies and IT/Network technologies such as for remote sensing area

which is the focus of increasing attention. The NEC space solution aims to provide information

services that can provide “any” user with “any” information that need “anytime” and “anywhere” by

processing, formatting and storing both the observation/survey data acquired from space systems

and the various kinds of sensor data collected from terrestrial sources.

Via the space solution, NEC contributes to realize an information society friendly to human and the

earth.

For more information, visit NEC space system solutions at:

http://www.nec.com/space/

	Front Cover
	Copyright Notice
	Preface
	Technical Committee
	Programme Overview
	Tuesday 25 October
	Missions & Applications (Short)
	Clancy - Using SpaceWire Time Codes for Spacecraft TimeSynchronization
	Marshall - Maturation of a Scalable Form Factor SystemStandard for Interoperable Spaceborne Processingand Interconnect Needs

	SpaceFibre 1 (Long)
	Logan - Ruggedized Photonic Transceiversfor Spacecraft Datalinks
	Sparkes - SpaceFibre Networks
	Mudie - SpaceFibre Link Analysis

	Networks & Protocols (Short)
	Tyczka - Implementation and Validationof the SpaceWire-R Protocol
	Tyczka - SpaceWire Network Management UsingNetwork Discovery and Configuration Protocol
	Yamazaki - Constraint-based Configuration Table Generator forReliable Path Routing and Safe Timeslot Allocationin SpaceWire Network
	Birmingham - Essential SpaceWire Hardware Capabilities for aRobust Network
	Kisin - New Approaches for DC Balanced SpaceWire

	Components (Short)
	Hihara - Programmable SpaceWire interface with atom switch
	Habinc - GR740 SpaceWire Router ValidationMethodology and Results
	Narita - High-Reliability SpaceWire Engine implemented ontheSOISOC3 microproc
	Ishida - Software and SpaceWire evaluation of SOI-SOC3
	Baterina - Galvanic Isolation of SpaceWire Receivers
	Skok - 90 nm 12.5 Gbit/s physical interface per SoC withSpaceFibre/GigaSpaceWire links for the space radars
	Kuribayashi - Innovative miniaturization for low resourceinterplanetary exploration

	Wednesday 26 October
	Missions & Applications (Long)
	Siegle - Common SpaceWire Software forESA JUICE Instrument Payloads
	Notebaert - Towards SpaceWire-2: Space Robotics Needs
	Windsor - BepiColombo - building a robust Data ManagementSubsystem utilising SpaceWire networks
	Marshall - SpaceWire Fabric Used to Control Family ofStandardized High Performance SpaceVPX Modules

	Test & Verification (Short)
	Dellandrea - MOST: Modeling of SpaceWire & SpaceFibretraffic

	SpaceFibre (Short)
	Siegle - SpaceFibre and Serial RapidIO Network Layers(GRSPFI/GRSRIO)
	Davalle - Design and implementation of test equipment forSpaceFibre links
	Gonzalez-Villafranca - A new Generation of SpaceFibre Test andDevelopment Equipment

	Networks & Protocols 1 (Long)
	Birmingham - The Geostationary Operational Satellite R SeriesSpaceWire Based Data System
	Olenev - Streaming Services over SpaceFibre Networks
	Lavrovskaya - Deterministic Services for SpaceWire Networks
	Suvorova - Placement of Plug-and-Play Network Managers inSpaceWire Networks
	Peng - A New SpaceWire Protocol for ReconfigurableDistributed On-Board Computers

	Poster Presentations
	XiaoSu YI - Design and Analysis of SpaceWire Hot BackupRedundant Network
	Magistrati - JUICE Time Distribution Protocol
	Yuehua - Distributed Storage System for Satellite PlatformBased on SpaceWire Network
	Hayama - FDIR Method using an Embedded Timecode inPackets for SpaceWire-D
	Gonzalo Palomo - Generic ICU – A family of ICUs for MetOp-SGinstruments
	Weiwei - Deterministic Communication and DistributedControl of Avionics Based on SpaceWire-D
	Montano - Network Latency Analysis of a SpaceWire-basedControl System for Space Robotic Arm
	Siegle - SpaceFibre Port IP Core (GRSPFI)
	Suvorova - Synchronization of Distributed Interrupts Delivery inAerospace Onboard Networks
	Itakura - Basic Study of Non-Contact Connectorfor High-Speed Space Cable Transmission
	Marshall - High Performance Network Components for ScalableSpaceborne Processing Needs
	Fujishiro - SpaceWire Test Center in Japan
	Takashima - A NEW MISSION DATA RECORDER (MDR)WITH TIME-SEARCH FUNCTION FOR ERGMISSION SYSTEM
	Takashima - SPACEWIRE NETWORKING SYSTEM FORPAYLOADS ONBOARD ERG SATELLITE
	Takashima - DEVELOPMENT OF REAL-TIME AND HIGHSPEEDSPACEWIRE DATA TRANSFER SYSTEM
	Dellandrea - SPACEWIRE ELECTICAL TESTING
	Plasson - Multi-purpose simulator for Plato mission
	Solokhina - Radiation tolerant heterogeneous Multicore "systemon chip" with built-in multichannel SpaceFibre switchfor onboard data management and Mass StorageDevice
	Ohlsson - Enabling Advanced Missions on Small Platformsthrough Designing Cost Effective SpaceWire-basedAvionics Solutions in the CubeSat Form Factor

	Thursday 27 October
	Components (Long)
	Enouf - Compact, Impedance-matchedSpaceWire Connector Development – “MicroMachSpaceWire”
	Habinc - Radiation-Tolerant 18x SpaceWire RouterDesign and Qualification for space application –GR718B
	Dellandrea - An IP Core for the SpW family of protocols

	Networks & Protocols 2 (Long)
	Bahls - A Graphical Method to Configure SpaceWireNetworks
	Lavrovskaya - Multichannel Adaptive Routing for Intensive DataPacket Flows Transmission
	Gibson - SpaceWire-D Prototype and Demonstration System
	Suvorova - QoS mechanisms in SpaceFibre and RapidIO

	SpaceFibre 2 (Long)
	Ferrer-Florit - SpaceFibre Multi-lane
	Parkes - SpaceFibre Flight Equipment
	Khakhulin - SpaceFibre Based On-board Networks for Real-TimeVideo Data Streams

	Test & Verification (Long)
	Magistrati - How to design, test and verify the physical layer ofSpW networks
	Mills - A New Generation of SpaceWire Test andDevelopment Equipment
	Olenev - Software-to-Hardware Tester for SpaceWire OrientedTransport Protocols

	Papers Indexed by Author
	Papers Indexed by Session
	Exhibitors

